
Weight Based Algorithms to Increase
the Playability in 2D Games

Alicja Winnicka, Karolina Kęsik,
Kalina Serwata and Kamil Książek

Institute of Mathematics
Silesian University of Technology

Kaszubska 23, 44-100 Gliwice, Poland
Email: winnicka.alicja@10g.pl, karola.ksk@gmail.com

kalarcika@gmail.com, kamilksiazek95@gmail.com

Abstract—Increasing the level of playability in games depends
on the engine’s operation. The more accurate and predictable
the game is, the greater the difficulty level will be. However, the
level of playability may decrease due to the player’s interest. To
prevent this, we propose a combination of different techniques
for universal operation on various two-dimensional games. The
used methods have been modified in such a way to show that
hybrid forms can be much more advantageous.

The proposition has been tested on selected games, and the
obtained results were analyzed and discussed depending on
the introduced modifications. The aim of the discussion was
to indicate the various advantages and disadvantages of these
techniques to increase the playability.

I. INTRODUCTION

The game development is dependent on graphics card
producers and player requirements. The more efficient the
equipment will be available on the market, the more real and
complicated games should be. Particularly the second aspect is
important, because even the simplest game can attract human
attention. The problem is the lack of holding this attention. To
remedy this, games use more and more new algorithms that
allow a computer counterattack during the game. However, the
perfect operation of the algorithm can cause the player will
not have the slightest chance of winning, which will cause the
game to quickly be forgotten. This lack of interest should be
prevented by the addition of a certain, preferably controlled
randomness in his movements.

Particularly the development of artificial intelligence tech-
niques finds its applications in the various aspects of our
lives, not only in entertainment, which games are an example.
Decision support systems are the most known application
of these techniques. One such example is medicine, where
computer can confirm or even detect some diseases based on
a given samples of X-RAY or CT images. Selected tools for
that problems can be heuristic algorithms, what is presented
in [15]. Another example are energy networks [1], [2], [10].
Along with the rapid development of artificial intelligence,
other branches also sharply advance. This is especially vis-
ible in databases and warehousing because more and more
information needs to be stored, where specific queries or sorts

Copyright held by the author(s).

are performed [8]. Subsequently, authorization of these data
is important, as can be seen from the number of publications
and scientific papers in the field of biometrics [5], [11].

Entertainment forces a rapid pace of development, which
can be seen after indicating new trends such as extended,
virtual or mixed realities. In [9], [13], the current open
challenge in the field of games are described. In [4], monte
carlo tree search method with learning mechanism for video
game is presented. Authors of [14] discuss about the idea
of reinforcement learning method for the use in multiplayer
nonzerosum games. Again in [7], some smart technique for
agents in game is described. Important part of artificial intelli-
gence are neural networks, which also have found their place
in games [3].

In this paper, we propose a hybrid solution connected with
the classic techniques like q-learning, a* and tabu search. Our
technique is based on the fitness function which depends on
the selection of a specific metric.

II. SIMPLIFIED A* WITH TABU TABLE

Proposed algorithm is based on path search algorithms.
However it does not check whole path to the target, but only
the value of points, which are the neighbours of chasing player
(or enemy, depending on the point of view). Firstly, it needs
to find all possible fields on the board that can be visited.
After this action, it is necessary to compute the value of each
field Θ(·). The evaluation is made according to the following
formula

Θ(A,B) = d(A,B) + wij , (1)

where A and B are the points in two-dimensional space under-
stood as (xA, yA) and (xB , yB). First point is the possible next
field of chasing player and the second one is the localization of
target. Function Θ(·) is the sum of two components, the value
of the field calculated as a specific metric and the weight wij ,
where i and j are given positions on the board. The weight is
selected in random way in the range [−1, 1]. Let us assume
that d is such a function that

d : X ×X → [0,∞], (2)

25

(a) The pacman game
(b) A console game

(c) A table which was used to create two
simple games.

Figure 1: Visualisation of the game areas.

where X is non-empty set. d is called a metric. For any two
points A,B ∈ X , the function must satisfy the following
properties:

1) distance between two points is equal to 0 if and only if
points have the same coordinates

d(A,B) = 0 ⇐⇒ A = B, (3)

2) symmetry rule − a distance between A and B is the
same like a distance between B and A

d(A,B) = d(B,A), (4)

3) triangle inequality − a distance between A and B is less
or equal the sum of distances between A and C (C is
an intermediate point) and between C and B

d(A,B) ≤ d(A,C) + d(C,B). (5)

The most known metric is the Euclidean one defined as:

dE(A,B) =

√√√√ n∑
i=1

(xi − yi)2, (6)

where n is the number of coordinates of points. Another
example is the taxicab metric (called also the Manhattan
metric), defined as follows:

dM (A,B) = max
i=1,...,n

|xi − yi|. (7)

The last presented case is the jungle river metric understood
as

dR(A,B) = dE(A,C1) + dE(C1,C2) + dE(C2,B), (8)

where C1 and C2 are orthogonal projections of A and B,
respectively, on the line r (r is called a river).

Each game takes place in a certain area or board. Let us
assume that the board size is w × h. In the case when all
fields are empty, and the computer players are approaching
to the user, the game would be too simple. It is necessary to
put some obstacles on the board, what will be marked as a
large number, for example 100. A random value wij will be

assigned to each empty field at the position (i, j). Additionally,
player will be marked as 10 and the enemies (moved by the
computer) as 20. Visualization of such a board is shown on
Fig. 1.

The player moves towards the user by selecting the field,
in which a value of the fitness function Θ described by Eq.
(1) is the smallest. However, it is possible a situation where
the algorithm gets stuck. An example of such a setting is a
corner, where a character on three sides has a wall (further
walk is prevented). Starting from this position, there is a very
high probability of returning to the same field. In order to
avoid described situation, we introduce a tabu table, where
movements that were made and did not bring any benefits
(i.e. preventing further walk in the direction of a user) are
saved. The proposed algorithm is presented in Alg. 1.

III. EXPERIMENTS

The proposed solution has been implemented in C# and
tested in terms of the number of won games, the number
of necessary moves that the algorithm needs to caught the
player, and various metrics which have been described earlier.
In addition, all tests were carried out depending on the number
of fields on the board, the amount of obstacles or even the
points which must be collected by the player. As points, we
mean in the case of the console the symbols ’#’, and in the
case of pacman – dots.

In Fig. 2 is shown how the average number of moves
performed by the algorithm increases depending on the size
of the board. The initial size of board was 400 and during
subsequent steps 20 fields were added (up to 760). In each
case the growth of moves was linear (what is shown thanks to
linear regression). However, the slope of the line is relatively
small, which indicates the advantage of the proposed solution.
Even in case of a large board, presented method was effective.
In addition, almost perfect linear growth in the average number
of movements was obtained for the jungle river metric. A
bit worse results were achieved for the Manhattan metric
and the worst metric was the Euclidean one. This is caused
by randomly located obstacles at the game board. Again in

26

Figure 2: Graph of the average number of moves needed by the algorithm to catch a player on a board of 400 + 20 · n fields
(where n is the value on the X-axis).

Algorithm 1 Weight-based algorithm for choosing the next
movement.

1: Start.
2: Define all the possible movements in dependence of

player’s position.
3: Select randomly one direction.
4: Calculate a value of the fitness function for selected

direction by using Eq. (1) and mark this value as α.
5: Create empty tabu table.
6: for each possible movements do
7: Calculate a value of the fitness function f according to

Eq. (1).
8: if f < α then
9: if move is not in tabu table then

10: Change the direction.
11: α = f .
12: end if
13: k = 0.
14: for each neighbour do
15: if a movement in the direction of this neighbour is

forbidden then
16: k + +.
17: end if
18: end for
19: if k = 3 then
20: Add this movement to tabu table.
21: end if
22: end if
23: end for
24: Return the best movement in the indicated direction.
25: Stop.

Figure 3: Percentage variety of wins in 100 games played on
the board with 400 fields and 50 randomly located points to
gain.

Fig. 3, the average number of wins during 100 experiments
is presented. The most effective was the proposed algorithm
with the jungle river metric. This combination was the most
succesful during 32% out of the total number of games. The
Manhattan metric was slightly less effective (the winner of
26% games). What is interesting, the weakest results out of
presented metrics were achieved by the Euclidean one (24 %).
The smallest number of victories had a player – only 18%. It
can be concluded that beating the algorithm was not easy but
still possible.

27

Figure 4: Example of player movements – the green line is a trace of movements made by the user, and the red one – by the
proposed algorithm by using the Euclidean metric.

28

The number of calculations is small in comparison to other
graphic algorithms which have to search the entire board.
Only the position of the player is the necessary knowledge
for applying of this technique. The path to the given object
is determined by a dedicated function. In addition, various
metrics have different effectiveness, so it allows us to propose
a game with varied difficulty level by application of a specific
metric. This type of distinction not only diversifies the game,
but also does not allow the player to adapt to one level of
computer intelligence.

IV. CONCLUSIONS

A hybrid solution based on known algorithms has been
shown in this paper. Three different metrics were selected:
the jungle river, the Manhattan and the Euclidean, which were
used interchangeably in the assessment of possible movements
to be performed by a computer-controlled player. The obtained
results showed that this type of solution has the right to be used
as a computational intelligence. Especially, if the difficulty
level of the game would be understood as applying a different
metric. Measurements for each of presented metrics showed
that the method’s effectiveness depends on the right choice
of them. In addition, they are stable in terms of growth of
the calculation, which increases slightly when the size of the
board grows.

During further research it is possible to apply other, less
known metrics or use described model in other, a bit more
complicated games and check efficiency of the method. Mea-
surements prove that such approach can be successfully im-
plemented in similar types of games.

The algorithm can be used in different games when player
need to catch moving element in the game, which doesn’t need
to be player. This model of playing can be applied in most
arcade games and many another ones. Presented ideas has a
wide range of applications in this brand of science.

REFERENCES

[1] G. Capizzi, G. L. Sciuto, C. Napoli, and E. Tramontana. Advanced and
adaptive dispatch for smart grids by means of predictive models. IEEE
Transactions on Smart Grid, 2017.

[2] G. Capizzi, G. L. Sciuto, C. Napoli, and E. Tramontana. An advanced
neural network based solution to enforce dispatch continuity in smart
grids. Applied Soft Computing, 62:768–775, 2018.

[3] A. Dobrovsky, C. W. Wilczak, P. Hahn, M. Hofmann, and U. M.
Borghoff. Deep reinforcement learning in serious games: Analysis and
design of deep neural network architectures. In International Conference
on Computer Aided Systems Theory, pages 314–321. Springer, 2017.

[4] E. Ilhan and A. Ş. Etaner-Uyar. Monte carlo tree search with temporal-
difference learning for general video game playing. In Computational
Intelligence and Games (CIG), 2017 IEEE Conference on, pages 317–
324. IEEE, 2017.

[5] J. Kapočiūtė-Dzikienė, A. Venčkauskas, and R. Damaševičius. A com-
parison of authorship attribution approaches applied on the lithuanian
language. In Computer Science and Information Systems (FedCSIS),
2017 Federated Conference on, pages 347–351. IEEE, 2017.

[6] T. Kapuściński, R. K. Nowicki, and C. Napoli. Comparison of effective-
ness of multi-objective genetic algorithms in optimization of invertible
s-boxes. In International Conference on Artificial Intelligence and Soft
Computing, pages 466–476. Springer, 2017.

[7] A. Khalifa, M. Preuss, and J. Togelius. Multi-objective adaptation of
a parameterized gvgai agent towards several games. In International
Conference on Evolutionary Multi-Criterion Optimization, pages 359–
374. Springer, 2017.

[8] Z. Marszałek. Performance tests on merge sort and recursive merge sort
for big data processing. Technical Sciences, 21(1):19–35, 2018.

[9] F. Milani, A. C. B. De Marchi, and R. Rieder. Usability guidelines to
develop gesture-based serious games for health: A systematic review. In
Virtual and Augmented Reality (SVR), 2017 19th Symposium on, pages
188–194. IEEE, 2017.

[10] E. Okewu, S. Misra, R. Maskeliūnas, R. Damaševičius, and
L. Fernandez-Sanz. Optimizing green computing awareness for environ-
mental sustainability and economic security as a stochastic optimization
problem. Sustainability, 9(10):1857, 2017.

[11] D. Połap. Extraction of specific data from a sound sample by removing
additional distortion. In Computer Science and Information Systems
(FedCSIS), 2017 Federated Conference on, pages 353–356. IEEE, 2017.

[12] D. Połap, M. Woźniak, C. Napoli, and E. Tramontana. Real-time cloud-
based game management system via cuckoo search algorithm. Interna-
tional Journal of Electronics and Telecommunications, 61(4):333–338,
2015.

[13] S. Risi and J. Togelius. Neuroevolution in games: State of the art and
open challenges. IEEE Transactions on Computational Intelligence and
AI in Games, 9(1):25–41, 2017.

[14] R. Song, F. L. Lewis, and Q. Wei. Off-policy integral reinforcement
learning method to solve nonlinear continuous-time multiplayer nonzero-
sum games. IEEE transactions on neural networks and learning systems,
28(3):704–713, 2017.

[15] M. Woźniak and D. Połap. Bio-inspired methods modeled for respiratory
disease detection from medical images. Swarm and Evolutionary
Computation, 2018.

[16] M. Woźniak, D. Połap, M. Gabryel, R. K. Nowicki, C. Napoli, and
E. Tramontana. Can we process 2d images using artificial bee colony? In
International Conference on Artificial Intelligence and Soft Computing,
pages 660–671. Springer, 2015.

[17] M. Woźniak, D. Połap, C. Napoli, and E. Tramontana. Application
of bio-inspired methods in distributed gaming systems. Information
Technology And Control, 46(1):150–164.

[18] M. Wózniak, D. Połap, R. K. Nowicki, C. Napoli, G. Pappalardo, and
E. Tramontana. Novel approach toward medical signals classifier. In
International Joint Conference on Neural Networks (IJCNN), pages 1–
7. IEEE, 2015.

29

