
Intra-procedural Slicing Using Program Dependence
Table

Reza Mohammadian
Department of computer
Islamic Azad University

Qom, Iran
mohammadian reza@hotmail.com

Saeed Doostali
Department of computer

University of Kashan
Kashan, Iran

doostali.s@gmail.com

Seyed Morteza Babamir
Department of computer

University of Kashan
Kashan, Iran

babamir@kashanu.ac.ir

Abstract—Program slicing as a program analysis technique
extracts the statements of a program to restrict the focus of
a task to specific sub-components of a program. This tech-
nique has many applications in software maintenance such
as debugging, regression testing, program understanding and
reverse engineering. Most of the researches in program slicing
used the different type of dependence graphs as intermediate
representation tools and then proposed the slicing algorithms
based on it. Drawing the dependence graphs to represent large
and complex programs is very complicated and it is impossible
in non-automatic approaches that requires the experted user
to perform an extensive amount of manual work to apply the
proposed approach. Moreover scrolling a dependence graph to
find the executable slices of a program is one of the most
common issue in software testing. In this paper, we introduce
the program dependence table as a new intermediate represen-
tation tool. Then, we proposed five automatic intra-procedural
slicing algorithms including forward, backward, chop, union and
backbone based on the program dependence table.

Keywords—Program slicing, Program dependence graph, Pro-
gram dependence table, Intra-procedural slicing.

I. INTRODUCTION

Software testing as a vital part of software development
is a process of executing a software program with the intent
of finding potential errors [1]. This process can be done
manually or automatically. Using automated software testing
can optimize the software testing lifecycle thus save time and
cost [2], [3]. Program slicing is one of the most important
techniques which is used to improve the efficiency of software
testing [4]. This technique extracts the statements of a program
which are relevant to a given computation. In fact program
slicing is a feasible method to restrict the focus of a task to
specific sub-components of a program [5]. In addition to the
software testing, there are more applications of this technique
on the various of software engineering activities such as pro-
gram debugging, maintenance and understanding [6], software
measurement [7], cohesion measuring [8], detecting dead code
[9], test data generation [10], prevention of state explosion in
model checking [11] and so on. In spite of extensive effect
of program slicing in various software activities especially
testing, it is not very used due to its complexity for large
and complex programs [12].

Copyright held by the author(s).

The basic idea of program slicing was first introduced by
Weiser in 1981 [13]. In the following, it has been introduced
for various programming paradigms including inter and intra
procedural [14], [15], object-oriented [16], aspect-oriented
[17], feature-oriented [18], functional [19] and the systems
which are written in multiple programming languages [20].
Most of the researches in program slicing used the different
type of dependence graph as intermediate representation tool
and then proposed the slicing algorithms based on it. In
[14] the authors utilized program dependence graph to extract
the intra-procedural programs. To generate inter-procedural
slices the system dependence graph is applied in [21]. Class
dependence graph has been used in object-oriented program
slicing [16], and An extended version of aspect-oriented sys-
tem dependence graph was utilized to slice the aspect-oriented
programs [17]. Moreover, there are more researches in dy-
namic slicing. In [22] Singh et al. proposed a dynamic slicing
approach for concurrent AspectJ programs based on multi-
threaded aspect-oriented dependence graph. In [18] dynamic
feature composition dependence graph has been used to create
a dynamic slice for a feature-oriented program.

Drawing the dependence graph to slice large and complex
programs is very complicated and it is impossible in non-
automatic approaches that requires the expert user to perform
an extensive amount of manual work to apply the proposed
approach [12]. In fact, computing a program slice automat-
ically is the main challenge in program slicing approaches.
Moreover, extracting the programs to find the executable slices
can help us to test the programs.

In this paper, we will introduce the program dependence
table (PDT) as a new intermediate representation tool and
five automatic slicing algorithms including forward, backward,
chop, union and backbone based on the dependence table.
The proposed algorithms can compute static slices of an intra-
procedural program based on its PDT.

The layouts of the paper are as follows: In Section II are
mentioned the basic concepts of program dependence graph
and various types of program slicing including backward,
forward, chop, backbone and union. In Section III, the details
of PDT for intra-procedural programs are presented. Our
proposed slicing algorithms are described in Section IV and
at the end Section V concludes the paper with some insights

158



into our future works.

II. BACKGROUND

A. Program dependence graph

As we mentioned, program slicing reduces the program to
those statements that are relevant for a particular context. To
do so, it utilizes the dependency relation between the program
statements to identify the statements that affect or are affected
by a point of interest, which is called slicing criterion [23].
This point consists of a pair 〈s, v〉, where s is a program point
and v is a subset of program variables. The approach of slicing
is based on a Program Dependence Graph (PDG).

A PDG G = 〈V, E〉 is a directed graph where V is the
statements of a source program and E is the dependence
relations (i.e. data dependence or control dependence) between
the statements. An edge si → sj where si, sj ∈ V represents
dependence of the statement sj on statement si.

Definition II.1. Control Dependence: There is a control
dependency between the statements si and sj , if si is a
conditional predicate and execution of sj is determined by
the result of si [9].

Definition II.2. Data Dependence: There is a data depen-
dency between the statements si and sj , if for any variable
x ∈ si assigns the value to x ∈ sj refers to x, and there exists
at least one execution path in between si and sj without the
value of x being changed [9].

Fig. 2 demonstrates the PDG of Fig. 1.a. In the graph
si

c→ sj shows control dependency edge and si
d→ sj denotes

data dependency edge. For more clear, we explain this exam-
ple: since the statement main (i.e. s0) has control dependence
on statements s1 − s7 and s13 − s15, therefore a control
dependency edge exists from s0 to s1−s7, s12 and s13, while
statement while (i.e. s7) has control dependence on s8 − s12,
so a direct control edge exists from s7 to s8 − s12. On the
other hand, variable a is defined by statement s2 and used by
s8, s9 and s13, so a data dependency edge exists from s2 to
s8, s9 and s13.

B. Program slicing

Program slicing can be divided into five types of categories:
backward, forward, chop, backbone and union. Briefly, they
are the following:

Backward program slicing: In backward slicing, we are
interested in all the statements that could influence the slicing
criterion, so we traverse the program backward from the
slicing criterion. It can help us to find localizing errors. Fig.
1.b and Fig. 1.c show the backward program slices of 〈s13, q〉
and 〈s14, sp〉 respectively.

Forward program slicing: In forward slicing, all the state-
ments that could be influenced by the slicing criterion are
interested, so a program can be traversed forward from a
desired point. It is useful when a statement is modified and
we want to check the statements affected by the modification

statement no. a b c
s0 main(){ main(){ main(){
s1 int a=0;
s2 int q=0; int q=0; int q=0;
s3 int p=1; int p=1;
s4 int sp=0; int sp=0;
s5 int n=0; int n=0; int n=0;
s6 cin>>n; cin>>n; cin>>n;
s7 while (n>0){ while (n>0){ while (n>0){
s8 q=q+n; q=q+n; q=q+n;
s9 p=q*q; p=q*q;
s10 sp=p+sp; sp=p+sp;
s11 n=n-1; n=n-1; n=n-1;
s12 } } }
s13 cout<<q; cout<<q;
s14 cout<<sp; cout<<sp;
s15 } } }
d e f g

main(){ main(){

int q=0; int q=0;
int p=1;
int sp=0;

int n=0; int n=0;
cin>>n; cin>>n;
while (n>0){ while (n>0){

q=q+n; q=q+n; q=q+n; q=q+n;
p=q*q; p=q*q;
sp=p+sp; sp=p+sp;

n=n-1; n=n-1;
} }

cout<<q; cout<<q; cout<<q;
cout<<sp; cout<<sp;

} }

Fig. 1. Different kind of program slicing, (a) source code, (b) and (c)
backward slices of 〈s13, q〉 and 〈s14, sp〉 respectively, (d) forward slice
of 〈s8, q〉, (e) chop of 〈s8, q〉 and 〈s13, q〉, (f) backbone of 〈s13, q〉 and
〈s14, sp〉 and (g) union of 〈s13, q〉 and 〈s14, sp〉

Fig. 2. PDG of Fig. 1.a

159



which is called ripple analysis. Fig. 1.d demonstrates forward
program slice of 〈s8, q〉.

Chop: Chop is the intersection of a forward and a backward
slice. Fig. 1.e shows a chop for the forward program slice
〈s8, q〉 and the backward program slice 〈s13, q〉. Chops can
help us to discover how one statement influences another
statement.

Backbone: Backbone is the intersection of two backward
slices. Fig. 1.f shows a backbone for 〈s13, q〉 and 〈s14, sp〉.
Backbones are useful for discovering the parts of an applica-
tion that contribute to the computation of several values [24].

Union slicing: The union of backward slices for all output
variable of a program is called union slicing. Fig. 1.g denotes
the union slicing for the program of Fig. 1.a. Clearly, this
slicing includes all the statements of backward slices 〈s13, q〉
and 〈s14, sp〉. A union slice can help us to find the dead codes.
For example, the union slice in Fig. 1.g does not include s1,
hence this statement can not effect on the outputs and it is a
dead code.

On the other side, we can divide program slicing into two
categories: dynamic and static. A dynamic program slice is
a subset of the program that is entirely defined on the basis
of a computation, i.e., it depends on the specific value for
the desired variable. While a static program slice is generated
from program structure [25].

III. PROGRAM DEPENDENCE TABLE

Program Dependence Table (PDT) is a m×m matrix where
m is the number of program statements. PDT is created by
the algorithm 1.

Our algorithm takes s code as the input source code and
returns its PDT. The algorithm uses two initially empty global
stack, called DS and LS which store all dependencies between
the statements and dependencies between the loop statements
(e.g. for, while, etc) respectively. We also define a list for each
variable x in the source code to store its def-statements (we
call it Ldef (x)).

Definition III.1. def-statement: If the variable x is defined
in the statements si then si is called def-statement of x.

Now we describe our encoding for each statement in the
source code such as si ∈ V: (a) if the stack DS is not empty
then we set PDT [tos(DS), i] to c, where tos(DS) returns
first element of DS located on the top of the stack. This means
that, there is a control dependency between si and tos(DS).
(b) for any used variable x ∈ si, we set PDT [Ldef (x), i]
to d, i.e. there is a data dependency between si and all def-
statements of x. (c) For each defined variable in si such as x,
we add i to Ldef (x). (d) If si is a type of loop statements,
then we push i on the stack LS. (e) If si contains {, we
push i on the stack DS. (f) If si contains }, then we set
PDT [i, tos(DS)] to c. Next, if tos(DS) = tos(LS), then we
check the equality of first and second elements of the stack
LS. If they are equal, then LS will be popped twice, otherwise
we jump from si to the line tos(LS) of source code. finally,

Algorithm 1 Creating PDT
1: for all si ∈ s code do
2: if not(empty(DS)) then
3: PDT [tos(DS), i]← c
4: end if
5: Xused ← all used variables(si)
6: for all x ∈ Xused do
7: PDT [Ldef (x), i]← d
8: end for
9: Xdef ← all defined variables(si)

10: for all x ∈ Xdef do
11: Ldef (x)← Ldef (x) ∪ i
12: end for
13: if si is a loop statement then
14: push i on LS
15: end if
16: if si contains { then
17: push i on DS
18: end if
19: if si contains } then
20: PDT [i, tos(DS)]← c
21: if tos(DS) = tos(LS) then
22: if tos(LS) = sos(LS) then
23: pop LS
24: pop LS
25: else
26: jump to stos(LS)

27: end if
28: end if
29: pop DS
30: end if
31: end for
32: return PDT

the top of DS will be popped off. The reason of doing steps
(e) and (f) is making the executable slices.

For more clear, we explain our algorithm for the program
of Fig. 1.a. Since the stack DS is empty when we encounter
the statement s0 and also no variable has been used in this
statement, so PDT does not change. Moreover, s0 is not a
def-statement, hence no element is added to the def-statement-
lists. Statement s0 has {, so we push 0 on the stack DS (see
row 2 in Table I).

For the statement s1, top of DS is 0, so PDT [0, 1] is set to
c. The variable a has been defined in s1, thus we add 1 to the
def-statement-list Ldef (a). Other conditions are not satisfied
in this statement (see row 3 in Table I). Statements s2 − s5
are encoded in a similar way.

When we encounter s6, top of the stack DS is 0, thus
PDT [0, 6] = c. Since the variable n has been used in s6
and Ldef (n) = {5}, hence PDT [5, 6] is set to d. Further, s6
defines the variable n, so we add 6 to the def-statement-list
Ldef (n) (see row 8 in Table I).

For the statement s7, since tos(DS) = 0 thus we set
PDT [0, 7] to c. This statement uses the variable n, so

160



PDT [Ldef (n), 7] is set to d where the def-statement-list of
n contains 5 and 6. Moreover, we push the number of this
statement on DS and LS because s7 has { and it is a loop
statement (see row 9 in Table I).

Top of the stack DS is 7 when we encounter s8, thus
PDT [7, 8] = c. The variables n and q have been used in s8, so
the proposed algorithm assigns the data dependency between
s8 and the def-statements of n and q. Since Ldef (n) =
{5, 6} and Ldef (q) = {2} thus PDT [5, 8], PDT [6, 8] and
PDT [2, 8] are set to d. Note, s8 defines q, hence we add 8 to
the def-statement-list of q (see row 10 in Table I). Statements
s9 − s11 are encoded in a similar way.

For the statement s12, top of DS is 7, so PDT [7, 12] is
set to c. Since s12 contains }, thus PDT [12, 7] = c. Then we
jump to s7 because top of DS and top of LS are 7 and the first
and second elements of the stack LS are not equal. Moreover
the top of DS is popped (see row 14 in Table I). Now the
statements s7−s12 are checked again by our algorithm. Table
II demonstrates the PDT of the program of Fig. 1.a.

In the following, we prove the correctness of the proposed
algorithm. This proof consists of three parts: (1) completeness,
(2) correctness and (3) finiteness. In completeness step, we
prove that our algorithm is complete, i.e. it covers all the
possible cases, Then in correctness step we prove that the
algorithm is correct, and finally we show that the proposed
algorithm terminates after a finite number of iterations.

Consider different kinds of the statements in C language:
simple statements and compound statements. Simple state-
ments include statements that do not contain other statements
(e.g. assignments, jumps) while compound statements appear
as the bodies of another statements (e.g. conditions, loops).
Simple or compound statements might define or use a subset
of program variables. Used variables are covered by lines 5-8
and defined variables are covered by lines 9-12. A compound
statement consists of a pair of braces {}. This condition
is covered by lines 2-4, 16-18, 19-20 and 29. Note, loop
statements are the compound statements that must be traversed
twice, once forward and once backward. This condition is
covered by lines 21-28.

To prove the correctness of our algorithm, consider the
statement si. If the stack DS is empty, thus si is a func-
tion header, otherwise it is clear that si is a function body
statement. Function body statements might have braces, use
or define a subset of program variables. All these conditions
are covered by the proposed algorithm.

Finally, since the number of statements of a program always
is finite, thus our algorithm stops after a finite number of steps.

IV. PROGRAM SLICING BASED ON PDT
In this section, we present two algorithm for backward and

forward program slicing based on PDT. Since chop, backbone
and union slices can be generated from backward and forward
slices, we do not consider any algorithm for them.

A. Backward slicing
Out backward program slicing is presented in Algorithm

2. Let p be a source code and PDTp be its corresponding

TABLE I
THE PROCESS OF CREATING PDT

row si PDT Ldef (x) DS LS
1 Initialization [] []
2 s0 - - [s0] []
3 s1 PDT [0, 1] = c a = {1} [s0] []
4 s2 PDT [0, 2] = c a = {1} [s0] []

q = {2}
5 s3 PDT [0, 3] = c a = {1} [s0] []

q = {2}
p = {3}

6 s4 PDT [0, 4] = c a = {1} [s0] []
q = {2}
p = {3}
sp = {4}

7 s5 PDT [0, 5] = c a = {1} [s0] []
q = {2}
p = {3}
sp = {4}
n = {5}

8 s6 PDT [0, 6] = c a = {1} [s0] []
q = {2}
p = {3}
sp = {4}
n = {5, 6}

9 s7 PDT [0, 7] = c a = {1} [s0, s7] [s7]
PDT [5, 7] = d q = {2}
PDT [6, 7] = d p = {3}

sp = {4}
n = {5, 6}

10 s8 PDT [7, 8] = c a = {1} [s0, s7] [s7]
PDT [5, 8] = d q = {2, 8}
PDT [6, 8] = d p = {3}
PDT [2, 8] = d sp = {4}

n = {5, 6}
11 s9 PDT [7, 9] = c a = {1} [s0, s7] [s7]

PDT [5, 9] = d q = {2, 8}
PDT [6, 9] = d p = {3, 9}
PDT [2, 9] = d sp = {4}
PDT [8, 9] = d n = {5, 6}

12 s10 PDT [7, 10] = c a = {1} [s0, s7] [s7]
PDT [3, 10] = d q = {2, 8}
PDT [9, 10] = d p = {3, 9}
PDT [4, 10] = d sp = {4, 10}

n = {5, 6}
13 s11 PDT [7, 11] = c a = {1} [s0, s7] [s7]

PDT [5, 11] = d q = {2, 8}
PDT [6, 11] = d p = {3, 9}

sp = {4, 10}
n = {5, 6, 11}

14 s12 PDT [7, 12] = c a = {1} [s0] [s7]
PDT [12, 7] = c q = {2, 8}

p = {3, 9}
sp = {4, 10}
n = {5, 6, 11}

15 s7 PDT [0, 7] = c a = {1} [s0, s7] [s7, s7]
PDT [5, 7] = d q = {2, 8}
PDT [6, 7] = d p = {3, 9}
PDT [11, 7] = d sp = {4, 10}

n = {5, 6, 11}
16 s8 PDT [7, 8] = c a = {1} [s0, s7] [s7, s7]

PDT [5, 8] = d q = {2, 8}
PDT [6, 8] = d p = {3, 9}
PDT [11, 8] = d sp = {4, 10}
PDT [2, 8] = d n = {5, 6, 11}
PDT [8, 8] = d

17 s9 PDT [7, 9] = c a = {1} [s0, s7] [s7, s7]
PDT [5, 9] = d q = {2, 8}
PDT [6, 9] = d p = {3, 9}
PDT [11, 9] = d sp = {4, 10}
PDT [2, 9] = d n = {5, 6, 11}
PDT [8, 9] = d

161



18 s10 PDT [7, 10] = c a = {1} [s0, s7] [s7, s7]
PDT [4, 10] = d q = {2, 8}
PDT [10, 10] = d p = {3, 9}
PDT [3, 10] = d sp = {4, 10}
PDT [9, 10] = d n = {5, 6, 11}

19 s11 PDT [7, 11] = c a = {1} [s0, s7] [s7, s7]
PDT [5, 11] = d q = {2, 8}
PDT [6, 11] = d p = {3, 9}
PDT [11, 11] = d sp = {4, 10}

n = {5, 6, 11}
20 s12 PDT [7, 12] = c a = {1} [s0] []

PDT [12, 7] = c q = {2, 8}
p = {3, 9}
sp = {4, 10}
n = {5, 6, 11}

21 s13 PDT [0, 13] = c a = {1} [s0] []
PDT [2, 13] = d q = {2, 8}
PDT [8, 13] = d p = {3, 9}

sp = {4, 10}
n = {5, 6, 11}

22 s14 PDT [0, 14] = c a = {1} [s0] []
PDT [4, 14] = d q = {2, 8}
PDT [10, 14] = d p = {3, 9}

sp = {4, 10}
n = {5, 6, 11}

23 s15 PDT [0, 15] = c a = {1} [] []
PDT [15, 0] = c q = {2, 8}

p = {3, 9}
sp = {4, 10}
n = {5, 6, 11}

TABLE II
PDT OF FIG. 1.A

- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 c c c c c c c c c c
1
2 d d d
3 d
4 d d
5 d d d
6 d d d
7 c c c c c
8 d d d
9 d
10 d d
11 d d d
12 c
13
14
15 c c

PDT. This algorithm takes the program statement si ∈ p, the
variable x ∈ si and PDTp as the input parameters and returns
the backward slice 〈si, x〉. We use two initially empty lists
Slicing set and Temp to keep the final and temporary result
of program slicing. Since the statement si is the starting point
of the slicing, so we add its number (i.e. i) to the list Temp.
Then, the algorithm repeats the following steps until Temp
becomes empty: (a) it removes an element from the temporary
list (such as j ∈ Temp) and adds it to the list Slicing set;
(b) Next, the algorithm checks the column j of PDTp. It adds
the row number k to Temp if PDTp[k, j] is c or d and k is
not in the lists Temp and Slicing set, which means that k
has not been processed.

For more clear, Table III explains our algorithm for the

Algorithm 2 Backward program slicing
1: Temp← Temp ∪ i
2: while not(empty(Temp)) do
3: j ← remove(Temp)
4: Slicing set← Slicing set ∪ j
5: rows← rows number of PDTp

6: for all k ∈ rows do
7: if (PDTp[j, k] = c or PDTp[j, k] = d) then
8: if (k /∈ Temp and k /∈ Slicing set) then
9: Temp← Temp ∪ k

10: end if
11: end if
12: end for
13: end while
14: return Slicing set

backward slice 〈s13, q〉. In row 2, the statement s13 has
dependency with the statements s0, s2 and s8, so we add them
to the temporary list since they are not in the lists Temp or
Slicing set. While in row 4, s11 has dependency with the
statements s5, s6, s7 and s11, but none of them are added to the
list Temp because s5, s6, s7 ∈ Temp and s11 ∈ Slicing set.

TABLE III
THE PROCESS OF BACKWARD SLICING FOR s13

row j Temp Slicing set
1 {13} {}
2 13 {0, 2, 8} {13}
3 8 {0, 2, 5, 6, 7, 11} {13, 8}
4 11 {0, 2, 5, 6, 7} {13, 8, 11}
5 7 {0, 2, 5, 6, 12} {13, 8, 11, 7}
6 12 {0, 2, 5, 6} {13, 8, 11, 7, 12}
7 6 {0, 2, 5} {13, 8, 11, 7, 12, 6}
8 5 {0, 2} {13, 8, 11, 7, 12, 6, 5}
9 2 {0} {13, 8, 11, 7, 12, 6, 5, 2}
10 0 {15} {13, 8, 11, 7, 12, 6, 5, 2, 0}
11 15 {} {13, 8, 11, 7, 12, 6, 5, 2, 0, 15}

In the following we prove that the proposed backward
slicing algorithm is complete, correct and terminates after
a finites number of iterations. To prove the completeness,
consider L as the set of dependency types in the PDT, so
L = {c, d}. Initially, the intended slice consists of only the
slicing creation statement si. There can be two possibilities:
si may be a header function or may be a statement of function
body. If si is a function header, then the slice contains this
statement and its close brace, otherwise it must be connected
to the other statements through the members of L. This is true
in the proposed algorithm because we proved that PDT covers
all possible types of dependencies including data dependency
and control dependency.

To prove the correctness of our algorithm, we start with the
slicing criterion statement si in a source code p. Initially, the
slice list Slicing set is empty. Clearly, the slicing criterion
statement must be in the output slice, hence the backward
slicing algorithm add it to the list Slicing set. Next, we have
to check all effective statements by following data and control

162



dependencies. These relations are declared by c or d in PDTp.
Hence, our algorithm adds the connected statements to the
slice list by finding the data and control dependencies.

Finally, a backward slice is created in a finite number
of steps, since we do not add duplicate statements to the
temporary list and the number of statements is finite.

B. Forward slicing

Algorithm 3 presents our forward program slicing. The
definitions of PTDp, Slicing set and Temp are same as the
definitions of them in the previous sub-section. To generate
the forward slice of si, we add i to the temporary list, then
we repeat the following steps while Temp is not empty: (a)
we remove an element such as j from Temp and adds it to the
list Slicing set; (b) Next, the row j of PDTp is checked. For
each column k, if PDTp[j, k] is c or d and k is not in the lists
Temp and Slicing set, then we add it to the temporary list.
Table IV demonstrates the proposed algorithm for the forward
slice of s8.

Algorithm 3 Forward program slicing
1: Temp← Temp ∪ i
2: while not(empty(Temp)) do
3: j ← remove(Temp)
4: Slicing set← Slicing set ∪ j
5: cols← columns number of PDTp

6: for all k ∈ cols do
7: if (PDTp[j, k] = c or PDTp[j, k] = d) then
8: if (k /∈ Temp and k /∈ Slicing set) then
9: Temp← Temp ∪ k

10: end if
11: end if
12: end for
13: end while
14: return Slicing set

TABLE IV
THE PROCESS OF FORWARD SLICING FOR s8

row j Temp Slicing set
1 {8} {}
2 8 {9, 13} {8}
3 13 {9} {8, 13}
4 9 {10} {8, 13, 9}
5 10 {14} {8, 13, 9, 10}
6 14 {} {8, 13, 9, 10, 14}

V. CONCLUSION

Program slicing is one of the program analysis techniques
that is used to save time and cost in software testing process.
It restricts the focus of a task to specific sub-components
of a program by extracting the statements. Different type of
dependence graphs are used to represent the relations between
the statements of a program. However, drawing these graphs
for large and complex programs is very complicated and it is
impossible in non-automatic approaches. Hence, in this paper

we proposed Program Dependence Table (PDT) as an inter-
mediate representation tool to handle the data and control de-
pendency in the intra-procedural programs. PDT is generated
automatically form a source code without drawing the program
dependence graph. Then, we presented two automatic slicing
algorithms including forward and backward slicing based on
PDT which are useful for automatic unit testing. Moreover, we
show that chop, backbone and union slicing can be generated
by forward and backward slicing. The proposed backward
program slicing produces an executable slice because it covers
pair braces in a program. For future work, it is suggested to
extend the algorithm for slicing in inter-procedural, object-
oriented and aspect-oriented programming paradigms.

REFERENCES

[1] P. Ammann and J. Offutt, Introduction to software testing, Second
Edition. Cambridge University Press, 2016.

[2] W. Lewis, Software Testing and Continuous Quality Improvement, Third
Edition. CRC Press, 2016.

[3] E. Dustin, T. Garrett, and B. Gauf, Implementing Automated Software
Testing: How to Save Time and Lower Costs While Raising Quality.
Pearson Education, 2009.

[4] A. Mohammadian and B. Arasteh, “Using program slicing technique to
reduce the cost of software testing,” Journal of Artificial Intelligence in
Electrical Engineering, vol. 2, no. 7, pp. 24–33, 2013.

[5] N. Sasirekha, A. Edwin Robert, and M. Hemalatha, “Program slicing
techniques and its application,” International Journal of Software Engi-
neering & Application, vol. 2, no. 3, pp. 50–64, 2011.

[6] F. Angerer, H. Prähofer, and P. Grünbacher, “Modular change impact
analysis for configurable software,” in 2016 IEEE International Confer-
ence on Software Maintenance and Evolution, ICSME 2016, Raleigh,
NC, USA, October 2-7, 2016, 2016, pp. 468–472.

[7] L. Du and P. Cai, “A survey on applications of program slicing,” in
Soft Computing in Information Communication Technology, J. Luo, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 215–220.

[8] Y. Yang, Y. Zhao, C. Liu, H. Lu, Y. Zhou, and B. Xu, “An empirical
investigation into the effect of slice types on slice-based cohesion
metrics,” Information & Software Technology, vol. 75, pp. 90–104, 2016.

[9] Y. N. Srikant and P. Shankar, Eds., The Compiler Design Handbook:
Optimizations and Machine Code Generation, Second Edition. CRC
Press, 2007.

[10] M. yang hong and L. ruo qin, “Application of dynamic program slicing
technique in test data generation,” Procedia Computer Science, vol. 111,
pp. 355–360, 2017.

[11] F. Rabbi, H. Wang, W. MacCaull, and A. Rutle, “A model slicing method
for workflow verification,” Electr. Notes Theor. Comput. Sci., vol. 295,
pp. 79–93, 2013.

[12] P. Jorgensen, Software Testing: A Craftsmans Approach, Fourth Edition,
ser. An Auerbach book. Taylor & Francis, 2013.

[13] M. Weiser, “Program slicing,” in Proceedings of the 5th International
Conference on Software Engineering, San Diego, California, USA,
March 9-12, 1981., 1981, pp. 439–449.

[14] ——, “Program slicing,” IEEE Trans. Software Eng., vol. 10, no. 4, pp.
352–357, 1984.

[15] X. Qi and Z. Jiang, “Precise slicing of interprocedural concurrent
programs,” Frontiers Comput. Sci., vol. 11, no. 6, pp. 971–986, 2017.

[16] D. P. Mohapatra, R. Mall, and R. Kumar, “An overview of slicing tech-
niques for object-oriented programs,” Informatica (Slovenia), vol. 30,
no. 2, pp. 253–277, 2006.

[17] D. Munjal, J. Singh, S. Panda, and D. P. Mohapatra, “Automated slicing
of aspect-oriented programs using bytecode analysis,” in 39th IEEE
Annual Computer Software and Applications Conference, COMPSAC
2015, Taichung, Taiwan, July 1-5, 2015. Volume 2, 2015, pp. 191–199.

[18] M. Sahu and D. P. Mohapatra, “Computing dynamic slices of feature-
oriented programs using execution trace file,” ACM SIGSOFT Software
Engineering Notes, vol. 42, no. 2, pp. 1–16, 2017.

[19] Y. Zhang, “A precise monadic dynamic slicing method,” Knowl.-Based
Syst., vol. 115, pp. 40–54, 2017.

163



[20] S. Yoo, D. W. Binkley, and R. D. Eastman, “Observational slicing based
on visual semantics,” Journal of Systems and Software, vol. 129, pp. 60–
78, 2017.

[21] S. Horwitz, T. W. Reps, and D. W. Binkley, “Interprocedural slicing
using dependence graphs,” ACM Trans. Program. Lang. Syst., vol. 12,
no. 1, pp. 26–60, 1990.

[22] J. Singh and D. P. Mohapatra, “Dynamic slicing of concurrent aspectj
programs: An explicit context-sensitive approach,” Softw., Pract. Exper.,
vol. 48, no. 1, pp. 233–260, 2018.

[23] I. Mastroeni and D. Zanardini, “Abstract program slicing: An abstract
interpretation-based approach to program slicing,” ACM Trans. Comput.
Log., vol. 18, no. 1, pp. 7:1–7:58, 2017.

[24] A. Zeller, Why Programs Fail - A Guide to Systematic Debugging, 2nd
Edition. Academic Press, 2009.

[25] A. Afshar, Application Software Re-Engineering. Pearson Education,
2010.

164


