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Abstract—The increasing influence of optimization methods
on modern technologies means that not only new algorithms
are designed but old ones are improved. One of the classic
optimization methods is the genetic algorithm inspired by the
phenomenon of biological evolution. One of the modifications is
Baldwin’s approach as genetic assimilation. It is a process that
creates permanent structures as an effect on the frequent use
of specific organs. This paper presents four different algorithms
that have been used as a Baldwin effect in the classical genetic
algorithm. All techniques have been tested using 9 test functions
and the obtained results are discussed.

I. INTRODUCTION

Describing things and process in nature very often comes to
the mathematical description using equation or function. Espe-
cially when there are some parameters that make it impossible
to determine what proportions should be maintained depending
on other external factors. Moreover, even mathematical tools
are not able to simply and quickly determine what is the
solution for a more complex function or their dependencies.

One of the best existing methods of finding a global
extreme for multi-variable functions are algorithms inspired
by phenomena occurring in nature or behavior of a specific
group of animals. It is visible on the developed research
around the world and emerging publications. One of the most
dynamically developing branches of optimization are heuristic
algorithms, ie those that do not guarantee the correct solution
in a finite time. An example of such a technique is the
dragonfly algorithm [8] which is inspired by the static and
dynamic behavior of dragonfly’s swarm. Again in [12], the
authors described the mathematical model of behavior of polar
bears which are forced to move on ice floe and hunt for seals
in arctic conditions.

Not only the algorithms are developed but the applications
that have complicated functions. One of such example is anal-
ysis of samples taken from a fluorescence microscope. In [19],
optimization algorithms were used in the detection of bacterial
shapes at various stages of life. Again in [17], this idea
was used for charge and discharge electronic vehicles using
building energy management system. Another application area
is biometric security. In [10], voice samples were interpreted as
two-dimensional images where important features to identify
the owner of the voice were sought. Other application is
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chat-bots were heuristic can be used as an engine [15]. For
these type of apps, different notation are developed [3]. In
[13], heuristic were used to extract brain tumor from MR
images. Similarly in the area of smart technology optimization
has a significant role. In [2], it was used in wireless sensor
network, and in [16], modified technique has found application
in optimization of coverage in visible light communication in
smart homes systems.

In this paper, the idea of improving genetic algorithm by
the introduction of Baldwin effect is presented.

II. OPTIMIZATION PROBLEM FORMULATION

It is quite often that some problems can be described by
some function. And then, the smallest or largest value for a
given function is wanted. Such a task is called an optimization
problem. Let’s assume that x is a point in n–dimension, and
function will be described in the following way f(x) : Rn →
R, then minimization problem can be defined as

Minimize f(x)

subject to g(x) ≥ 0

Li ≤ xi ≤ Ri i = 0, 1, . . . , n− 1,

(1)

where g(·) is inequality constraint and each spatial components
of point x is in the range 〈Li, Ri〉.

III. GENETIC APPROACH TO OPTIMIZATION

Through many ages, people observe the changes in natural
processes. Then, many times, they tried to use this knowledge
in science by creating computer methods based on those
notices. In 70s of 20th century, the man called John Holland
created the Genetic Algorithm, which was also the first evolu-
tionary algorithm [4]. The inspiration of creating this technique
was desire of making computer be able to solve problems
likewise it goes in the natural evolution process. The initial
idea of Genetic Algorithm was to create a population which
contain some individuals and each of them had a unique binary
genetic code assigned to it. Set codes correspond to chromo-
somes exist in organisms and that makes the elements of code
equivalent to the genes. Subsequently, after many researches,
there were implemented some improvements occurred during
the noticed biological process of evolution. The observed
operations start from the mechanism, which transforms the
binary codes similarly as crossing–over, according to the
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Table I: Selected test function for described optimization problem.

Name Function Input domain x Global minimum

Ackley f1(x) = −20

−0.2
√√√√ 1

n

n∑
i=1

x2i

− exp

(
1
n

n∑
i=1

cos(2πxi)

)
〈−32.8, 32.8〉 (0, . . . , 0) 0

Griewank f2(x) =

n∑
i=1

x2i
4000

−
n∏

i=1

cos

(
xi√
i

)
+ 1 〈−600, 600〉 (0, . . . , 0) 0

Rastrigin f3(x) = 10n+

n∑
i=1

[
x2i − 10 cos(2πxi)

]
〈−5.12, 5.12〉 (0, . . . , 0) 0

Schwefel f4(x) = 418.9829n−
n∑

i=1

xi sin
(√
|xi|
)

〈−500, 500〉 (0, . . . , 0) 0

Rotated hyper-ellipsoid f5(x) =

n∑
i=1

i∑
j=1

x2j 〈−65.5, 65.5〉 (0, . . . , 0) 0

Sum squares f6(x) =
n∑

i=1

ix2i 〈−5.12, 5.12〉 (0, . . . , 0) 0

Zakharov f7(x) =

n∑
i=1

x2i +

(
n∑

i=1

0.5ixi

)2

+

(
n∑

i=1

0.5ixi

)4

〈−5, 10〉 (0, . . . , 0) 0

Rosenbrock f8(x) =

n−1∑
i=1

100
(
xi+1 − x2i

)2
+ (xi − 1)2 〈−5, 10〉 (0, . . . , 0) 0

Styblinski-Tang f9(x) =
1
2

n∑
i=1

x4i − 16x2i + 5xi 〈−5, 5〉 (−2.903534, . . . ,−2.903534) −39.16599n

process of inheritance. Then they based on mutation and
selection. Holland discover that by adding the logic operators
and using selection, the average value of population fitness can
increase. The most important part of that is using encoding and
genetic operators to solve problems. Nowadays, in the age of
new technology, it is obvious to use for that the potential of
advanced programming with high–performance computers. In
this paper, the version of the genetic algorithm operating on
numbers in the decimal notation was selected.

1) Genetic Algorithm (GA): The Genetic Algoritms is made
of few steps. The first one is initialization in which the initial
population is created. That step is about generating the size
of population, the encoding of chromosomes and the formula
for fitness function f(·) with the appropriate restrictions. The
main assumption here is about setting the size of population,
because it is the parameter that affects on accuracy of the
algorithm. If the population is too small then the algorithm
finishes calculation without reaching the correct solution. On
the other hand, when the number of individuals is too large,
then it can aggravate the computer and make the calculations
last very long. Other elements of initial population are set
randomly.

Afterwards, there is made a selection of individuals. Some
of them are passed to the next stage of calculations. That
process is called reproduction. It can be done in many ways.
Description one of them requires the use of probability that
one individual xi is chosen to new generation. The probability
of setting this individual in next population depends on the
value of fitness function at exact point f(xi). The higher
value of fitness function results in a higher probability at this
point. The clue of this step is to create a random value pr
for further description of new population selected from the

existing generation P t. It can be described as{
pr(x

t
i ) =

f(xt
i )

xt
i

xt
i ∈ P t

. (2)

After few sampling of this variable, it is possible to intro-
duce the distribution function of reproduction probability as

Pr(x
t
i ) =

i∑
j=1

pr(x
t
i ). (3)

In the next step there is a selection of individuals – if it is
reproduced or not. The factor that determines this choice is a
random variable α from 〈0, 1〉. The individual xi is reproduced
as long as the following formula

Pr(x
t
i−1) < α ≤ Pr(x

t
i ) (4)

is fulfilled. Genetic operators, like mutation and crossover, are
responsible for creating a diverse population but they also take
control of reproducing.

The first genetic operator mentioned above, the mutation,
is about replacing the chromosomes. In this process a random
variable ξ belongs to 〈0, 1〉 is added to the chromosome

xt+1
i mutated

= xt
i + ξ. (5)

Then let the λ be the vector of random values and length
equivalent to the number of individuals in generation. If for
pm, which is the probability of mutation, is followed the
ineqality

λi < pm, (6)

then the chromosome is mutated.
The second of genetic operators is crossover. This process

is about exchanging genetic material. Two chromosomes are
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called the parents and that exchange takes place between them.
As a result of crossover, two new individuals are generated
and attached to the population. Similarly to Eq. (5), taking
a random real ξ from 〈0, 1〉 allows to define the formula of
creating new individual as an average of parental chromosomes
xi and xi+1

xi
t+1
des1 = xi

t + ξ(xt
i+1 − xt

i )xides2. (7)

Then whole new population has to be evaluated whether
they fit to the conditions in environment. This process, called
succession, is replacing the old generation with the new one.

Replacing all individuals in population is only one of the
ways to carry out succession. The other way is to change just
a part of old generation. Here, there becomes a need to choose
a method of selection chromosomes. Anyway, a parameter
g from 〈0, 100〉 can describe an amount of individuals from
old generation that remained. Decision, which of individuals
should be replaced, can be taken on many different levels:
• the ones that are similar to individuals in next population,
• the ones that are the least adapted,
• the ones that are selected by succession
• the ones that are chosen in random way.

The method which let the best chromosomes survive is succes-
sion. In that way, it doesn’t matter in which population some
individuals appear – if they are ones of the best, then they
stay to the end of algorithm. In every iteration individuals
are ordered by value of fitness function f(xi). Then, some
of the worst are replaced with new ones. By using some
kind of "back-up" generation, the best individuals are stored
through all the algorithm. It ensures that better ones will not
be replaced by worse ones.

Algorithm 1 Genetic algorithm

1: Start,
2: Define all parameters - T , f(·), n,
3: Generate the initial population,
4: t := 1;
5: while t ≤ T do
6: Select the best individuals for reproduction,
7: Apply crossover operation using Eq. (7),
8: Apply mutation operation using Eq. (5),
9: Replace the worst individuals with new one,

10: t++
11: end while
12: Return x,
13: Stop.

IV. BALDWIN EFFECT

After observing the evolution process, James Mark Baldwin
claimed that there exists an ability to acquire new behaviours
during all life that depends on environment. Furthermore, the
offspring derive those skills from their ancestors [1]. This
mechanism is called the Baldwin Effect or also organic se-
lection. The driving force behind this phenomenon is survival

instinct. It is very simple to give examples of this observation.
If there is a population in the environment, then those individu-
als, which will learn the most needed peculiar abilities, those
will survive. And they will have bigger offspring. What is
more, their offspring inherit genes with exceptional properties.
After more researches on the Baldwin’s theory, it was noticed
that not skills but only the ability to acquire some skills is
inherited. This can explain the language predispositions in
people.

In practice, Baldwin effect is reflected in the value of fitness
function because it is the only significant skill to survive. It is
visible in additional local search.

A. Gradient descend
Analysis of the direction of gradient decrease is one of

the classic optimization methods [14]. Assume that x =
(x0, . . . , xn−1) is a start point. To find the direction, we need
to calculate the negative gradient for each spatial coordinates
according to

−∇fxi = −
∂f(x0, . . . , xn−1)

∂xi
. (8)

Using above calculation of −∇, the new coordinate is
calculated as

xti = xti + λ(−∇fxti), (9)

where λ is a step and t means current iteration. After finding
the new value of point, method compare it with the previous
one using fitness function f(·). If new value has better
adaptation, it replace the old one.

Algorithm 2 Gradient descent

1: Start,
2: Define fitness condition f(·), the step λ, t,
3: Take a staring point x,
4: t := 1,
5: while t ≤ T do
6: Calculate x′ by Eq. (9),
7: if f(x′) ≤ f(x) then
8: x = x′,
9: end if

10: t++,
11: end while
12: Return x,
13: Stop.

B. Iterated local search
Iterated local search is one of the classic optimization

technique called hill climbing [7]. The name is adequate to the
operation of the algorithm, which for a given point x performs
perturbation (i.e. random displacement) as

x′ = x− ξ, (10)

where ξ ∈ 〈0, 1〉. It allows to escape from the local minimum.
Then local search in the neighborhood is done. For this
purpose, another method is used. If the obtained point is better
in terms of the fitness function, it overwrites the initial one.
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Algorithm 3 Iterated local search

1: Start,
2: Define f(·), T ,
3: Take a starting point x,
4: Local search at x,
5: t := 1,
6: while t ≤ T do
7: Create x′ using Eq. (10),
8: Apply Gradient Descent staring in x′ (described in Alg.

2) to find x′′,
9: if f(x′′) ≤ f(x) then

10: x = x′′,
11: end if
12: t++,
13: end while
14: Return x,
15: Stop.

C. Variable neighborhood search

Variable neighborhood search is another hill climbing
method [9]. The algorithm assumes the creation of a set,
then the use of another local search technique for each
representative in this set and comparison with a given point.
If the new point proves to be better (using fitness function),
the original one is overwritten by the neighbor.

Algorithm 4 Variable neighborhood search

1: Start,
2: Define a set Nk, kmax,
3: Take a starting point x,
4: k := 1,
5: t := 1,
6: while t ≤ T do
7: while k ≤ kmax do
8: Generate x′ ∈ Nk in random way,
9: Apply Gradient Descent staring in x′ (described in

Alg. 2) to find x′′,
10: if f(x′′) ≤ f(x) then
11: x = x′′,
12: k := 1,
13: else
14: k ++,
15: end if
16: end while
17: t++,
18: end while
19: Return x,
20: Stop.

D. Simulated annealing

Simulated annealing is a probabilistic technique for opti-
mization purpose. It was described for the first time in [6]
by Kirkpatrick and others. The technique is a model of the

annealing process in thermodynamics, and more precisely how
metals cool and anneal. It assumes that the temperature is
high at beginning of the process what gives high probability
of change. As the temperature decreases, the probability of
change is smaller. In practice, this means that the probability
of adopting a worse solution is higher at high temperature and
smaller at lower.

The algorithm uses a modified thermodynamic equation
what can be defined as

P (E) ≈ e− δ
T , (11)

where δ is the difference in the quality of a given point x and
new, random one x′ in relation to the fitness condition

δ = f(x′)− f(x). (12)

A new solution is adopted when the following condition is
satisfied

γ < e−
δ
T , (13)

where γ ∈ 〈0, 1〉. Another important aspect is temperature
reducing calculated as

Tk+1 = r · Tk, (14)

where T means the temperature value and k is the k-th
iteration and r is constant value.

Algorithm 5 Simulated annealing

1: Start,
2: Define the start temperature T , fitness condition f , number

of iteration t and parameter r,
3: Take a staring point x,
4: k:=0,
5: while k ≤ t do
6: i := 0,
7: for i to k do
8: Create random solution x′,
9: Calculate the difference δ according to Eq. (12),

10: if δ < 0 then
11: x = x′

12: else
13: Generate γ,
14: if equation (13) is satisfied then
15: x = x′,
16: end if
17: end if
18: end for
19: Reduce the temperature by Eq. (14),
20: k ++,
21: end while
22: Return x,
23: Stop.
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Table II: Obtained average results.

GA GA with Baldwin effect
Gradient descent Iterated local search Variable neighborhood search Simulated annealing

f1 2.19932 · 10−6 2.13421 · 10−6 2.21328 · 10−6 2.120981 · 10−6 1.912247 · 10−6

f2 1.18919 · 10−4 1.23193 · 10−4 1.01239 · 10−4 1.129815 · 10−3 1.01923 · 10−4

f3 −0.28311 · 10−3 −0.29172 · 10−4 0.28872 · 10−4 0.47623cdot10−4 −0.18926 · 10−4

f4 0.19172 · 10−3 0.22898 · 10−3 0.19863 · 10−3 0.199859 · 10−3 −0.12172 · 10−3

f5 −2.12812 · 10−12 1.907319 · 10−12 2.98221 · 10−11 −2.00193 · 10−12 −2.00012 · 10−12

f6 3.95276 · 10−14 −3.07329 · 10−13 3.55311 · 10−14 3.624782 · 10−14 −4.21424 · 10−15

f7 2.19272 · 10−4 1.78139 · 10−5 2.00712 · 10−5 1.759836 · 10−5 1.37127 · 10−5

f8 −1.78342 · 10−3 −1.81293 · 10−3 2.19813 · 10−3 3.1128 · 10−3 1.47516 · 10−3

f9 −195.7821 −195.7802 −195.7652 −195.7541 −195.8148

Table III: Obtained average errors.

GA GA with Baldwin effect
Gradient descent Iterated local search Variable neighborhood search Simulated annealing

f1 −2.19932 · 10−06 −2.13421 · 10−06 −2.21328 · 10−06 −2.12098 · 10−06 −1.91247 · 10−06

f2 −0.000118919 −0.000123193 −0.000101239 −0.001129815 −0.000101923
f3 0.00028311 0.000029172 −0.000028872 0.000047623 0.000018926
f4 −0.00019172 −0.00022898 −0.00019863 −0.000199859 0.00012172
f5 2.12812 · 10−12 −1.90732 · 10−12 −2.98221 · 10−11 2.00193 · 10−12 2.00012 · 10−12

f6 −3.95276 · 10−14 3.07329 · 10−13 −3.55311 · 10−14 −3.62478 · 10−14 4.21424 · 10−15

f7 −0.000219272 −1.78139 · 10−05 −2.00712 · 10−05 −1.75984 · 10−05 −1.37127 · 10−05

f8 0.00178342 0.00181293 −0.00219813 −0.0031128 −0.00147516
f9 −0.04785 −0.04975 −0.06475 −0.07585 −0.01515

V. EXPERIMENTS

All techniques were implemented and tested (Baldwin effect
for 20 steps, GA – 10000 iterations and 100 individuals) using
all nine test functions. Each algorithm was made 100 times to
get 100 solutions. The obtained points were used to calculate
the average value of the fitness function as follows

1

100

100∑
i=1

f(xi), (15)

and then the error for each function was calculated as∣∣∣∣∣f (xideal)− 1

100

100∑
i=1

f (xi)

∣∣∣∣∣ . (16)

All obtained results are presented in Tab. II and III. In
almost every modification interpreted as Baldwin effect, the
results were corrected what increased accuracy. Unfortunately,
the improvement took place at the expense of increasing
the time by adding additional calculations made at the local
search. The best solution turned out to be the solution gained
from genetic algorithm with simulated annealing in all cases.

Iterated and variable neighborhood returned improved re-
sults of the original algorithm, but in comparison to other used
methods, they are the least favorable due to the number of
calculations. The reason is a structure that uses an additional
algorithm which doubles the number of operations.

VI. CONCLUSIONS

Baldwin effect can be interpreted as correction for obtained
results in each iteration. The obtained results showed the supe-
riority of simulated annealing over other tested methods. In the
case of iterated or neighborhood technique, the results obtained
were better than the original version, but the execution time
has increased quite significantly. It is worth noting that the

Baldwin effect was performed only for 20 iteration what is
not a large number.

Any modification that aims to increase the precision of
the algorithm for the selected point in a given place (only
local space-searching was considered in this paper) is worth
implementing in the case of creating hybrid methods and when
the accuracy is significant.
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