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Abstract
Diabetes is one of the diseases affecting 415 mil-
lion people in the world. Developing a robust blood
glucose (BG) prediction model has a profound in-
fluence especially important for the diabetes man-
agement. Subjects with diabetes need to adjust in-
sulin doses according to the blood glucose levels to
maintain blood glucose in a target range. An accu-
rate glucose level prediction is able to provide sub-
jects with diabetes with the future glucose levels,
so that proper actions could be taken to avoid short-
term dangerous consequences or long-term compli-
cations. With the developing of continuous glucose
monitoring (CGM) systems, the accuracy of pre-
dicting the glucose levels can be improved using
the machine learning techniques. In this paper, a
new deep learning technique, which is based on the
Dilated Recurrent Neural Network (DRNN) model,
is proposed to predict the future glucose levels for
prediction horizon (PH) of 30 minutes. And the
method also can be implemented in real-time pre-
diction as well. The result reveals that using the
dilated connection in the RNN network, it can im-
prove the accuracy of short-time glucose predic-
tions significantly (RMSE = 19.04 in the blood glu-
cose level prediction (BGLP) on and only on all
data points provided).

1 Introduction
The prediction of BG levels has always been a challenge be-
cause of the difficulty of modeling its nonlinearity and con-
sidering the effect of different life events. Machine learn-
ing (ML) reveals a new approach to modeling the BG levels
compared with traditional approaches, such as AR [Spara-
cino et al., 2007] and ARMR model [Sparacino et al., ;
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Eren-Oruklu et al., 2009], and their extrapolation algorithmic
derivatives [Eren-Oruklu et al., 2009; Gani et al., 2009], and
methods regarding neural networks [Zecchin et al., 2012].

In particular, the blood glucose level prediction (BGLP)
challenge provides a platform for artificial intelligence (AI)
researches to evaluate the performance of different types of
ML approaches on the real data. The OhioT1DM dataset
provided by BGLP challenge records the eight weeks CGMs
data as well as the corresponding daily events from six type-
1 diabetes patients, which are referred by ID 559, 563, 570,
575, 588 and 591 [Marling and Bunescu, 2018]. The CGM
data has a sampling rate of every 5 minutes. Since the BGLP
can be regarded as time series prediction problem, the nat-
ural structure of recurrent neural networks (RNN) provides
remarkable performance on the prediction of BG levels [Ala-
nis et al., 2011]. Moreover, the BG levels will be affected
by different daily events, such as insulin injected, meals and
exercises. Different types of events may have different tem-
poral effects on the change of BG levels. Therefore, the so-
lution is inspired by the recent research by [Shiyu Chang and
Huang, 2017], which reveals the Dilated RNN (DRNN) with
multi-resolution dilated recurrent skip connections allows the
networks to learn different temporal dependencies at different
layers. Lastly, before feeding the data into the model, the in-
terpolation, extrapolation and filtering techniques are utilized
to process the data in order to fill the missing data in training
and testing set and remove the potential noise. Please note
that in the testing dataset, the future glucose data points are
not used in the extrapolation. Thus the algorithm can also be
useful in real-time applications.

2 Data Processing
2.1 Preprocessing
Firstly, according to [Zecchin et al., 2012], the accuracy of
prediction based on neural networks can be improved by ex-
ploiting information on meals. Thus, each input batch of the
DRNN model consists of the past 1 hour (12 points of data)
CGMs, insulin doses, carbohydrate intake and time index.
The CGMs, insulin and carbohydrate intake are correspond-
ing to the fields ‘glucose level’, ‘bolus’ and ‘bwz carb input’
respectively in the OhioT1DM dataset. The time index repre-
sents the position of each CGM data in a day. Other fields in
the dataset have also been tried in the experiment, such as ex-



ercise, heart rate and skin temperature, which do not have the
significant effect on the accuracy of the model, but increasing
the variance of the model. It is worthy to note that, for some
insulin and carbohydrate intake information, the timestamps
can not be exactly matched to the timestamps in CGM data.
They are set to associate to the timestamps in the CGM data
with the smallest time difference.

Secondly, the output of the model is the difference between
the next 6th point and the 12th point of CGM data in the input
batch, which corresponds to the BG changes for the PH = 30.

Lastly, in order to improve the performance of DRNN
model, the first-order linear interpolation and first-order ex-
trapolation are applied to the training and testing set, respec-
tively. The median filter is used only in the training set. These
techniques will be explained in the following sections in de-
tials. The data of subjects 591 and 575 have the considerable
amount of missing CGM data, the combination of training
data from all patients with different proportions is used in
the training process. The idea comes from the transfer learn-
ing technique in machine learning. The results obtained dur-
ing the experiment shows that it improves the model perfor-
mance.

2.2 Interpolation and Extrapolation
There are lots of missing CGM data for different patients in
both training and testing set. Without interpolation or ex-
trapolation, the missing data will cause discontinuities in the
CGM curve. Moreover, the fake peaks caused by discontinu-
ities will highly degrade the performance of the model. Thus,
the first-order linear interpolation and first-order extrapola-
tion algorithm are applied to the training set and testing set
in this project, respectively. Based on the experiment result,
the performance of the first-order interpolation and first-order
extrapolation are similar for the testing set. The extrapolation
technique does not use the information of future values to fill
the missing data. Thus, the testing set uses extrapolation tech-
nique to fill the missing data, which enables the real-time pre-
diction. Different interpolation algorithms have been tested,
such as cubic interpolation, but the first-order linear interpo-
lation provides the best result for the given data.

Figure 1 shows an example of the linear interpolation. The
zero values in the original CGM data represents the missing
data. However, the missing data is discarded if the missed
time interval is significantly large. The purpose of this step
is to prevent the model from attempting to learn the interpo-
lation part instead of the real trend of CGM data. The data
before a long time missing interval will be connected to the
next nearest value in order to prevent any fake peaks. Fur-
thermore, the insulin and carbohydrate intake in the missing
CGM interval is set to zero.

2.3 Median Filtering
The median filter is employed only for the training set after
the interpolation process, in order to remove part of fast vari-
ations and some small spikes in the linear region of the curve,
which might be the noise in the data. Moreover, the curve will
become more smooth and the trend in CGM data will become
more obvious as shown in Figure 2. However, the length of
filter window needs to be carefully set, otherwise the data will

be ruined and the model can not properly learn from the data.
The window size is set to be 5 after comparing the results for
different window sizes.

2.4 Using Data from Multiple Subjects
For the subject 575, there are 72 missing gaps and many gaps
are significantly large. The large gaps are discarded as dis-
cussed in the previous section, hence the training data of sub-
ject 575 are not long enough for the model to learn using
ML techniques, which might also result in overfitting easily.
Therefore, the mixture of several patient’s training set is in-
troduced, which increases the training set by combining the
data from different patients with different contributions, and
the generalization of the model can be improved. This idea
comes from the transfer learning technique, which is popu-
lar in the deep learning techniques that makes use of other
related dataset to train the objective neural network. In this
work we use 50% of the target subject’s data plus 10% of
other subjects’ data to train the model first, and then train the
final model based on the whole training set of the target sub-
ject.

For example, for subject 575, 50% training data were used
in the first phase. Different proportions of the training data
from other subjects are used in the training process as well
(normally we use 10% of training data from other subjects).
For the second phase, all training data for subject 575 are
used to train the final model. By using the transfer learning
technique, the RMSE of subject 575 are decreased further by
about 0.7 compared with the result from only using its own
data. Moreover, it is found that this approach can also be
applied to the subject 591 to improve the result.

2.5 Evaluation metric
The overall performance of the model is evaluated by the
root-mean-square error (RMSE) between the prediction curve
and original testing curve. Since the output of the model is the
changes of BG after 30 minutes, the prediction curve should
be the firstly constructed based on the model output. The
RMSE is computed as (1),

RMSE =

√
1

N

∑
(ŷ − y)2 (1)

where ŷ is the predicted value, y is the original value and N
is the total number of points. However, since the interpola-
tion/extrapolation is applied to both training and testing data,
the imputed values should be removed when evaluating the
RMSE in the testing phase, which guarantees the prediction
curve is compared with the original test data with the same
length. The total testing points for each patient are summa-
rized in Table 1.

3 DRNN Model
With the processed training and testing data, the rest of work
is to design the structure of the DRNN model and to tune the
hyperparameters to obtain the best results. In this section, the
DRNN model will be briefly introduced. The training and
testing phase will be explained. Lastly, the effect of different
hyperparameters will be investigated. In terms of the software



Figure 1: CGM data after linear interpolation. Figure 2: CGM data after linear interpolation and filtering.

Figure 3: Structure of DRNN model. [Shiyu Chang et al., 2017]

implementation, the model is built based on tensorflow 1.6.0
and runs under the environment of python 3.6.4.

3.1 Model Structure
The DRNN model is characterised by its multi-resolution di-
lated recurrent skip connections as shown in Figure 3. The
cell state for layer l at time t(c(l)t ) is depending on the current
input sample (x

(l)
t ) and the cell state from c

(l)
t−s as summa-

rized in (2).

c
(l)
t = f

(
x
(l)
t , c

(l)
(t−s)

)
, (2)

where x(l)
t is the input to layer L at time t, s is the dilation and

f represents the output function of different types of RNN
cell, namely vanilla RNN, long short-term memory (LSTM)
and gated recurrent unit (GRU). The multi-resolution dilated
recurrent skip connections enable the model to capture the
information for different temporal dependency and alleviate
the vanishing gradient problem. The dilation is usually set to
be increased exponentially [Shiyu Chang and Huang, 2017].

Patients Total Testing Points
591 2760
570 2745
563 2570
559 2514
588 2791
575 2590

Table 1: Total testing points for each patient.

Therefore, the DRNN provides a powerful approach to pro-
cess the long sequence data.

In this project, a 3-layered DRNN model is used, with 32
cells in each layer. Since the dilation is recommended to be
the exponential increase, 1, 2 and 4 dilations are implemented
for the 3 layers respectively from bottom to top.

3.2 Hyperparameters
Three different RNN cells have experimented, and the re-
sult shows that the vanilla RNN cell can achieve a better re-
sult than LSTM and GRU cells. Moreover, the training time
and testing time using LSTM and GRU cells are significantly
larger than vanilla RNN cell. This is because the structure
of LSTM and GRU cells are much more complex than the
vanilla RNN cell. Therefore, by implementing the vanilla
RNN cell, better results can be obtained efficiently.

The effect of the number of cells in layers and the num-
ber of layers have also been investigated. It is found that the
performance is degraded as the number of cells and layers in-
creased. This is because the larger model requires relatively
larger data set to converge. The training data points for each
patient is around 10, 000, which is not sufficient to train a
large model properly. Therefore, a relatively small model as
described is found to have a better performance.

3.3 Training and Testing
At each epoch of training step, the output from the model
is used to reconstruct the prediction curve. Therefore, the
RMSE is computed between prediction curve and the origi-
nal curve. RMSProp optimizer [Ruder, 2017] with learning
rate 0.001 is applied. Fixed batch size is set for all subjects.
Varying the batch size also affects the accuracy of the model.
In the experiment, it is found that larger batch size helps to
improve the prediction results in term of RMSE.

When running the algorithm, an evaluation step is per-
formed every 500 epoch. The advantage is that it provides
a convenient way to monitor the training process and get the
trend of accuracy, thus an appropriate number of epochs of
training can be decided. Since the test data for each patient
is around 2000 points, the cost of computation for the testing
phase is relatively small. In this project, the 4000 to 5000
epochs is used in the training process. It should be noted
that since the algorithm using past 12 points of data to pre-
dict the next 6th point (PH = 30), the last 17 points of the



Figure 4: Predicted and Original test data of patient 570.

Figure 5: Predicted and Original test data of patient 575.

original training data should be appended at the beginning of
the test set, which guarantees the length of prediction curve
is the same as the original length of the test data (it has been
approved by the BGLP challenge).

Patients Best RMSE Average RMSE ± SD
591 21.1392 21.3354± 0.0981
570 15.2995 15.4638± 0.0907
563 18.0470 18.1153± 0.0400
559 18.6158 18.7769± 0.0672
588 17.6275 17.7270± 0.0701
575 22.7104 22.8316± 0.0941

Mean RMSE 18.9066 19.0417

Table 2: RMSE results of the DRNN model.

4 Experimental Results
With the data processed as described in Section 2 and model
built as shown in Section 3, the RMSE of the test data is sum-
marized in Table 2, where SD denotes the standard deviation.
The best RMSE and average RMSE results are all based on
10 times simulation.

As can be seen from the Table 2, the RMSE for each sub-
ject vary from 22 to 15. The best RMSE is obtained in subject
570, and the RMSE is relatively large for subject 591 and 575.
There are two reasons. Firstly, training data of 570 has rela-
tively less missing data. There are 782 and 1309 missing data
in subject 591 and 575, whereas subject 570 has 649 miss-
ing data. Secondly, through observing the curves of training
and testing set for all subject, the data of subject 570 con-
tains fewer fluctuations. The large fluctuation and continue
peaks in both training and testing dataset will increase the
difficulty of prediction, and degrade the model’s learning ca-
pability, which can be observed from the result in Figure 5.

Figure 4 and Figure 5 show the prediction results of patient



570 and 575, which corresponds to the best RMSE shown in
Table 2. As one can see that the test data of 575 is much
fluctuant than 570, especially on the second half part of the
curve.

More specifically, as shown in Figure 6, the relative lin-
ear region of the curve can be predicted with the small error.
However, the fast and continues variations in the curve are al-
most impossible to predict, which contributes to a significant
proportion of errors in terms of RMSE. Furthermore, a slight
time delay in the prediction curve is observed, which is also
a primary contribution of the errors.

Figure 6: An example of prediction result.

5 Conclusion
This project aims to design an accurate short-time BG pre-
diction model with PH = 30 minutes. The recent technique
DRNN model has been exploited and applied in the project.
The multi-resolution dilated recurrent skip connections of
DRNN enables the network to learn different temporal de-
pendencies in the sequential data. The data processing tech-
niques of first-order linear interpolation, median filter, and a
mixture of training set have been investigated. The results
have shown the effectiveness of these data process methods.

With the DRNN model and data processing techniques, the
performance of the whole algorithm is evaluated based on the
OhioT1DM dataset. The RMSE results vary from 15.299 to
22.710 for different subjects with diabetes. More specifically,
the missing data in the training and testing set, together with
the fast continuous fluctuations in the data are the two main
factors which degrade the accuracy of the model. In terms of
improvement, there is still a large number of unused fields in
the dataset. How to use these data properly and to feed them
into the model still remain a challenge.
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