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Abstract

Type 1 diabetes patients must self-administer in-
sulin through injections or insulin-pump ther-
apy, requiring careful lifestyle management around
meals and physical activity. Accurate blood glu-
cose prediction could increase patient quality of
life, and foreknowledge of hypoglycemia or hyper-
glycemia could mitigate risks and save lives. For
the 2018 BGLP Challenge, we experiment primar-
ily with XGBoost to predict blood glucose levels at
a 30-minute horizon in the OhioT1DM dataset. Our
experiments show that XGBoost can be a competi-
tive predictor of blood glucose levels, as compared
to prior research, and that feature signals from dif-
ferent sources contribute in varying capacity for im-
proved predictive ability of XGBoost.

1 Introduction
Diabetes affects over 400 million people worldwide [World
Health Organization, 2016], with near 5% of diabetics suffer-
ing from type 1 diabetes (T1D) [American Diabetes Associ-
ation, 2018]. Patients with T1D are incapable of producing
insulin, a hormone generated by the pancreas, which acts as
the primary regulator of blood glucose metabolism. This dys-
function can lead to both hypoglycemia (low blood sugar) and
hyperglycemia (high blood sugar), resulting in a significant
patient burden to regulate carbohydrate consumption and sup-
plemental insulin delivery. Hyperglycemia can lead to medi-
cal complications such as vision loss and kidney failure, and
increases risk of heart disease and stroke. Hypoglycemia can
lead to loss of consciousness and even death.

An increasing number of T1D patients are adopting insulin
pump therapy, wherein a wearable device releases insulin
subcutaneously to mimic pancreatic response. Current in-
sulin pumps require patient input on carbohydrate intake and
approval of each recommended insulin dose. Driven by the
outstanding need for closed-loop insulin therapy, the notion
of an artificial pancreas has gained traction in diabetes-related
research [Graf et al., 2017; Juvenile Diabetes Research Foun-
dation, 2018].

The dysregulation of blood glucose in T1D patients is
further complicated by daily variations in the magnitude

and timing of meals, physical activity, and insulin self-
administration. This, along with the altered pharmacokinetics
of subcutaneous insulin, add further layers of complexity to
the task of predicting blood glucose. As such, the Blood Glu-
cose Level Prediction Challenge represents an important step
toward the realization of an artificial pancreas. Herein lies the
objective of restoring homeostasis through accurately dosed
insulin, and the creation of a model which captures the com-
plexities of the disease. This challenge was particularly mo-
tivating for us, not simply from the perspective of predictive
modeling, but also for the potential applications in providing
tangible benefits to T1D patients.

To predict glucose at a 30-minute time horizon, we pro-
cessed the raw features of the OhioT1DM dataset [Marling
and Bunescu, 2018] to create 3 different feature sets, and ex-
perimented with gradient-boosted trees [Chen and Guestrin,
2016a] (XGBoost), random forests [Breiman, 2001], and re-
current neural network variants. We find that:
• XGBoost performs on par with prior models [Bunescu

et al., 2013; Mirshekarian et al., 2017] for this task.
• Many of the provided features do not contribute to im-

proved predictive performance. In essence, when using
XGBoost, past glucose is the most important predictor
of future glucose.
• Using ε-insensitive loss for training LSTMs improves

predictive performance compared to mean squared error.

2 Data
The OhioT1DM dataset comprises 19 features collected from
6 patients with T1D [Marling and Bunescu, 2018]. Pa-
tients wore Medtronic 530G insulin pumps, Medtronic Enlite
continuous glucose monitors (CGM), and Basis Peak fitness
wristbands. 8 weeks of data were provided per patient, of
which the final 10 days were provided separately as a test set.

2.1 Data Analysis
Due to the heterogeneity of the data, we grouped features ac-
cording to their frequency:
• one-off data: intermittent measurements with no fixed

sampling frequency or duration. (e.g., finger stick glu-
cose, insulin bolus time and dose, sleep times and qual-
ity, work intensity, exercise intensity and duration, meal
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Figure 1: Selected features for two patients, illustrating differences in mean values and waveforms. Lines and shaded regions indicate mean
±1 SD. Orange dots show individual data samples.

type and carbohydrate content, hypoglycemic events, ill-
nesses, stressors)

• quasi-continuous data: signals in continuous effect, and
signals aggregated at 5-minute intervals. (e.g., CGM
glucose level, basal and temporary basal rates of insulin
infusion, heart rate, steps taken, galvanic skin response
(GSR), skin and air temperature)

Analysis of quasi-continuous data showed unique tempo-
ral patterns in each patient (Figure 1). These bio-signals dis-
played properties characteristic to each individual, such as re-
peated waveforms and unique signal means. These qualities
reflect the hour-of-day periodicities and homeostatic norms
that vary across patients. Accordingly, we were motivated to
build a distinct model for each patient, as opposed to a general
model trained on the data of several patients.

2.2 Feature Engineering
Expanded Feature Set
We found that due to the variable sampling frequency of one-
off features and missing values in the data, the feature vector
at any given timestamp was not guaranteed to contain values
for all fields. Converting the data into a feature matrix re-
sulted in rows with missing values, hindering analysis. We
thus chose to resample our data to 5-minute intervals, reflect-
ing the 5-minute aggregation frequency of quasi-continuous
variables.

Within each 5-minute resampling window, we aggregated
each feature with either its maximum, mean, or last valid
value, depending on its nature. For instance, we took the
sum of steps, whereas we computed the mean of heart rate.
Some features are only in effect for specified durations. For
instance, basal insulin infusion rates were overridden with re-
spective temporary basal overrides, if any, and each square-
wave insulin bolus dose was spread evenly across its speci-
fied time interval. Missing values for glucose were imputed
via linear interpolation.

Based on our observations (Sec. 2.1) of time-dependent
patterns in the data, e.g., the dawn phenomenon, we included
one-hot encoded features for hour-of-day and day-of-week.
For each one-off feature, a binary indicator feature [Che et
al., 2018] was used to denote missing values.

Condensed Feature Set
We developed a condensed feature set based on pairwise cor-
relations between features. This feature set included Basis
Peak band and Medtronic CGM sensor data, based on the
strength of their correlation with glucose. Several derivations
of the glucose signal were added to the feature set, includ-
ing five- and ten-minute time lags of glucose to provide the
model with information of glucose history. A binary indicator
feature marked when the present glucose level was in the up-
per or lower 20% of the patient’s glucose distribution. Other
features present in this set include the last bolus dose, mean
basal rate over the past 5 minutes, and an indicator of whether
the patient was asleep.

Dimensionality-Reduced Features (PCA-reduced)
We used Principal Component Analysis (PCA) to transform
our expanded feature set to remove features with minimal
variance. Such features are less likely to be predictive in
a model. On average, the first 55 principal components ac-
counted for 99% of the variance in each patient’s dataset.

3 Machine Learning Models
For all models, we used the final week of each patient’s train-
ing data for validation. In training personalized models, hy-
perparameters and model structure (e.g. learning rates, num-
ber of LSTM nodes) were kept consistent across patients. All
models in this study were implemented on all three of the en-
gineered feature sets.

We investigated the following models:

• Tree ensembles using the Random Forest Regressor im-
plementation of Scikit-Learn [Pedregosa et al., 2011].

• Regression-based gradient-boosted decision trees using
XGBoost [Chen and Guestrin, 2016b].

• Recurrent neural network variants using Keras [Chollet,
2015].

Keras was used to create several RNN models: multi-
layer LSTMs, GRUs, a Bidirectional GRU, and LSTMs with
dropout. These were implemented to evaluate their perfor-
mance on the data, and were tested on varying durations of
look-back windows (5 minutes–1 day).



Table 1: Submitted system performances.

Model: RF XGBoost XGBoost LSTM LSTM
Featureset: condensed expanded PCA- expanded expanded

reduced ε-insens. MAE loss
559 37.236 19.810 21.816 23.949 23.76
563 28.095 18.415 19.375 25.121 24.901
570 24.625 18.140 19.614 19.562 20.497
575 28.688 24.172 24.242 25.923 27.796
588 23.894 19.240 22.141 19.012 20.303
591 28.976 22.487 23.391 27.333 30.256

AVG 28.586 20.377 21.763 23.483 24.586

3.1 System Performance Results
We found that no one feature set (either expanded, condensed
or PCA-reduced) produced consistently better glucose pre-
dictions, and different models performed better on different
feature sets. Table 1 lists our submitted systems and feature
sets.

XGBoost was the best-performing model on both the ex-
panded and PCA-reduced feature sets, achieving a mean
RMSE across all patients of 20.377. These results are at par
with previously published models based on Support Vector
Regression [Bunescu et al., 2013].

Experiments with LSTM Loss Functions
Our LSTM models were simple and did not perform as well
as recent LSTM models for blood-glucose prediction [Mir-
shekarian et al., 2017]. We submitted results for an LSTM
model that was composed of: layers LSTM(64 nodes),
LSTM(64 nodes), Fully-connected(32 nodes);
a dropout rate of 0.2; an Adadelta optimizer; and a look-
back of 5 minutes.

We observed that Mean Absolute Error (MAE) improved
the performance of trained LSTMs over using Mean Squared
Error (MSE) as the loss function. The models trained with
MSE showed a degradation which was particularly severe for
glucose values near hypoglycemic and hyperglycemic lev-
els [Medtronic, 2010]. MAE, in contrast to MSE, does not
penalize large errors as heavily as MSE, which likely helped
improve performance over outlying cases.

The generally accepted error rate for finger-stick blood glu-
cose measurements is 15 mg/dL [Food and Drug Administra-
tion, 2016]. Thus, for predictions within a 15 mg/dL window
of the ground truth, the the loss for such values can be con-
sidered less impactful. We therefore investigated the use of
an ε-insensitive loss function for training our LSTM, with ε
set as 5 mg/dL, for a more stringent boundary than 15 mg/dL.

We compared the three loss functions: and found that train-
ing LSTMs with MAE loss improved results (RMSE 24.586)
over MSE loss (RMSE 30.097) with ε-insensitive loss per-
forming the best with an RMSE of 23.483.

4 Follow-up Experiments and Results
4.1 Post Challenge Submission
We tuned the hyperparameters of our best model, XGBoost,
and added the following features to the expanded featureset:
first difference of CGM glucose; time since last bolus, meal,
hypo event, and hypo correction; size of last bolus; carbs in

Table 2: Results of XGBoost on ablated feature set combinations
of Self Reported (S), Medtronic Insulin pump (P), Basis Peak band
(B), and Continuous Glucose Monitor (G) features (Sec. 2.2).

Features val RMSE test RMSE
S 53.549 54.510
B 55.829 55.390
G 22.692 19.597
P 56.85 54.711
S+B 53.184 53.607
S+G 22.099 19.322
S+P 54.087 54.371
B+G 22.764 19.842
P+B 56.779 54.128
P+G 22.388 19.470
S+B+P 52.481 53.238
S+B+G 22.504 19.484
S+P+G 22.125 19.418
B+P+G 22.616 19.577
S+B+P+G 22.45 19.573

last meal; and lagged features, up to 2 hours. 8-fold cross-
validation without shuffling was used on the full training set
to optimize the number of boosting rounds.

4.2 Feature Ablation Experiments
Given the diversity of features sourced from biological mea-
surements, self-reported events, and non-invasive physiolog-
ical signals, we conducted an ablation study to determine
the relative performance of models on subsets of feature
groups. This experiment was performed with our best XG-
Boost model. From our expanded feature set, we created the
following feature subsets:

• Self-reported features (S): meals, finger-stick glucose,
illness, stress, exercise, and work, together with missing-
value indicator columns, and one-hot encodings for meal
type (41 features)

• Basis Peak band features (B): heart rate, GSR, skin and
air temperature, steps, and sleep (6 features)

• Pump features (P): basal and temporary basal infusion
rates, bolus doses, together with missing-value indicator
and one-hot encoding columns (10 features)

• CGM glucose feature (G): blood glucose level recorded
via CGM sensor (1 feature)

• Time features: one-hot encodings for hour-of-day and
day-of-week (31 features)

The XGBoost model was trained on a feature vector contain-
ing the current feature value as well as the previous 12 values,
lagged at 5 minutes apart. In total, we investigated 15 combi-
nations of the S, P, B, and G features (Table 2). Time features
were included in all combinations.

Table 2 shows that:

• Prediction suffers greatly when glucose (G) is ablated.

• The best model does not include insulin (P) or band (B)
features.



Table 3: Average feature ranking for XGBoost for top 25 features
(with average rank of feature in brackets). lagN indicates a feature
value (N × 5) minutes in the past.

Feature importance Feature importance
without band features with band features

( 1.0) glucose level ( 1.0) glucose level
( 2.1) glucose level lag12 ( 2.1) glucose level lag12
( 6.0) glucose level lag6 ( 7.3) glucose level lag5
( 6.7) glucose level lag5 ( 8.5) glucose level lag6
( 7.7) glucose level lag4 (10.4) glucose level lag11
( 8.8) glucose level lag3 (13.0) glucose level lag10

(10.6) glucose level lag1 (13.5) glucose level lag4
(10.8) glucose level lag11 (14.8) glucose level lag7
(12.2) glucose level lag7 (15.0) glucose level lag8
(13.2) glucose level lag9 (15.8) glucose level lag1
(13.8) glucose level lag10 (17.5) glucose level lag2
(14.8) glucose level lag2 (17.8) glucose level lag9
(14.8) glucose level lag8 (18.1) glucose level lag3
(37.2) meal carbs lag3 (27.1) basis air temp
(40.2) finger stick lag5 (27.4) basis skin temp lag12
(43.7) finger stick lag7 (33.2) basis gsr lag12
(44.3) meal carbs lag2 (34.9) basis gsr
(49.1) finger stick lag8 (37.1) basis heart rate
(50.8) meal carbs (38.9) basis heart rate lag12
(57.2) basal (48.2) basis heart rate lag4
(59.4) meal carbs lag4 (51.3) basis heart rate lag2
(60.6) finger stick lag6 (59.3) basis heart rate lag3
(64.2) meal carbs lag1 (62.1) basis heart rate lag1
(66.4) finger stick lag3 (62.8) meal carbs lag2
(67.8) finger stick lag4 (63.8) meal carbs lag4

• The model trained with only band features (B) and glu-
cose (G) performed the worst among the glucose cohort.
• In general, adding band features seems to reduce perfor-

mance.
We used XGBoost’s feature importance rank to observe

which features contributed to the most decision splits within
the trees of the model. More splits within the trees infer a
higher importance in decision making. Table 3 shows the
mean rank of a feature as determined by XGBoost’s impor-
tance score. We observe that, on average, XGBoost’s deci-
sions are most influenced by: (i) current glucose, (ii) glucose
one hour ago, and (iii–xii) other glucose values within the
past hour. This remains true irrespective of inclusion of Basis
Peak band features.

4.3 Data Imputation Revisited
In each of the patient’s data, missing values were observed in
CGM measurements. Initially, these data gaps were filled via
linear interpolation for both the training and test sets. How-
ever, such an imputation across gaps is only valid in a train-
ing and batch prediction setting. In online prediction, new
feature vectors stream into the model in real time. Thus, to
reflect realistic online prediction, missing values should only
be imputed using past data.

To this point, any time intervals with missing glucose val-
ues should be excluded from the test-RMSE metric. As
such, we corrected our implementation of test-RMSE to in-
clude only data periods with available glucose. In Figure
2 (left), unfiltered RMSE is computed with the interpolated

points (black over gray) included in the test set, whereas cor-
rected RMSE is computed with the interpolated points ex-
cluded from the test set (no predictions when glucose values
are missing). Under the linear interpolation scheme, mean
RMSE improves from an unfiltered value of 18.540 to 16.214
mg/dL (Table 4). Note that other features may have values
even when glucose is absent (Sec. 2.2).

We then ran our best model on three test-set imputation
schemes, the latter two of which are compatible with online
prediction: linear interpolation (linear), persisting the last
valid value (ffill), and leaving gaps unchanged (none).

Figure 2 and Table 4 compare the RMSEs of these im-
putation schemes. The unfiltered RMSE column in Table 4
gives model performance on interpolated test glucose val-
ues, without using the corrected RMSE function. The cor-
rected RMSE columns list performance for three imputation
schemes, using the corrected RMSE function. Interpolation
with corrected RMSE performs best, but only forward-filled
and non-imputed schemes can be implemented in an online
context. Figure 2 (left) illustrates incorrect interpolation of
glucose values. Figure 2 (center) and (right) show the ffill
and none schemes, both of which are compatible with online
prediction.

As an interesting exercise, missing test-set glucose values
were left unchanged, and XGBoost was allowed to make pre-
dictions on the remaining features in the absence of glucose
(Figure 2, right panel, orange over gray). Predictions were
more variable in the absence of glucose signal, but seem to
recover within two hours of the end of the data gap.

5 Context, Related Work, and Discussion
In this work, our aim was to deepen our understanding of the
predictive modeling of bio-signals, for which the Blood Glu-
cose Prediction Challenge was ideally suited. We acknowl-
edge that a rich body of research exists, which explores the
prediction of glycemia in depth.

Researchers have previously implemented Support Vector
Regression [Plis et al., 2014; Bunescu et al., 2013], neu-
ral networks [Pappada et al., 2008], recurrent neural net-
works [Allam et al., 2011; Mirshekarian et al., 2017], as
well as genetic algorithms [Hidalgo et al., 2017]. Feature
engineering approaches include using expectation maximiza-
tion for missing data imputation [Tresp and Briegel, 1998],
as well as physiologically modeling glucose response sig-
nals as features [Bunescu et al., 2013; Zecchin et al., 2012;
Contreras et al., 2017].

For this work, we applied conventional feature-engineering
methods. In the future, we would like to explore the inclusion
of features based on physiological models of bio-signals for
prediction. As an extension to our ablation and feature im-
portance study, we would also like to explore non-glucose
signals in-depth for glucose level prediction.

6 Conclusion
Our main finding is that XGBoost remains competitive with
previously reported ARIMA models [Bunescu et al., 2013],
which supports glucose-derived features as the strongest pre-
dictors of future glucose levels.



Table 4: Post-submission XGBoost scores on test-set glucose with unfiltered and NaN-masked (corrected) RMSE, for three interpolation
schemes.

Interpolation: number linear number linear ffill no interpolation
of test unfiltered of test corrected corrected corrected

Patient-id points RMSE points RMSE RMSE RMSE
559 2985 16.598 2514 17.107 17.391 17.230
563 2884 18.509 2570 16.018 16.033 16.026
570 2972 15.401 2745 14.315 14.709 14.493
575 2758 21.217 2590 17.556 17.611 17.749
588 2875 18.964 2791 16.500 16.500 16.519
591 2949 20.552 2760 15.162 15.140 15.269

AVG 18.540 16.110 16.231 16.214
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Figure 2: A representative data period in the test set of Patient 559, showing CGM glucose (blue), predicted glucose (orange), interpolated
glucose (black), and spans of missing glucose (grey shaded regions). Three imputation schemes are compared: linear interpolation (left),
forward-filling (center), and no imputation (right).

We observed that in LSTMs, ε-insensitive loss proved a
more effective loss function than MAE, as inspired by the
notion of incorporating an error tolerance corresponding to
finger-stick measurement error. Interestingly, XGBoost mod-
els outperformed LSTMs in our study.

The collaboration of life sciences with the practice of data
science offers the possibility of developing truly individual-
ized proactive medicine. By personalizing such predictive
models, we endeavour to further explore key signals—digital
biomarkers, digital surrogate measurements—which reflect
the strength of this interdisciplinary collaboration, and our
ability to transform the future of healthcare.
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