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I. INTRODUCTION 

Heuristic algorithms are often used for optimization 
purposes, when a space of solutions is complex and common 
methods are imprecise these algorithms may help. We can find 
various application of heuristics in real world problems like 
image processing [9], [10]; games playability [11]; cognitive 
aspects of political sciences [12]; terminal slider control [13]; 
metal annihilating processes [14]. When it comes to the cost 
function, it is sometimes difficult or it is too time-consuming  
to find its minimum using mathematical methods.  By the 

minimum of cost we understand  a point for which the value of 
function is the lowest. Heuristic algorithms are very useful for 
finding solutions to problems which are difficult to solve in  a 
usual way. Heuristic algorithms can be seen as  help which  
randomize a definite number of points and move them in a 
specific way. As a result, the points  group in the area of the 
minimum of the function. We will never be able to determine 
the minimal value of the function. However, the determined 
value should be precise enough. 

Each algorithm works in a different way, so one defined 
algorithm which is able to solve all the optimization problems 
does not exist. For different functions some of them perform 
better than others, so the testing results of vary from each other. 
It is our responsibility to choose an algorithm and its 
coefficients to be the most suitable to find the best value of 
objective function. The only way to choose them is to apply  
trial and error method. 

 

II. TESTING FUNCTIONS 

To check the results, we use four binary testing functions: 

1) Rosenbrock function: Considered at a range from -3 to 3, it has a global minimum at f (1, 1) = 0 and is calculated as: 

  (1) 

2) Beale function: Considered at a range from -4.5 to 4.5, it has a global minimum at f (3, 0.5) = 0 and is calculated as: 

  (2) 

3) Himmelblau function: Considered at a range from -10 to 10, it has four global minimums: 
f (3, 2) = f (-2,805118, 3,131312) = f (-3,779310, -3,283186) = f (3,584428, -1,848126) = 0 and is calculated as: 

  (3) 

4) Levy function n. 13: Considered at a range from -4.5 to 4.5, it has a global minimum at f (0, 0) = 0 and is calculated as: 

  (4) 

III. FIREFLY ALGORITHM 

A. Fireflies’ behaviour / Genesis 

The firefly algorithm (FA) is an example of nature-inspired 
heuristic algorithm, proposed by Xin-She Yand in [1] with 
some interesting applications [2], [3]. It is inspired by the 

behaviour of fireflies, beetles from the family of Lampyridae. 
Each of them emits a bioluminescent light from abdomen and 
uses it to attract the less bright fireflies. 

B. Method of operations 

To connect the FA algorithm with the optimization 
problem, the input of a cost function is interpreted as the co-
ordinates of a firefly in a two-dimensional space. Then, for 
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every point of the space the cost function value can be 
calculated for its co-ordinates. Also, it can be said that a firefly 
has a ‘f’ value, which means the value for the point the firefly 
is located at. The main objective of the algorithm is to find the 
best point – that with the smallest ‘f’. 

Firstly, the population of fireflies needs to be generated 
randomly before the algorithm runs. Then, the algorithm should 
be launched and repeated a certain number of times. During 
every iteration, each firefly is moved, one after the other, in the 
direction of better ones in order to find the best ‘f’ value. There 
is always a random factor added to the movement. If a firefly is 
the best of all, the random step is the only factor responsible for 
moving a firefly.  

C. Pseudocode 

In our implementation, the FA algorithm works in 
accordance with the pseudocode showed below: 

Input: 

 Attributes of the Ai fireflies colony: 

a) Co-ordinates (xi, yi), 

b) Value ‘fi’ of the cost function, calculated for (xi, yi), co-
ordinates. 

 Population size ‘n’, a natural number, 

 Maximum attractiveness ’β0’, a real number in the 
range (0, 1], 

 Absorption coefficient ‘γ’, a real number in the range 
(0, 1], 

 Random step size ‘a’, a real positive number. 

Output: 

 The co-ordinates (xi, yi) and the ‘fi’ value of the best 
firefly, 

 Changes in every firefly’s attributes. 

Calculations: 

i = 0 
while i < n do 
j = 0 

while j < n do 
Counting the distance between Ai and Aj 
Assigning an attractiveness to Aj 
if fi < fj then 

Moving Ai in the direction of Aj 
end if 
Moving Ai randomly. 
Calculating fi value for the new Ai co-ordinates 
end while 

end while 
Comparing ‘fi’ values for each fireflies 

end 

D. Details 

 The distance between two fireflies Ai and Aj is 
obtained by using formula: 

  (5) 

 The Aj attractiveness is determined by equation: 

  (6) 

 The distance that Ai is moved in Aj direction is 
calculated as: 

  (7) 

 The random move of Ai is defined by a vector which 
co-ordinates are random real numbers from the range [-
a, a]. 

E. Observations 

The consecutive algorithm iterations results can be split into 
two phases: 

1) Grouping fireflies together: In this part each 
iteration of the algorithm results in the fireflies 
getting closer and closer to each other and the 
distance between the most distant pair of fireflies 
declines. The middle of the group moves randomly. 
There is also a possibility of creating more than one 
group, each at local minimums. 

2) Movement of the group: Now the fireflies are 
moving randomly with the width of the group 
staying approximately constant. The whole group 
can move consistently in the direction of the best 
firefly when a better ‘f’ value is found. 

The phases are different for various algorithm coefficients 
values. Their adequate choice is essential in order to find the 
global minimum as precisely as possible. 

F. Analysis 

For different coefficients values the algorithm returns 
different results. That can be analysed in order to find the 
coefficients values adequate to a function and a need. 

The fireflies’ movement consists of two factors: attraction 
by the others and the random step. The former is very essential 
for the initial iterations when the distance between fireflies is 
long. During the latter, fireflies are located so close to each 
other that the attraction impact is responsible only for keeping 
the group together and does not help with searching cost 
function global minima. Those statements can be justified by 
mathematical calculations. 

By connecting the formula (6) with the formula (7) we get a 
function s(r) which describes the distance the fireflies cover 
depending on the initial distance between them: 

  (8) 
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Value of s(r) function (8) depends, for example, on ‘β0’ and 
‘γ’. Consequently, s(r) can be increased by increasing ‘β0’ 
value and decreasing ‘γ’ value and vice versa. 

Having calculated the first derivative of (8), we can analyse  
monotonicity of s(r). With the initial distance declining, 
starting from the zero value in the infinity, it appreciates on 
value, reaches a peak at the distance r0 shown below and 
declines to 0 at the 0 distance. 

  (9) 

So, the distance Ai firefly covers is the longest when Aj 
firefly is located within r0 initial distance of Ai. That means that 
by reducing absorption coefficient ‘γ’ value, we increase r0 
value. The size of population ‘n’ has also impact on r0 because 
the more fireflies exist, the higher probability of one staying at 
r0 is. On the other hand, a big amount of fireflies can slow 
down a computer because it would need to make many more 
calculations. 

It needs to be mentioned that the s(r) value needs to be 
much more significant than the random step ‘a’ value. 
Otherwise, the fireflies will not attract each other enough and 
they will split into two or more groups facing the local, not 
global minimums. 

During the second phase fireflies are located so close to 
each other that s(r) values are insignificant compared to ‘a’ and 
are responsible only for keeping the group together – when a 
firefly moves too far, s(r) soars and brings the firefly back to 
the group. 

When a randomly moved firefly hits the ‘f’ value better 
than the found so far, it attracts all other fireflies. As a result, 
the group is moving in its direction. The global minimum of the 
cost function is located approximately in the middle of the 
group and the determination of the minimum ‘f’ value with an 
acceptable accuracy depends mostly on  luck. 

G. Conclusions 

1) To minimise the time required for the first section,  
increase ‘n’ and ‘β0’ values, reduce ‘a’ value and 
set an appropriate value of ‘γ’. 

2) To reduce a risk of fireflies splitting into many 
groups, try increasing ‘γ’ and ‘β0’ values and 
reducing ‘a’ value. 

3) To reduce the time required for the second section, 
increase ‘a’ value. 

4) To determine the minimum value with the better 
accuracy, increase the size of population ‘n’ and 
reduce ‘a’ value, but not exactly to 0. 

ARTIFICIAL BEE COLONY ALGORITHM 

H. Bees’ behaviour / Genesis 

Artificial Bee Colony algorithm (ABC) was proposed and 
implemented by Dervis Karaboga in [4]. He was inspired by a 
bee swarm behaviour and their way to find the best food source 

in the neighbourhood. ABC is based on population of a swarm 
and defined food sources. It is usually used for optimization 
problems. There are many articles reporting this method in 
various optimization aspects [5] – [8]. Bees are very 
cooperative and thanks to it, the swarm is able to perform tasks 
successfully. The whole population is divided into three 
groups: employed bees, onlooker bees and scout bees. First of 
them are looking for food sources. Meanwhile, they are also 
sharing information with other bees about the best ones they 
have found so far. The second group of bees observes them and 
decides to follow them to the food sources with the best fitness. 
The better the source, the higher possibility of choosing it. 
Employed bees can also change their food sources. They may 
be encouraged to follow other bees to their food sources. 
However, if an employed bee decides to leave its current food 
source and go to other randomly selected one, then it is named 
a scout bee. Generally, a population of the swarm in ABC 
algorithm is divided into half. Employed bees are the first half, 
whereas onlooking bees are in the other one. Over time, 
artificial bees discover better and better food sources to finally 
find the ones with the largest amount of nectar. Then the co-
ordinates of its position represent the best solution for our 
optimization problem. 

I. Pseudocode 

In our implementation, the ABC algorithm works in 
accordance with the pseudocode showed below: 

Input: 

 Population of the colony ‘n’, a natural number, 

 Number of iterations, a natural number 

 Limit of chances for food source ‘t’, a natural number, 

 Number of food sources ‘o’, a natural number. 

Output: 

 The co-ordinates (xi, yi) and value of the best food 
source. 

 
 
Phases of the algorithm: 

Initialization Phase  
Setting number of food sources, population, functions 

parameters. 
Repeat for every iteration 

Employed bees phase 
Onlooker bees phase 
Scouts bees phase 
Memorizing the best solution achieved so far 

After 
   Writing the co-ordinates and value of the best 

solution 

J. Initialization phase 

Firstly, variables for algorithm must be set, e.g. population 
of a swarm, limit of chances for each food source. We can also 
change the number of food sources, which optimal value equals  
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the half of the population. Then, we must adjust parameters for 
a function we want to optimize, e.g. upper and lower bound. 
During this phase all food sources are initialized by scout bees. 
Every food source represents possible solution for our 
optimization problem. The following equation might be used 
for initialization: 

  (10) 

where ‘lb’ is lower and ‘ub’ is upper bound of our parameter 
‘xi’. 

K. Employed bees phase 

Employed bees look for a new food source that might have 
a greater amount of nectar in a close neighbourhood of their 
last food source. The value of food source is set using the 
following equation: 

  (11) 

where ‘i’ is a randomly chosen parameter index, ‘xi’ is a 
randomly selected food source and ‘σ’ represents a random 
number from range [-1,1].   

Simultaneously, fitness of every food source is being 
computed. After these processes a bee makes a choice. The 
fitness value may be calculated using the following formula: 

  (12) 

where f(xi) is a value of solution ‘xi’. 

L. Onlooker bees phase 

Onlooker bees wait in the swarm for information about 
food sources provided by employed bees. Then a probability is 
calculated. It is based on the fitness value, given them by 
employed bees. This probability means that onlooker bees are 
more willing to exploit food sources with higher fitness value. 
It can be calculated using a following formula: 

  (13) 

where ‘fit(i)’ means fitness of food source with index ‘i’ 
and ‘s’ means a number of food sources. Afterwards a 
neighbouring source is calculated from (10) and fitness value 
from (12). The onlooker bee must choose one of two. The more 
bees are recruited to better food sources, the more positive 
feedback they have. 

M. Scout bees phase 

In this phase unemployed bees choose a new food source 
randomly. Scouts are bees, which abandoned their solutions 
due to chance limit set at the beginning of the algorithm. This 
means that their solutions could not be upgraded. What is more, 
they choose next food sources as well as share negative 
opinions on abandoned food sources, so that it will balance 
positive ones.  

N. Observations 

The proper number of food sources equals a half of the 
swarm population. If we keep reducing the number of food 
sources, we will have worse and worse solutions. When we 
increase bee population, it does not always go hand in hand 
with getting a more accurate solution. To obtain optimal 
chances we limit ‘o’ to 100. There is a slight difference, when 
we change this parameter. 
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GENETIC ALGORITHM 

A. Genesis 

Genetic algorithm (GA) was proposed by Alan Turing in 
1950. He was inspired by Charles Darwin’s theory of natural 
evolution. It was developed by John Holland and colleagues at 
the University of Michigan in [18]. Nowadays we can find its 
various improved versions reported in many articles [15]-[17]. 
GA is based on population which uses natural selection. It is 
used for optimization problems. Algorithm relies on biological 
operations: selection, mutation and crossover, as in natural 
genetics. Firstly, whole population is selected by their fitness 
score (degree of adaptation). The higher the score, the higher 
chance of surviving to the next generation. The next generation 
is composed of parents, who survived and their children. 
Children are created by crossover or mutation. 

B. Pseudocode 

I our implementation, the GA works in accordance with the 

pseudocode shown below: 

 
Input: 

 Population of the generation, a natural number, 

 Number of iterations, a natural number, 

 Two chromosomes for each individual. 

Output: 

 Two chromosomes of the best individual and fitness 
value. 

Phases of the algorithm: 

Initialization phase 

Setting number of populations, their chromosomes and 

function parameters 

Repeating for every generation: 

 Selection 

 Setting the best individual and elite individuals 

Crossover 

Mutation 

 

After 

Write the best fitness score and chromosomes 

C. Details 

 The leader of the population has the highest chance of 
reproduction. The elite of the population have lower 
chance which is still high. A typical individual has the 
lowest chance of reproduction. This algorithm is based 
on herd selection, where Alpha male, some group of 
elite individuals and the rest of the population appear. 
The reproduction probability for the leader can be 
calculated using a followed formula: 

  

 (14) 

where: 

 elite - number of individuals in elite   group 

 population - number of population 

 All chromosomes before crossover or mutation are 
translated into genes. In our case decimal numbers are 
translated into binary numbers. 

 We used 3 crossover variants: 1-Point Crossover, 
Destructive Crossover and Constructive Crossover. In 
1-Point Crossover offspring is created by exchanging 
the genes of parents.  

 
Fig. 1. Typical Crossover 

In  Destructive Crossover only positive genes in both 
chromosomes are reproduced. 

In Constructive Crossover if one of genes is positive, then 
offspring’s gene is also positive. 

 
Fig. 2. Destructive and Constructive Crossover 

Left side: parents 

Right side: up - destructive, down - constructive crossover. 

 
In Crossover, it is also interesting how positive and 

negative value is inherited. Here , we applied the methodology 
of inheritance Rh factor from blood group system. When two 
positive chromosomes cross, the offspring is positive in 15 of 
16 cases. But, if one is positive and the other is negative, the 
positive individual appears 3 times per 4. If both parents are 
negative, the offspring is always negative. 

 
Operation of mutation inverts random genes. It is used for 

mutating parents or children that have been created by 
crossover. 

D. Observations 

We can find two kinds of behaviour:  

 whole population does not evolve for the most of the 
time 

 rare but really efficient ‘jumps’, where the best 
individual evolves 

That is really interesting and the solution of this may be in 
combination of two algorithms: destructive crossover and 
mutation. GA works the best with Rosenbrock function, but it 
did not look well until 70th generation. The ‘jump’ occurred 
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where chromosome evolved. In Baele function GA jumps are 
only in the beginning and are not spectacular. Himmemblau 
function is definitely the hardest to our GA. After the 10th 
generation the algorithm slows down and starts again before the 
end. In Levy’s function we can observe quick start and huge 
jump in the middle generation. 

E. Conclusions 

1) GA is very useful to find the surroundings of 
solution, but after some upgrades, it could be more 
accurate 

2) Our version of GA is looking for solution in whole 
range, not in closer environment  

3) A lot of results after mutations and crossover are 
useless due  to thoughtless randomizing algorithm 

BENCHMARK TESTS 

Plots present the smallest ‘f’ value found so far depending on the number of iterations done for each testing functions. FA 
algorithm’s results are indicated by green lines, ABC Algorithm’s by the blue ones and GA Algorithm’s by the yellow ones. [B’s 
sent.] 

Green line indicates the values of Firefly algorithm, while blue line represents Artificial Bee Colony. [K’s sent.] 

FA Algorithm data was taken for following coefficients’ values: ‘n’ = 100; ‘β0’ = 0,1; ‘γ’ = 0,1; ‘a’ = 0,01. 

ABC algorithm data was taken for following coefficients’ values: ‘n’ = 100, ‘t’ = 50, ‘o’ = 100. 

GA algorithm data was taken for following coefficients’ values: ‘n’ = 100, ‘o’ = 100, crossover probability = 0,5, mutation 
probability for not-crossover= 0,5, mutation probability for crossover = 0,1, probability of mutation single gene = 0,1, in crossover 
positive sign is for: two positive = 15/16, two different = ¾, two negative 0. 

 

Fig. 3. The best value found during consecutive iterations. (Rosenbrock function) 
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Fig. 4. The best value found during consecutive iterations. (Beale function) 

 

 

Fig. 5. The best value found during consecutive iterations. (Himmelblau function) 
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Fig. 6. The best value found during consecutive iterations. (Levy function n. 13)

FINAL REMARKS 

The graphs show the smallest values found for each of 
the test functions depending on the number of iterations of 
each algorithm. Population for our algorithms was set to 100 
individuals. Other parameters are incomparable and 
determined differently. 

We tested Rosenbrock function first. As we can see FA 
generated higher value at the beginning and a value at 100s 
iteration exceeded a final value of ABC algorithm. It was 
less accurate by almost two decimal places. ABC algorithm 
line plummeted and at second iteration reached its lowest 
value. Genetic algorithm performed the best in this function. 
It was more accurate by three decimal places than ABC. 

The second graph shows Beal’s function, in which FA 
dominated over ABC algorithm and Genetic algorithm. Even 
though it started with a slightly higher function value than 
the others, it started to decline very quickly and reached 
highly precise value of seven decimal places. This is an 
impressive result.  

On the third graph we can see comparable results of FA 
and ABC algorithms. The values declined at different 
moments. ABC algorithm reached constant value at 60th 
iteration, whereas FA fell finally at 95th iteration and had a 
slightly more accurate function value. Genetic algorithm was 
not precise and its calculation was inaccurate, its precision 
was by two decimal places, while the ABC and FA 
algorithms reached values with 7 and 8 decimal places, 
respectively.  

FA did not perform well at Levy’s function. At 10 
iteration it reached a static value, which was highly 
inaccurate comparing to ABC algorithm. It had precision of 

two decimal places, while the second algorithm reached five 
times better result. Genetic algorithm reached an interesting 
precision, however, it was still less accurate than ABC 
algorithm. 

POSSIBLE APPLICATION 

Heuristic algorithms can be applied in many practical 

situations when an optimization is needed. To use an 

heuristic algorithm, first we need to find a cost function 

formula. Also we must keep in mind that there is a risk that 

the algorithm will not find a local minimum. Then we 

should try to apply another algorithm. 

Today heuristic algorithms may be used for example in 

market analysis. It uses the fact that when a bee in ABC 

algorithm moves to a better solution than the previous one. 

That behaviour may be easily applied thanks to trend 

functions of specific stock chart. At the defined range, 

algorithm knows when it is hitting the lowest and the 

highest value. Specially designed bot could sell or buy 

shares of a company we are following. Algorithms may be 

also used in neuron networks that would learn to solve 

issues faster than usually. Neurons would correspond with 

each other and work with better quality so the data would be 

interpreted more precisely. 

Genetic algorithm is used in many processes which use a 

biological algorithm because of its natural solutions usage. 

For example, robots are able to learn human behaviour. As a 

result, now they can perform actions which were reserved 

for humans only. It advances the moment when robots will 

replace physical works, which is called evolutionary 

robotics. 
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GA is also commonly used in training neural networks. 

The main benefit of this method is the fact that 

neuroevolution can find quicker ways of finding solutions. 

Typical supervised learning algorithms require data of 

correct input-output pairs. In contrast, genetic algorithm 

requires only a measure of a network's performance at a 

task. For example, in games we do not provide strategies 

(how to play), but only how to increase score. This 

mechanism makes GA easy to transfer from one program to 

the other one. 

Genetic algorithm is also used in music record 

production. Algorithm uses known songs to create new 

ones. It is based on schemes that are most popular in the 

songs, recombining them to the fresh chanson. 
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