
The Opponent’s Movement Mechanism
in Simple Games Using Heuristic Method

Alicja Winnicka
Institute of Mathematics

Silesian University of Technology
Kaszubska 23, 44-100 Gliwice, Poland

Email: winnicka.alicja@10g.pl

Abstract—All kinds of games force continuous development of
not only hardware technologies, but also solutions that increase
playability. One of such aspects is the way the world interacts
with the user. The effect of this is the technique of opponents
action, which enforces a certain degree of difficulty on the player
and is constantly driven and motivates to pass the game faster and
more efficiently. In this work, I present the strategy of reaching
a certain point on the board by the computer through the use of
a modified heuristic algorithm, ie a Cuckoo Search Algorithm.
The proposed solution has been described, tested and discussed
due to the advantages and disadvantages of this solution.

I. INTRODUCTION

The computer market develops through a lot of competition,
as can be seen from the AMD and NVIDIA companies that
produce graphics cards. Releasing a product of one of these
companies, forces a lot of pressure on the other one. It results
in the release of another card within a few months. Graphics
cards are one of the basic requirements of computer games
so the pressure to produce more efficient and cheaper cards
is also on the side of game producers. Developers put more
requirements for hardware due to improvement realism and
computer graphics used in their products. An additional burden
for computers are engines, which are based on the methods of
artificial intelligence. The goal is to increase playability and
quality of products

Creating games is about applying and modifying advanced
solutions to achieve the greatest effectiveness. Effectiveness is
understood as the time of action, computing power, the quality
of the effects obtained and the impact on playability. One
of the basic elements due to the programmers is designing
the world, or maps on which the user can move. In [6],
the authors presented procedural approach to generating game
maps. Again in [3], the idea of prediction player’s move is
analyzed by the use of neural networks. This solution can
improve, especially, the playability of games by blocking the
execution of reflex movements. An interesting aspect is the
analysis of information for a given game and use for a similar
purpose as before [16]. In [15] presented the famous algorithm
that beat the World Champion in GO. Artificial intelligence
techniques have found application in protecting the lives of
players while using phones in augmented reality [11]. Not

Copyright held by the author(s).

only expanded but virtual reality is developed using these
algorithms [1], [2].

Heuristic algorithms find an increasing application in game
theory due to their advantages. Not the predictability achieved
by random movements, as well as low computing power. In
[9], game balancing was achieved by the use of one of these
algorithms. Moreover, it is interesting to create hybrids of
various classic techniques in games such as decision trees with
fuzzy logic [8] or heuristics [14]. Of course, for large param-
eter values, each algorithm will need more power. For this
reason, parallelization and use of the full available processor
power can be used what has been shown in [12].

II. HEURISTIC ALGORITHM

Cuckoo Search Algorithm’s (CSA) [21] name derives from
the model of cuckoo’s behavior. During the breeding period
cuckoos do not hatch their eggs by themselves, but search for
another nests belonging to others birds and leave their eggs in
there. They look for nests where the probability of being and
hatching their offspring is greatest.

The natural behavior of these birds resulted in the creation
of a model originally used as a minimization of continuous
functions. Algorithm assumes that cuckoo is interpreted as a
point (x, y) on the solution space. In these case it is a board
of size w × h. Additionally, some assumptions must be done
to adapt the algorithm to a new operating environment

• potential nests are random points on the board,
• each cuckoo has only one egg to lay,
• total number of cuckoos is constant in each iteration.
• best nests means the points located closest to the goal,
• hosts may detect thrown eggs egg with probability p ∈
〈0, 1〉. In this case the egg is thrown out of the nest and
new cuckoo is placed randomly on the board.

At the beginning of the models, some parameters of CSA
must be defined as number of cuckoos and number of itera-
tions (which can be interpreted as number of cuckoo’s moves).
The initial population of birds are chosen at random on the
whole solution space. In each iteration, the best nest is chosen
after some steps. The first one is the movement of each birds
according to

x = x± L(x, d, c), (1)

where addition or subtraction is selected at random with the
equal probability 50% and L(·) is modified Levy distribution

12



burdened with the ceiling function so the obtained values are
integers. This action is enforced by the solution space, which
is indexes of the height and width of the board. This function
can be formulated as

L(x, ζ, η) =

⌈√
η

2π

e−2η(x−ζ)√
(x− ζ)3

⌉
(2)

where the variables ζ, η ∈ R are randomly generated and x is
a spatial coordinate of the mother-cuckoo.

The second step of the algorithms is the host decision. After,
the cuckoo toss the egg, the host need to decide whether egg
will stay or not in the nest. Of course, there is a chance that
host will not notice tossed egg. Both situation are modeled by
one condition as{

p drop the egg
1− p leave the egg

. (3)

The algorithm returns the best cuckoo in the last iteration.
To make this possible, the cuckoos must be compared. This is
possible by introducing the fitness function that will clearly
define which one is the best. It is made by the following
formula

g(x) = d(x, t)±
√
w + h, (4)

where t is the nearest goal in the neighborhood. The sign of
action depends on whether the cuckoo’s position is the goal of
the game. If so, the value is subtracted, otherwise added. This
action forces you to move towards the goal you have found.
The used function d(·) is Euclidean metric defined as

d(x, t) =

√√√√ 2∑
i=0

(xi − ti)2, (5)

where x and t are points in two dimensional space. The
pseudo-code of these version is shown in Alg. 1

Algorithm 1 Modified Cuckoo Search Algorithm

1: Start,
2: Define all required coefficient, number of cuckoos n, fit-

ness function g(·), number of iterations and static position
of enemies,

3: Create initial population of n cuckoos at random,
4: t:=0,
5: while t ≤ T do
6: Drop the egg according to Eq. (1),
7: Make the host decision using Eq. 3,
8: t++,
9: end while

10: Find the cuckoo with the best adaptation according to
fitness condition,

11: Return the best cuckoo,
12: Stop.

III. GAME STRATEGY BASED ON HEURISTIC ALGORITHM

A. Initial settings

Let us assume that a computer walks around a certain board
of size w × h. His task is to catch all opponents in as few
moves as possible, so in the shortest possible time. Enemies
are scattered on the board in a random way. In the case when
two players play the game, its task is to collect at least half
of all points (for one enemies is one point) to win the game.
Of course, each player is placed in the opposite corner of the
board. The player can make one move in one step, alternately.

Figure 1: Created board game with enemies "#" and two
players marked as "&" and "@".

In the game, several signs have been used. "@" as a player,
"%" as a computer, and "#" as an enemy. The visualisation of
these game is presented in Fig. 1.

B. Game strategy

Each player can take only one step in each round. The step
can be made in one of four directions (north/south/west/east)
but only when it is possible. The move will be impossible to
do if the player wants to move outside the board.

The proposed strategy consists of two stages. The first step
is to check the nearest neighbors. As a neighborhood, we
understood a matrix (which the maximum size is 3×3), where
the player is in its center. If the target is achievable after taking
one movement, it is performed without the slightest hesitation.
If the cost of obtaining a goal is a maximum of 3 moves,
movement towards it is carried out. The cost is calculated by
the Euclidean metric described in Eq. (5).

The second step is based on the existence of a case when
the target is not in the player’s neighborhood. And here, the
Cuckoo Search Algorithm is used. A random population of
cuckoos is spread on the board and shifted during a certain
number of iterations. Individuals are looking for a goal using
the fitness function. At the end of algorithm’s performance, the
best adapted cuckoo is returned relative to the current position
of the player. The player makes one move towards the position

13



Algorithm 2 Proposed Game Strategy

1: Start,
2: Define the position of player,
3: neighbor:= false,
4: for each direction in set {north, south, west, east} do
5: if the target position is a neighbor then
6: neighbor:= true,
7: break the loop,
8: end if
9: end for

10: if neighbor is true then
11: Make a move towards the goal,
12: else
13: for each position in the neighborhood of size 3× 3 do
14: if the target position is a neighbor then
15: Make a move towards the goal,
16: neighbor:= true,
17: break the loop,
18: end if
19: end for
20: end if
21: if neighbor is false then
22: Use Cuckoo Search Algorithm described in Alg. 1 to

find the goal,
23: Make a move towards the target found by the cuckoos,
24: end if
25: Stop.

found by the cuckoo. The use of heuristic allows to search
the whole board, not to move randomly when the target is not
nearby and the board is large. The main idea of the proposition
is presented in Alg. 2.

Figure 2: Average number of wins.

IV. EXPERIMENTS

The proposed solution has been implemented in C# and
tested in terms of the duration of the performance and number

of moves needed to complete the game or to win. All obtained
results were averaged in the following way

vavg =

n∑
i=0

vi

n
, (6)

where vavg is the average value based on n trials (where
the results are marked as vi). Based on 100 games, the
average percentage of the player’s winnings and the proposed
technique was calculated. The result is shown in Fig. 2. In the
conducted experiments, the player and the computer algorithm
participated together in the game, which directly allowed to
compare the game’s cope. It is easy to see that the computer
still has an major advantage over the player, although it is
slightly less than the intended effect of 100% winnings.

The next parameter was the time needed to win as opposed
to the other player (see Fig. 3). It is clear that the computer is
doing better because it always ends the game in almost twice
as fast compared to the human opponent. It was also noticed
that the results of the algorithm are more convergent than the
player, which allows to assess the accuracy of the algorithms
as sufficient for conducting subsequent experiments. Applying
linear regression on the obtained results shows some stability
of the proposed technique – the time of which increases very
slowly in relation to the increase the number of movements.
For people, the average results are quite chaotically distributed,
which may be due to the randomness of the points arrange-
ment. The mentioned randomness turns out to be insignificant
for the algorithm with the average number of samples. In Fig.
4 illustrated the average movement results in relation to the
number of points in the game obtained for described method.
The computer needs an average of one second to make a move
based on the assumption that the heuristics operates on 100
individuals and moves them during 1000 iterations. Such a
result is satisfactory considering the amount of calculations.

V. CONCLUSION

In this paper, the use of a heuristic algorithm as a help
in controlling the player on large boards and the pursuit
of randomly set points has been presented. This type of
solution is characterized by high randomness, albeit with a
small amount of calculations. The obtained results indicate a
great potential in the use of heuristics as a gaming support
technique. Especially in the action of the opponent or the
second player. The level of difficulty can be adapted to the
number of iterations/individuals in the population.

REFERENCES

[1] B. Burgh and K. Johnsen. Effects of tracking scale on user performance
in virtual reality games. In Everyday Virtual Reality (WEVR), 2017
IEEE 3rd Workshop on, pages 1–4. IEEE, 2017.

[2] P. Gamito, J. Oliveira, C. Coelho, D. Morais, P. Lopes, J. Pacheco,
R. Brito, F. Soares, N. Santos, and A. F. Barata. Cognitive training on
stroke patients via virtual reality-based serious games. Disability and
rehabilitation, 39(4):385–388, 2017.

[3] C. Gao, R. B. Hayward, and M. Müller. Move prediction using deep
convolutional neural networks in hex. IEEE Transactions on Games,
2017.

14



Figure 3: A graph of time dependence on the average number of movements needed to win the game for a man and the
proposed algorithm.

Figure 4: Graph of the number of movements in relation to time.

[4] G. Graditi, M. L. Di Silvestre, R. Gallea, and E. R. Sanseverino.
Heuristic-based shiftable loads optimal management in smart micro-
grids. IEEE Transactions on Industrial Informatics, 11(1):271–280,
2015.

[5] T. Kapuściński, R. K. Nowicki, and C. Napoli. Comparison of effective-
ness of multi-objective genetic algorithms in optimization of invertible
s-boxes. In International Conference on Artificial Intelligence and Soft
Computing, pages 466–476. Springer, 2017.

[6] L. H. Lelis, W. M. Reis, et al. Procedural generation of game maps with
human-in-the-loop algorithms. IEEE Transactions on Games, 2017.

[7] N. Liu, Q. Chen, J. Liu, X. Lu, P. Li, J. Lei, and J. Zhang. A heuristic op-
eration strategy for commercial building microgrids containing evs and
pv system. IEEE Transactions on Industrial Electronics, 62(4):2560–
2570, 2015.

[8] M. Mohammadi, R. Tavakkoli-Moghaddam, A. Siadat, and Y. Rahimi. A
game-based meta-heuristic for a fuzzy bi-objective reliable hub location
problem. Engineering Applications of Artificial Intelligence, 50:1–19,

2016.
[9] M. Morosan and R. Poli. Automated game balancing in ms pacman

and starcraft using evolutionary algorithms. In European Conference on
the Applications of Evolutionary Computation, pages 377–392. Springer,
2017.

[10] D. Połap. Neuro-heuristic voice recognition. In Computer Science and
Information Systems (FedCSIS), 2016 Federated Conference on, pages
487–490. IEEE, 2016.

[11] D. Połap, K. Kęsik, K. Książek, and M. Woźniak. Obstacle detection as
a safety alert in augmented reality models by the use of deep learning
techniques. Sensors, 17(12):2803, 2017.

[12] D. Połap, K. Kęsik, M. Woźniak, and R. Damaševičius. Parallel
technique for the metaheuristic algorithms using devoted local search
and manipulating the solutions space. Applied Sciences, 8(2):293, 2018.

[13] D. Połap, M. Woźniak, C. Napoli, and E. Tramontana. Real-time cloud-
based game management system via cuckoo search algorithm. Interna-
tional Journal of Electronics and Telecommunications, 61(4):333–338,

15



(a)

(b)

(c)

Figure 5: Tested boards for different amounts of goals.

2015.
[14] N. Sephton, P. I. Cowling, E. Powley, and N. H. Slaven. Heuristic move

pruning in monte carlo tree search for the strategic card game lords
of war. In Computational Intelligence and Games (CIG), 2014 IEEE
Conference on, pages 1–7. IEEE, 2014.

[15] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al. Mastering the
game of go without human knowledge. Nature, 550(7676):354, 2017.

[16] I. J. Sledge and J. C. Príncipe. Analysis of agent expertise in ms. pac-
man using value-of-information-based policies. IEEE Transactions on
Games, 2018.

[17] M. Woźniak and D. Połap. Bio-inspired methods modeled for respiratory
disease detection from medical images. Swarm and Evolutionary
Computation, 2018.

[18] M. Woźniak, D. Połap, M. Gabryel, R. K. Nowicki, C. Napoli, and
E. Tramontana. Can we process 2d images using artificial bee colony? In

International Conference on Artificial Intelligence and Soft Computing,
pages 660–671. Springer, 2015.

[19] M. Woźniak, D. Połap, C. Napoli, and E. Tramontana. Application
of bio-inspired methods in distributed gaming systems. Information
Technology And Control, 46(1):150–164.

[20] M. Wózniak, D. Połap, R. K. Nowicki, C. Napoli, G. Pappalardo, and
E. Tramontana. Novel approach toward medical signals classifier. In
International Joint Conference on Neural Networks (IJCNN), pages 1–
7. IEEE, 2015.

[21] X.-S. Yang and S. Deb. Cuckoo search via lévy flights. In Nature &
Biologically Inspired Computing, 2009. NaBIC 2009. World Congress
on, pages 210–214. IEEE, 2009.

16


