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Abstract— This paper investigates the speed improvements 

available when using a graphics processing unit (GPU) for 

algorithmic trading and machine learning. A modern GPU allows 

hundreds of operations to be performed in parallel, leaving the 

CPU free to execute other jobs. Several issues related to 

implementing algorithmic trading and machine learning on GPU 

are discussed, including limited programing flexibility, as well as 

the effect that proper memory layout can have on speed increases 

when using GPU devices. An empirical research of algorithmic 

trading on GPU is presented, which showed the advantage of the 

GPU over CPU system. Moreover the machine learning methods 

on GPU are presented and the findings of this paper may be 

applied in future works. 

Keywords— high frequency trading; machine learning; GPU; 

high performance computing; genetic programming.  

I.  INTRODUCTION  

Nowadays standard computers come with sequential CPUs 

or with multicore CPUs, which allow a limited number of 

processes to be executed in parallel. What is important here is 

that this hardware is strongly parallel and may operate 

independent from the main CPU. A modern GPU allows 

hundreds of operations to be performed in parallel, leaving the 

CPU free to execute other jobs. In particular, GPUs offer 

hundreds of processing cores, but they can be used 

simultaneously only to perform data parallel computations. 

Moreover, GPUs usually have no direct access to the main 

memory and they do not offer hardware managed caches; two 

aspects that make memory management a critical factor to be 

carefully considered [1]. 

GPU architectures are specialized for computeintensive, 

memory-intensive, highly parallel computation, and therefore 

are designed such that more resources are devoted to data 

processing than caching or control flow. State of the art GPUs 

provide up to an order of magnitude more peak IEEE single-

precision floating-point than their CPU counterparts. 

Additionally, GPUs have much more aggressive memory 

subsystems, typically endowed with more than 10x higher 

memory bandwidth than a CPU. Peak performance is usually 

impossible to achieve on general purpose applications, yet 

capturing even a fraction of peak performance yields significant 

speedup. GPU performance is dependent on finding high 

degrees of parallelism: a typical computation running on the 

GPU must express thousands of threads in order to effectively 

use the hardware capabilities. Algorithms for machine learning 

applications will need to consider such parallelism in order to 

utilize many-core processors. Applications which do not 

express parallelism will not continue improving their 

performance when run on newer computing platforms at the 

rates we have enjoyed in the past. Therefore, finding large scale 

parallelism is important for compute performance in the future. 

Programming for GPUs is then indicative of the future many-

core programming experience [2]. 

When searching for “GPU back-testing software” almost no 

results appear. The technology is very difficult to use and 

implement across a general back-testing. 

The problem is the way in which a GPU works and the way 

in which general purpose back-testing works. Most of these 

back-testing programs have a language like MQL4, Ninjascript. 

These languages are used to construct trading systems that the 

simulator executes by performing some sort of parsing of the 

scripted code. This approach gives flexibility because 

researchers can code whichever strategy they can think of with 

whatever logic and the simulator will be able to handle it. The 

strategy coded is in essence a function that the simulator then 

uses to execute code within its back-testing engine. However, 

when trying to move this type of thinking to the GPU researches 

go into lots of problems [3]. 

The work reported in this paper aims to present literature 

review of GPU benefits on algorithmic trading and machine 

learning. The overview of the uses of machine learning and 

algorithmic trading on GPU is presented. Both topics are 

presented separately and the results will be used for future 

works in machine learning with high frequency trading on 
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GPU. The paper also presents high frequency algorithmic 

trading results when applied on CPU and GPU. 

The rest of the paper is organized as follows: theory and the 

problem statement are presented in Sections 1 and 2. Sections 

3, 4, 5 and 6 give an overview of: GPU for hardware 

acceleration, high frequency trading, GPU in high performance 

computing and GPU in machine learning The results and the 

summary of the research, followed by conclusions in Section 7. 

II. OBSTACLES USING GPU  

GPU is a very limited machine in terms of programming 

flexibility. It is not possible just to code the system within a 

script and send it to a GPU back-tester. If researchers want the 

GPU to perform a trading system simulation they will need to 

code the entire system and simulator within the same function 

and have the GPU run that in a batch process.  

Introducing things like double loops and random access 

patterns is hard for the GPU. When writing simulations for a 

GPU it is necessary to ensure that everything that is random 

access intensive or conditional intensive is pre-calculated and 

passed to the GPU.  Therefore, something that is “general 

purpose” starts to become very hard to pre-calculate and 

interactively build the entire simulator-plus-system code to load 

it into the GPU and perform the simulations. There are many 

ways in which GPU technology is currently being used in 

trading. Traditionally they have been used to execute 

simulations that are very specific and parallelizable – such as 

pricing simulations, machine learning training and high 

frequency trading algorithms. 

When looking for something very general the GPU tends to 

be a hard solution. However, if one is interested in some 

particular trading problem then there’s a big chance that 

researchers would be able to benefit from it if they are willing 

to spend the time, energy and money necessary to create a 

custom GPU implementation [3][4].  

III. GPU FOR HARDWARE ACCELERATION  

Hardware acceleration is achieved by utilizing specific 

hardware to gain higher computational results than those 

provided by general purpose CPU. Most devices intended for 

intense calculations include Field-Programmable Gate Array 

(FPGA), IBM’s Cell Broadband Engine Architecture (Cell BE 

or, simply, Cell) and Graphics Processing Units (GPUs). Until 

recently GPU remained on fringes of HPC (high performance 

computing) mostly because of the high learning curve caused 

by the fact that low-level graphics languages were the only way 

to program the GPUs. However, now NVIDIA has come out 

with a new line of graphics cards – Tesla [4].  

One of NVIDIA GPUs main features is ease of 

programmability made possible with CUDA – Compute 

Unified Device Architecture. With a low learning curve, CUDA 

allows developers to tap into enormous computing power of 

GPUs yielding high performance benefits [5]. As mentioned in 

the introduction, we use the compute unified device architecture 

(CUDA), which allows for implementation of algorithms using 

MATLAB with CUDA specific extensions [5]. When a 

program using CUDA extensions and running on the CPU 

invokes a GPU kernel, many copies of this kernel – known as 

threads – are enumerated and distributed to the available 

multiprocessors, where their execution starts [4]. 

The two main criteria for algorithmic trading are speed – 

that is the speed with which the same set of computations can 

be performed on multiple sets of data – and programmability. 

For this principle, general-purpose hardware – such as Intel 

Central Processing Unit (CPU) – is not suitable. The CPU is 

designed to execute commands in a linear fashion, however, the 

task at hand will benefit most from parallelization as the same 

calculations are required to be performed on multiple data; this 

is where parallelization and hardware acceleration come into 

play. 

IV. HIGH FREQUENCY TRADING 

The developments in computer technology have changed 

the way financial instruments are traded. A significant part of 

trades is handled without human intervention, where trading 

algorithms make trading decisions. Although the concept of 

algorithmic trading is not brand new, the speed in which 

algorithmic trading operates has grown tremendously over the 

past ten years. 

The trade execution time has grown from daily trading to 

microseconds and even nanoseconds. Due to the increase in 

speed, a huge number of orders and order cancellations are 

required. Profit chances for high frequency traders are very 

time-sensitive and low latency for trade execution is of the main 

importance. Thus, HFT firms invest in high-speed connections 

and place their trading platforms close to the stock market 

servers via co-location [6]. 

Nowadays, financial markets are fully automated, 

consisting of algorithmic trading, thus, they are largely 

dominated by high frequency trading. High frequency trading 

platforms have replaced the traditional auction-like floor where 

traders compete on price [7]. The main focus of HFT is to beat 

the time. The algorithm waits till the trader buys a certain 

amount of any financial instrument at any given time, then the 

high frequency traders use this information to change the price 

it is quoting in the market [8][9][10][11]. The economics and 

finance academic community consider HFT as beneficial to the 

market because HFT provides liquidity and, therefore, 

facilitates the flow of commerce in the capital markets [11].  

Given the fact that high frequency trading has to be done in 

milliseconds or even nanoseconds, all trading must be 

performed by using supercomputer. In real life, depending on 

the trade, trading opportunities can last from nanoseconds to 

minutes or even hours. 

Trading strategies, used by high frequency traders, seek for 

the opportunity to exploit short-lived trading in the markets that 

would not be possible to find or identify in other way than high-

speed processing power of computers. These trading 

opportunities are very small abnormalities in the pricing of 

financial instruments that result in extra low profit per trade. 
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High frequency earns higher profit as it is possible to trade in 

big volumes. Thus, profit can be generated from these small 

changes in the prices. One of the advantages of HFT is that it 

provides liquidity and helps to ensure the efficiency of prices 

for financial assets [12]. 

V. GPU IN HIGH PERFORMANCE COMPUTING 

High-frequency trading (HFT) is a specialized form of 

Algorithmic trading, where the execution of computerized 

trading strategies is characterized by extremely short position-

holding periods – just a few seconds or even down to 

milliseconds. The success of an HFT algorithm depends on its 

ability to react to a situation faster than others. This has given 

birth to another variant of HFT called Ultra High Frequency 

Trading (UHFT). Here, the execution of trades happens in sub-

millisecond times. The technology used by UHFT traders is co-

location of servers with exchange, direct market access, using 

parallel processing on GPUs and using special hardware like 

FPGAs [13]. 

Consolidated Tape Association(CTA) oversees the 

collection, processing and dissemination of consolidated quote 

and trade data at NYSE. Securities Information Processor(SIP), 

is the technology that enables collecting quote and trade data 

from the exchanges, consolidating it, and sending it out as a 

continuous stream of best bids and offers (quotes) and last sales 

(trades). SIP has to work at enormous speed. On average, NYSE 

handles average 2 lakh quotes per second out of which 28000 

per second get converted into trades. The traders talk to the 

exchanges using FIX protocol. FIX stands for Financial 

Information eXchange. The standard is managed by a nonprofit 

organization called FIX Trading Community. The message 

consists of ASCII characters and the format is an extension of 

XML, called FIXML. Recently Citibank has announced that it 

will provide FIX functionality to NSE in India [13]. 

 There is increasing use of High Performance Computing 

platforms like GPU multiprocessing and FPGA. D.HFT 

algorithms. They are fast and parallelizable. They are 

specifically designed to make money by exploiting tiny, 

lightningfast price changes in shares[13][14]. 

 

A. GPU in high frequency trading  

During our research algorithmic trading strategy [8] was 

used on CPU Intel i5 - 3230M 2,6 GHz with two cores (2 

MATLAB worker) and GPU GeForce 710M with 96 CUDA 

cores. Firstly we applied the pair trading strategy only on CPU 

and then on CPU together working with GPU. 

The nanosecond data used for experiment was provided by 

Nanotick company. Futures contracts were from ME group 

which consists of NYMEX, COMEX and CBOT. Nanotick 

provided five different futures commodity contracts: NG 

(natural gas), BZ (Brent crude oil), CL (crude oil), HO (NY 

Harbor ULSD) , RB (RBOB Gasoline). Time period of 

commodity futures contracts was from 01-08-2015 to 31-08-

2015. 

During the research pair detection, detection of buy/sell 

signals, the trading and profit calculation were parallelized 

when implemented on CPU and GPU [8]. When these functions 

were parallelized it was no longer necessary to wait for one 

function to stop and start the other one. The multiple 

calculations with multiple functions were possible. 

The research aim was not to measure the profit of the 

strategy but to improve the speed of algorithm by using GPU. 

The same pair trading strategy was applied to CPU and later to 

CPU working together with GPU. In the table below we can see 

the amount of records pairs trading algorithm had to process 

and how much time did it take using CPU and GPU. 

TABLE I.  CPU and GPU comparison  

Date 

Intel i5 - 

3230M 2,6 GHz,2 

cores (in seconds) 

GeForce 

710m, 96 

CUDA Cores 

(in seconds) 

Number of 

records 

processed 

2015-

08-03 till 

2015-08-

31 

74777,4 58378,53 124789970 

 

 

Table 1 shows trading time of algorithm using different 

hardware CPU (Intel i5 - 3230M 2,6 GHz,2 cores) and GPU 

(GeForce 710m, 96 CUDA Cores). The total number of records 

processed was 124789970 for each simulation.  

The more detailed information is presented in figure below 

where the speedup difference is presented. 

 

Fig. 1. Comparison of CPU and GPU using HFT in seconds 

As shown in figure above the pair trading algorithm speed 

of simulation did improve varying from 12% to 36% when used 

on GPU instead of just CPU. The difference of speed for 

different days occurs due to different number of trades made 

and different number of trade signals. The more parameters are 

possible to make parallel and move to GPU, the bigger speedup 

is possible to achieve. During this experiment bigger the matrix 

of trades and pairs were used the more measurable was the 

speed up by GPU. The results show the importance of technical 

advantages in HFT and how important is to improve the 

algorithm in order to use the most of the hardware it is presented 

to. 
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B. Stock trading using genetic programming on GPU  

D. McKenney and T. White [14] did present their research 

on stock trading using genetic programing on GPU.  Within this 

work, genetic programming was used in an attempt to solve the 

real-world problem of stock trading strategy generation. A GPU 

device was used to evaluate individuals within the GP 

population through stack-based interpretation (due to the lack 

of recursion support on many GPU devices). With a small 

amount of memory access optimization, a speedup factor of 

over 600 was reached when compared to a sequential evaluation 

of the same data running on a 2.4Ghz CPU. The effect of 

increasing the size of the training set (through the addition of 

more stocks and longer training periods) was also investigated. 

It was found that using small training sets resulted in the worst 

testing results. Furthermore, the best test results were found 

when using the largest training sets. These results supported the 

hypothesis that analyzing more stocks over a longer period of 

time can generate a more general and effective stock trading 

strategy. The speedup gained using GPU devices for evaluation 

enable this large training set to be evaluated quickly, while a 

sequential implementation would make this approach 

unfeasible. Finally, several areas of improvement for both GP 

on GPU and stock trading strategy creation using GP were 

identified. Continuing work and addressing these possible areas 

of improvement may result in faster evaluation of individuals, 

as well as a much more profitable trading solution [14]. 

VI.    GPU IN MACHINE LEARNING   

The use of GPUs in machine learning is widely used in 

recent years. The most promising machine learning algorithm 

is SVM, that can be conveniently adapted to parallel 

architectures. During the last decade, many works have been 

done for accelerating the time-consuming training phase in 

SVM on many-core GPUs. Catanzaro et al. in [2] first proposed 

the GPUSVM for binary classification problem and achieved 

speedup of 9-35× over LIBSVM running on a traditional 

processor. Later Herrero-Lopez et al. in [18]  improved 

Catanzaro’s work by adding the support for Multiclass 

classification. They achieved the speedups in the range of 3-57x 

for training and 3-112x for classification. Carpenter in [19] 

presented cuSVM, a software package for high-speed Support 

Vector Machine (SVM) training and prediction that exploits the 

massively parallel processing power of Graphics Processors 

(GPUs). Other authors in papers [15][17][23] also reported that 

GPU optimization of SVM achieves better performance to 

compare with CPU. Vaněk et al. in [20]. introduced a novel 

GPU approach of the support vector machine training: 

Optimized Hierarchical Decomposition SVM (OHD-SVM). It 

uses a hierarchical decomposition iterative algorithm that 

allows using matrix-matrix multiplication to calculate the 

kernel matrix values. They declared that algorithm is 

significantly faster than all other implementations for all 

datasets. The biggest difference was on the largest datasets 

where they achieved speed-up up to 12 times in comparison 

with the fastest already published GPU implementation.  

Another challenging research area is Deep Learning, which 

largely involve simple matrix manipulations and are therefore 

well suited to be implemented on graphic processors. Raina et 

al. in [21] developed general principles for massively 

parallelizing unsupervised learning tasks using graphics 

processors and shown that these principles can be applied to 

successfully scaling up learning algorithms for both deep belief 

networks (DBNs) and sparse coding. Their implementation of 

DBN learning is up to 70 times faster than a dual-core CPU 

implementation for large models. Dean et al. in [22] presented 

that training large deep learning models with billions of 

parameters using 16000 CPU cores could dramatically improve 

training performance. Krizhevsky et al. in [29] showed that 

training a large deep convolutional network with 60 million 

parameters and 650,000 neurons on a large data set was in great 

performance based on GPU processors [16]. Coates et al. in 

[24]  presented their own system based on Commodity Off-The-

Shelf High Performance Computing (COTS HPC) technology: 

a cluster of GPU servers with Infiniband interconnects and 

MPI. Their system is able to train 1 billion parameter networks 

on just 3 machines in a couple of days, and they showed that it 

can scale to networks with over 11 billion parameters using just 

16 machines. They have shown that can comfortably train 

networks with well over 11 billion parameters—more than 6.5 

times as large as the one reported in [22] (the largest previous 

network), and using fewer than 2% as many machines. Chen et 

al. in [25]  implemented a variant of the deep belief network 

(DBNs), called folded-DBN, on NVIDA’s Tesla K20 GPU. 

Results showed, that comparing execution time of the fine-

tuning process, the GPU implementation results 7 to 11 times 

speedup over the CPU platform. 

Others authors in their researches also approved that 

proposed models on GPU achieved the better results. Hung and 

Wang in [26]  proposed a GPU-accelerated PSO (GPSO) 

algorithm that uses the NVIDIA Tesla C1060 GPU to improve 

the timing efficiency of PSO. Numerical results showed that the 

GPU architecture fits the PSO framework well by reducing 

computational timing, achieving high parallel efficiency and 

finding better optimal solutions by using a large number of 

particles. Cai et al. in [27] proposed approach to forecast large 

scale conditional volatility and covariance using neural network 

on GPU. Tran and Cambria in [28] developed an ensemble 

application of extreme learning machine (ELM) and GPU for 

real-time multimodal sentiment analysis that leverages on the 

power of sentic memes (basic inputs of sentiments that can 

generate most human emotions). Their proposed multimodal 

system is shown to achieve an accuracy of 78%. In term of 

processing speed, their method shows improvements of several 

orders of magnitude for feature extraction compared to CPU-

based counterparts. 

VII. CONCLUSIONS  

In this article we have presented both the opportunities and 

challenges of the algorithmic trading and machine learning 

approach on GPU. The empirical study of algorithmic trading 

on GPU was presented, which proved the advantage of GPU 

versus CPU. 
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High frequency trading and machine learning is new and 

growing phenomenon. It provides interesting research 

opportunities in Financial management, market dynamics, 

FPGA hardware, multicomputing on platforms like CUDA. 

Review of works in the area of machine learning based on 

GPU is also presented in this paper and led to the conclusion 

that this technique is very promising in classification, 

forecasting tasks and could be used in big data areas. The 

systems implemented on GPU is able to process a huge volume 

of parameters faster than CPU. The findings of this paper may 

be applied in the future works. 
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