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Abstract
Predictive models based on Recurrent Neural Net-
works (RNNs) for clinical time series have been
successfully used for various tasks such as phe-
notyping, in-hospital mortality prediction, and di-
agnostics. However, RNNs require large labeled
data for training and are computationally expen-
sive to train. Pre-training a network for some su-
pervised or unsupervised tasks on a dataset, and
then fine-tuning via transfer learning for a related
end-task can be an efficient way to leverage deep
models for scenarios that lack in either computa-
tional resources or labeled data, or both. In this
work, we consider an approach to leverage a deep
RNN – namely TimeNet [Malhotra et al., 2017]
– that is pre-trained on a large number of diverse
publicly available time-series from UCR Reposi-
tory [Chen et al., 2015]. TimeNet maps varying-
length time series to fixed-dimensional feature vec-
tors and acts as an off-the-shelf feature extractor.
TimeNet-based approach overcome the need for
hand-crafted features, and allows for use of tradi-
tional easy-to-train and interpretable linear mod-
els for the end-task, while still leveraging the fea-
tures from a deep neural network. Empirical evalu-
ation of the proposed approach on MIMIC-III1 data
suggests promising direction for future exploration:
our results are comparable to existing benchmarks
while our models require lesser training and hyper-
parameter tuning effort.

1 Introduction
There has been a growing interest in using deep learning
models for various clinical prediction tasks from Electronic
Health Records, e.g. Doctor AI [Choi et al., 2016] for med-
ical diagnosis, Deep Patient [Miotto et al., 2016] to predict
future diseases in patients, DeepR [Nguyen et al., 2017] to
predict unplanned readmission after discharge, etc. With var-
ious medical parameters being recorded over a period of time
in EHR databases, Recurrent Neural Networks (RNNs) can

1TimeNet-based features for MIMIC-III time series are available
on request from authors.

be an effective way to model the sequential aspects of EHR
data, e.g. diagnoses [Lipton et al., 2015; Che et al., 2016;
Choi et al., 2016], mortality prediction and estimating length
of stay [Harutyunyan et al., 2017; Purushotham et al., 2017;
Rajkomar et al., 2018].

However, training RNNs requires large labeled training
data like any other deep learning approach, and can be com-
putationally inefficient because of sequential nature of com-
putations. On the other hand, training a deep network on di-
verse instances can provide generic features for unseen in-
stances, e.g. VGGNet [Simonyan and Zisserman, 2014] for
images. Also, fine-tuning a pre-trained network with trans-
fer learning is often faster and easier than constructing and
training a new network from scratch [Bengio, 2012]. The ad-
vantage of learning in such a manner is that the pre-trained
network has already learned a rich set of features that can
then be applied to a wide range of other similar tasks.

Deep RNNs have been shown to perform hierarchical pro-
cessing of time series with different layers tackling different
time scales [Hermans and Schrauwen, 2013; Malhotra et al.,
2015]. TimeNet [Malhotra et al., 2017] is a general-purpose
multi-layered RNN trained on large number of diverse time
series from UCR Time Series Archive [Chen et al., 2015]
(refer Section 3 for details) that has been shown to be use-
ful as off-the-shelf feature extractor for time series. TimeNet
has been trained on 18 different datasets simultaneously via
an RNN autoencoder in an unsupervised manner for recon-
struction task. Features extracted from TimeNet have been
found to be useful for classification task on 25 datasets not
seen during training of TimeNet, proving its ability to pro-
vide meaningful features for unseen datasets.

In this work, we provide an efficient way to learn predic-
tion models for clinical time series by leveraging general-
purpose features via TimeNet. TimeNet maps variable-length
clinical time series to fixed-dimensional feature vectors, that
are subsequently used for patient phenotyping and in-hospital
mortality prediction tasks on MIMIC-III database [Johnson et
al., 2016] via easily trainable non-temporal linear classifica-
tion models. We observe that TimeNet-based features can be
used to build such classification models with very little train-
ing effort while yielding performance comparable to mod-
els with hand-crafted features or carefully trained domain-
specific RNNs, as benchmarked in [Harutyunyan et al., 2017;
Song et al., 2017]. Further, we propose a simple mechanism



to leverage the weights of the linear classification models to
provide insights into the relevance of each raw input feature
(physiological parameter) for a given phenotype (discussed in
Section 4.2).

2 Related Work
TimeNet-based features have been shown to be useful for
various tasks including ECG classification [Malhotra et al.,
2017]. In this work, we consider application of TimeNet
to phenotyping and in-hospital mortality tasks for multivari-
ate clinical time series classification. Deep Patient [Miotto
et al., 2016] proposes leveraging features from a pre-trained
stacked-autoencoder for EHR data. However, it does not
leverage the temporal aspect of the data and uses a non-
temporal model based on stacked-autoencoders. Our ap-
proach extracts temporal features via TimeNet incorporat-
ing the sequential nature of EHR data. Doctor AI [Choi et
al., 2016] uses discretized medical codes (e.g. diagnosis,
medication, procedure) from longitudinal patient visits via a
purely supervised setting while we use real-valued time se-
ries. While approaches like Doctor AI require training a deep
RNN from scratch, our approach leverages a general-purpose
RNN for feature extraction.

[Harutyunyan et al., 2017] consider training a deep RNN
model for multiple prediction tasks simultaneously includ-
ing phenotyping and in-hospital mortality to learn a general-
purpose deep RNN for clinical time series. They show that
it is possible to train a single network for multiple tasks si-
multaneously by capturing generic features that work across
different tasks. We also consider leveraging generic features
for clinical time series but using an RNN that is pre-trained
on diverse time series across domains, making our approach
more efficient. Further, we provide an approach to rank the
raw input features in order of their relevance that helps vali-
date the models learned.

3 Background: TimeNet
TimeNet [Malhotra et al., 2017] is a pre-trained off-the-shelf
feature extractor for univariate time series with three recur-
rent layers having 60 Gated Recurrent Units (GRUs) [Cho
et al., 2014] each. TimeNet is an RNN trained via an au-
toencoder consisting of an encoder RNN and a decoder RNN
trained simultaneously using the sequence-to-sequence learn-
ing framework [Sutskever et al., 2014; Bahdanau et al., 2014]
as shown in Figure 1(a). RNN autoencoder is trained to obtain
the parameters WE of the encoder RNN fE via reconstruc-
tion task such that for input x1...T = x1, x2, ..., xT (xi ∈ R),
the target output time series xT ...1 = xT , xT−1, ..., x1 is re-
verse of the input.

The RNN encoder fE provides a non-linear mapping of
the univariate input time series to a fixed-dimensional vector
representation zT : zT = fE(x1...T ;WE), followed by an
RNN decoder fD based non-linear mapping of zT to univari-
ate time series: x̂T ...1 = fD(zT ;WD); where WE and WD

are the parameters of the encoder and decoder, respectively.
The model is trained to minimize the average squared recon-
struction error. Training on 18 diverse datasets simultane-
ously results in robust time series features getting captured in

zT : the decoder relies on zT as the only input to reconstruct
the time series, forcing the encoder to capture all the rele-
vant information in the time series into the fixed-dimensional
vector zT . This vector zT is used as the feature vector for in-
put x1...T . This feature vector is then used to train a simpler
classifier (e.g. SVM, as used in [Malhotra et al., 2017]) for
the end task. TimeNet maps a univariate input time series to
180-dimensional feature vector, where each dimension corre-
sponds to final output of one of the 60 GRUs in the 3 recurrent
layers.

4 TimeNet Features for Clinical Time Series
Consider a setD of labeled time series instances from an EHR
database: D = {(x(i), y(i))}Ni=1, where x(i) is a multivariate
time series, y(i) ∈ {y1, . . . , yC}, C is the number of classes,
N is the number of unique patients (in our experiments, we
consider each episode of hospital stay for a patient as a sepa-
rate data instance). In this work, we consider presence or ab-
sence of a phenotype as a binary classification task such that
C = 2. We learn an independent model for each phenotype
(unlike [Harutyunyan et al., 2017] which consider phenotyp-
ing as a multi-label classification problem). This allows us to
build simple linear binary classification models as described
next in Section 4.1. In practice, the outputs of these binary
classifiers can then be considered together to estimate the set
of phenotypes present in a patient. Similarly, mortality pre-
diction is considered to be a binary classification task where
the goal is to classify whether the patient will survive (after
admission to ICU) or not.

4.1 Classification using TimeNet features
Feature Extraction for Multivariate Clinical Time Series
For a multivariate time series x = x1x2 . . .xT , where xt ∈
Rn, we consider time series for each of the n raw input
features (physiological parameters, e.g. glucose level, heart
rate, etc.) independently, to obtain univariate time series
xj = xj1xj2 . . . xjT , j = 1 . . . n. (Note: We use x instead of
x(i) and omit superscript (i) for ease of notation). We obtain
the vector representation zjT = fE(xj ;WE) for xj , where
zjT ∈ Rc using TimeNet as fE with c = 180 (as described in
Section 3). In general, time series length T also depends on i,
e.g. based on length of stay in hospital. We omit this for sake
of clarity without loss of generality. In practice, we convert
each time series to have equal length T by suitable pre/post-
padding with 0s. We concatenate the TimeNet-features zjT
for each raw input feature j to get the final feature vector
zT = [z1T , z2T , . . . , znT ] for time series x, where zT ∈ Rm,
m = n× c as illustrated in Figure 1(b).

Using TimeNet-based Features for Classification
The final concatenated feature vector zT is used as input for
the phenotyping and mortality prediction classification tasks.
We note that since c = 180 is large, zT has large number of
features m ≥ 180. We consider a linear mapping from input
TimeNet features zT to the target label y s.t. the estimate
ŷ = w · zT , where w ∈ Rm. We constrain the linear model
with weights w to use only a few of these large number of
features. The weights are obtained using LASSO-regularized
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Figure 1: (a) TimeNet trained via RNN Encoder-Decoder with three hidden GRU layers. (b) TimeNet based Feature Extraction. TimeNet is
shown unrolled over time. (c) Obtaining relevance scores for raw input features. Here, T : time series length, n: number of raw input features.

loss function [Tibshirani, 1996]:

argmin
w

1

N

N∑
i=1

(y(i) −w · z(i)T )2 + α||w||1 (1)

where y(i) ∈ {0, 1}, ||w||1 =
∑n

j=1

∑c
k=1 |wjk| is the L1-

norm, where wjk represents the weight assigned to the k-th
TimeNet-feature for the j-th raw feature, and α controls the
extent of sparsity – with higher α implying more sparsity, i.e.
fewer TimeNet features are selected for the final classifier.

4.2 Obtaining Relevance Scores for Raw Features
Determining relevance of the n raw input features for a given
phenotype is potentially useful to obtain insights into the ob-
tained classification model. The sparse weights w are easy
to interpret and can give interesting insights into relevant fea-
tures for a classification task (e.g. as used in [Micenková et
al., 2013]). We obtain the relevance rj of the j-th raw input
feature as the sum of the absolute values of the weights wjk

assigned to the corresponding TimeNet features zjT as shown
in Figure 1(c), s.t.

rj =

c∑
k=1

|wjk|, j = 1 . . . n. (2)

Further, rj is normalized using min-max normalization such
that r′j =

rj−rmin

rmax−rmin
∈ [0, 1]; rmin is minimum of

{r1, . . . , rn}, rmax is maximum of {r1, . . . , rn}. In prac-
tice, this kind of relevance scores for the raw features help
to interpret and validate the overall model. For example, one
would expect blood glucose level feature to have a high rele-
vance score when learning a model to detect diabetes mellitus
phenotype (we provide such insights later in Section 5).

5 Experimental Evaluation
5.1 Dataset Details
We use MIMIC-III (v1.4) clinical database [Johnson et al.,
2016] which consists of over 60,000 ICU stays across 40,000
critical care patients. We use same experimental setup as in
[Harutyunyan et al., 2017], with same splits and features for

train, validation and test datasets2 based on 17 physiologi-
cal time series with 12 real-valued and 5 categorical time se-
ries, sampled at 1 hour intervals. The categorical variables
are converted to one-hot vectors such that final multivariate
time series has n = 76 raw input features (59 actual features
and 17 masking features to denote missing values).

For phenotyping task, the goal is to classify 25 pheno-
types common in adult ICUs. For in-hospital mortality task,
the goal is to predict whether the patient will survive or not
given the time series observations up to 48 hours. In all
our experiments, we restrict training time series data up to
first 48 hours in ICU stay, such that T = 48 while train-
ing all models to imitate practical scenario where early pre-
dictions are important, unlike [Harutyunyan et al., 2017;
Song et al., 2017] which use entire time series for training
the classifier for phenotyping task.

5.2 Evaluation
We have n = 76 raw input features resulting in m = 13, 680-
dimensional (m = 76×180) TimeNet feature vector for each
admission. We use α = 0.0001 for phenotype classifiers and
use α = 0.0003 for in-hospital mortality classifier (α is cho-
sen based on hold-out validation set). Table 1 summarizes the
results and provides comparison with existing benchmarks.
Refer Table 2 for detailed phenotype-wise results.

We consider two variants of classifier models for pheno-
typing task: i) TimeNet-x using data from current episode, ii)
TimeNet-x-Eps using data from previous episode of a patient
as well (whenever available) via an additional input feature
related to presence or absence of the phenotype in previous
episode. Each classifier is trained using up to first 48 hours of
data after ICU admission. However, we consider two classi-
fier variants depending upon hours of data x used to estimate
the target class at test time. For x = 48, data up to first 48
hours after admission is used for determining the phenotype.
For x = All, the learned classifier is applied to all 48-hours
windows (overlapping with shift of 24 hours) over the en-
tire ICU stay period of a patient, and the average phenotype
probability across windows is used as the final estimate of

2https://github.com/yerevann/mimic3-benchmarks



Table 1: Classification Performance Comparison. Here, LR: Logistic regression, LSTM-Multi: LSTM-based multitask model, SAnD (Simply
Attend and Diagnose): Fully attention-based model, SAnD-Multi: SAnD-based multitask model. (Note: *For phenotyping, we compare
TimeNet-48-Eps with existing benchmarks over TimeNet-All-Eps as it is more applicable in practical scenarios. **Only TimeNet-48 variant
is applicable for in-hospital mortality task.)

[Harutyunyan et al., 2017] [Song et al., 2017] Proposed (Features using [Malhotra et al., 2017])
Metric LR LSTM LSTM-Multi SAnD SAnD-Multi TimeNet-48 TimeNet-

All
TimeNet-
48-Eps

TimeNet-
All-Eps*

Task 1: Phenotyping
Micro AUC 0.801 0.821 0.817 0.816 0.819 0.812 0.813 0.820 0.822
Macro AUC 0.741 0.77 0.766 0.766 0.771 0.761 0.764 0.772 0.775

Weighted AUC 0.732 0.757 0.753 0.754 0.759 0.751 0.754 0.765 0.768
Task 2: In-Hospital Mortality Prediction**

AUROC 0.845 0.854 0.863 0.857 0.859 0.852 - - -
AUPRC 0.472 0.516 0.517 0.518 0.519 0.519 - - -

min(Se,+P) 0.469 0.491 0.499 0.5 0.504 0.486 - - -
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(b) P2

Figure 2: Feature relevance after LASSO. x-axis: Feature Number,
y-axis: Relevance Score. Here, P1: Diabetes Mellitus with Compli-
cations, P2: Essential Hypertension.

the target class. In TimeNet-x-Eps, the additional feature is
related to the presence (1) or absence (0) of the phenotype
during the previous episode. We use the ground-truth value
for this feature during training time, and the probability of
presence of phenotype during previous episode (as given via
LASSO-based classifier) at test time.

5.3 Observations
Classification Tasks
For the phenotyping task, we make following observations
from Table 1:
1. TimeNet-48 vs LR: TimeNet-based features perform signif-
icantly better than hand-crafted features as used in LR (lo-
gistic regression), while using first 48 hours of data only un-
like the LR approach that uses entire episode’s data. This
proves the effectiveness of TimeNet features for MIMIC-III
data. Further, it only requires tuning a single hyperparameter
α for LASSO, unlike other approaches like LSTM [Harutyun-
yan et al., 2017] that would involve tuning number of hidden
units, layers, learning rate, etc.
2. TimeNet-x vs TimeNet-x-Eps: Leveraging previous
episode’s time series data for a patient significantly improves
the classification performance.
3. TimeNet-48-Eps performs better than existing benchmarks,
while still being practically more feasible as it looks at only
up to 48 hours of current episode of a patient rather than the
entire current episode. For in-hospital mortality task, we ob-
serve comparable performance to existing benchmarks.

Training linear models is significantly fast and it took

around 30 minutes for obtaining any of the binary classifiers
while tuning for α ∈ [10−5− 10−3] (five equally-spaced val-
ues) on a 32GB RAM machine with Quad Core i7 2.7GHz
processor.

We observe that LASSO leads to 96.2±0.8 % sparsity (i.e.
percentage of weights wjk ≈ 0) for all classifiers leading to
around 550 useful features (out of 13,680) for each phenotype
classification.

Relevance Scores for Raw Input Features

We observe intuitive interpretation for relevance of raw in-
put features using the weights assigned to various TimeNet
features (refer Equation 2): For example, as shown in Fig-
ure 2, we obtain highest relevance scores for Glucose Level
(feature 1) and Systolic Blood Pressure (feature 20) for Dia-
betes Mellitus with Complications (Figure 2(a)), and Essen-
tial Hypertension (Figure 2(b)), respectively. Refer Supple-
mentary Material Figure 3 for more details. We conclude that
even though TimeNet was never trained on MIMIC-III data, it
still provides meaningful general-purpose features from time
series of raw input features, and LASSO helps to select the
most relevant ones for end-task by using labeled data. Fur-
ther, extracting features using a deep recurrent neural network
model for time series of each raw input feature independently
– rather than considering a multivariate time series – eventu-
ally allows to easily assign relevance scores to raw features
in the input domain, allowing a high-level basic model vali-
dation by domain-experts.

6 Discussion and Future Work

In this work, we leverage deep learning models efficiently
via TimeNet for phenotyping and mortality prediction tasks,
with little hyperparameter tuning effort. TimeNet-based fea-
tures can be efficiently transferred to train linear interpretable
classifiers for the end tasks considered while still achieving
classification performance similar to more compute-intensive
deep models trained from scratch. In future, evaluating a
domain-specific TimeNet-like model for clinical time series
(e.g. trained only on MIMIC-III database) will be interesting.
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Table 2: Phenotype-wise Classification Performance in terms of AUROC.

S.No. Phenotype LSTM-
Multi

TimeNet-48 TimeNet-
All

TimeNet-
48-Eps

TimeNet-
All-Eps

1 Acute and unspecified renal failure 0.8035 0.7861 0.7887 0.7912 0.7941
2 Acute cerebrovascular disease 0.9089 0.8989 0.9031 0.8986 0.9033
3 Acute myocardial infarction 0.7695 0.7501 0.7478 0.7533 0.7509
4 Cardiac dysrhythmias 0.684 0.6853 0.7005 0.7096 0.7239
5 Chronic kidney disease 0.7771 0.7764 0.7888 0.7960 0.8061
6 Chronic obstructive pulmonary disease and bronchiectasis 0.6786 0.7096 0.7236 0.7460 0.7605
7 Complications of surgical procedures or medical care 0.7176 0.7061 0.6998 0.7092 0.7029
8 Conduction disorders 0.726 0.7070 0.7111 0.7286 0.7324
9 Congestive heart failure; nonhypertensive 0.7608 0.7464 0.7541 0.7747 0.7805

10 Coronary atherosclerosis and other heart disease 0.7922 0.7764 0.7760 0.8007 0.8016
11 Diabetes mellitus with complications 0.8738 0.8748 0.8800 0.8856 0.8887
12 Diabetes mellitus without complication 0.7897 0.7749 0.7853 0.7904 0.8000
13 Disorders of lipid metabolism 0.7213 0.7055 0.7119 0.7217 0.7280
14 Essential hypertension 0.6779 0.6591 0.6650 0.6757 0.6825
15 Fluid and electrolyte disorders 0.7405 0.7351 0.7301 0.7377 0.7328
16 Gastrointestinal hemorrhage 0.7413 0.7364 0.7309 0.7386 0.7343
17 Hypertension with complications and secondary hypertension 0.76 0.7606 0.7700 0.7792 0.7871
18 Other liver diseases 0.7659 0.7358 0.7332 0.7573 0.7530
19 Other lower respiratory disease 0.688 0.6847 0.6897 0.6896 0.6922
20 Other upper respiratory disease 0.7599 0.7515 0.7565 0.7595 0.7530
21 Pleurisy; pneumothorax; pulmonary collapse 0.7027 0.6900 0.6882 0.6909 0.6997
22 Pneumonia 0.8082 0.7857 0.7916 0.7890 0.7943
23 Respiratory failure; insufficiency; arrest (adult) 0.9015 0.8815 0.8856 0.8834 0.8876
24 Septicemia (except in labor) 0.8426 0.8276 0.8140 0.8296 0.8165
25 Shock 0.876 0.8764 0.8564 0.8763 0.8562
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Figure 3: Feature relevance scores for 25 phenotypes. Refer Table 2 for names of phenotypes, and Table 3 for names of raw features.



Table 3: List of raw input features.

1 Glucose 31 Glascow coma scale eye opening → 3 To speech
2 Glascow coma scale total → 7 32 Height
3 Glascow coma scale verbal response → Incomprehensible sounds 33 Glascow coma scale motor response → 5 Localizes Pain
4 Diastolic blood pressure 34 Glascow coma scale total → 14
5 Weight 35 Fraction inspired oxygen
6 Glascow coma scale total → 8 36 Glascow coma scale total → 12
7 Glascow coma scale motor response → Obeys Commands 37 Glascow coma scale verbal response → Confused
8 Glascow coma scale eye opening → None 38 Glascow coma scale motor response → 1 No Response
9 Glascow coma scale eye opening → To Pain 39 Mean blood pressure
10 Glascow coma scale total → 6 40 Glascow coma scale total → 4
11 Glascow coma scale verbal response → 1.0 ET/Trach 41 Glascow coma scale eye opening → To Speech
12 Glascow coma scale total → 5 42 Glascow coma scale total → 15
13 Glascow coma scale verbal response → 5 Oriented 43 Glascow coma scale motor response → 4 Flex-withdraws
14 Glascow coma scale total → 3 44 Glascow coma scale motor response → No response
15 Glascow coma scale verbal response → No Response 45 Glascow coma scale eye opening → Spontaneously
16 Glascow coma scale motor response → 3 Abnorm flexion 46 Glascow coma scale verbal response → 4 Confused
17 Glascow coma scale verbal response → 3 Inapprop words 47 Capillary refill rate → 0.0
18 Capillary refill rate → 1.0 48 Glascow coma scale total → 13
19 Glascow coma scale verbal response → Inappropriate Words 49 Glascow coma scale eye opening → 1 No Response
20 Systolic blood pressure 50 Glascow coma scale motor response → Abnormal extension
21 Glascow coma scale motor response → Flex-withdraws 51 Glascow coma scale total → 11
22 Glascow coma scale total → 10 52 Glascow coma scale verbal response → 2 Incomp sounds
23 Glascow coma scale motor response → Obeys Commands 53 Glascow coma scale total → 9
24 Glascow coma scale verbal response → No Response-ETT 54 Glascow coma scale motor response → Abnormal Flexion
25 Glascow coma scale eye opening → 2 To pain 55 Glascow coma scale verbal response → 1 No Response
26 Heart Rate 56 Glascow coma scale motor response → 2 Abnorm extensn
27 Respiratory rate 57 pH
28 Glascow coma scale verbal response → Oriented 58 Glascow coma scale eye opening → 4 Spontaneously
29 Glascow coma scale motor response → Localizes Pain 59 Oxygen saturation
30 Temperature


