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Abstract
Blood glucose control is a burden for subjects who
live with Type 1 Diabetes (T1D). Patients with
T1D aim to maintain blood glucose levels into eu-
glycemic ranges, but this is not trivial task and
requires a lifelong commitment on diabetes man-
agement. Emerging technologies (e.g. continuous
glucose monitoring, insulin pump, mobile applica-
tions) have permitted to track several signals re-
lated with diabetes management closely, boosting
the application of various machine learning algo-
rithm focusing to learn the behavior of blood glu-
cose. In this work we present the application of
artificial neural networks to perform two different
tasks: i) creating regression models to predict blood
glucose levels continuously and ii) creating classi-
fication models to predict nocturnal hypoglycemic
events. Both methods are evaluated on a dataset
which contains about eight weeks of data from six
different patients with T1D. Numerical results indi-
cate that ANNs are feasible to perform these tasks
satisfactorily and may be considerable to assist pa-
tients on T1D diabetes management.

1 Introduction
Regulating blood glucose (BG) levels is a lifelong challenge
for those who live with Type 1 Diabetes (T1D). Due to an
autoimmune disease, the pancreas stops to produce insulin
drastically, enforcing subjects to inject it exogenously. In
addition to insulin injection, subjects must have acute self-
management skills to improve BG control, such as counting
the amount of carbohydrates (CHO) in meals and measure
BG levels constantly.

Although emerging diabetes technologies achieved re-
markable success in the last decade, so far there is not any
commercial fully-automated system that completely with-
draw the burden from patients of taking daily decisions re-
garding diabetes management. The prediction of blood glu-
cose levels in advance permits subjects to take preventive ac-
tions before the occurrence of adverse events, reducing the
risk of short- and long-term complications. In addition, the

prediction of specific events (e.g. nocturnal hypoglycemia)
can improve subjects’ safety, once it allow the development
of specialized prediction algorithms, that may work in paral-
lel with the continuous BG level prediction algorithm.

Artificial neural networks (ANNs) are able to acquire and
maintain knowledge based on information, simulating the hu-
man brain [Haykin, 2009; Bishop et al., 1995] and have been
widely applied successfully on several regression and clas-
sification problems. The utilization of ANN to predict BG
levels have been used for the last two decades [Sandham et
al., 1998] and even these days it is used in new studies due to
its great capacity to model the different non-linearities in glu-
cose dynamics. Since continuous glucose monitoring (CGM)
devices have been launched, CGM historical data are used by
data-driven models to predict BG levels, nevertheless, the use
of additional inputs (such as meal consumption and insulin
delivery) is able to improve prediction performance [Zecchin
et al., 2016].

This paper presents two different tools that may be used by
subjects to support daily decisions regarding diabetes man-
agement using ANN and physiological models: i) a tool
to provide prediction of BG levels continuously and ii) a
tool to predict the occurrence of nocturnal hypoglycemic
events. The work has been conducted through the software
MATLAB.

2 Methods
This section presents the dataset and the methodologies ap-
plied for the prediction of BG levels and nocturnal hypo-
glycemic events.

2.1 Database
The dataset used for the developing of the blood glucose pre-
diction algorithms was the OhioT1DM dataset [Marling and
Bunescu, 2018]. It contains data of six individuals with T1D,
under insulin-pump therapy, wearing CGM, physical activity
band and reporting life-event data through a smart-phone app
throughout the 8-week data collection period.

More information regarding the devices used by patient,
data format and patients’ characteristics can be found else-
where [Marling and Bunescu, 2018].



Table 1: Parameters used in the physiological models.

Parameter Value

KDIA 0.0182
Cbio 0.8
tmax 60
ks 0.0115

2.2 Physiological models
Insulin On Board (IOB)
The Insulin on board (IOB) represents the insulin that has al-
ready been inject in the body and is still active. The IOB is
computed based on the insulin accumulated in two compart-
ments C1 and C2 [Wilinska et al., 2005].

Ċ1(t) = u(t)−KDIAC1(t)

Ċ2(t) = KDIA(C1(t)− C2(t))
IOB(t) = C1(t) + C2(t)

(1)

where u is the insulin injected andKDIA is a constant related
with the duration of insulin action (DIA).

Carbohydrates on Board (COB)
Similarly to IOB, carbohydrates on board (COB) represents
the remaining CHO amount of a meal that has not yet ap-
peared in the blood as glucose. It is an extension of the model
which describes the rate of appearance (Ra) of glucose in the
blood due to CHO intake [Hovorka et al., 2004].

Ra(t) = Cin Cbio t e(−t/tmax)

t2max

COB(t) = CinCbio −
∫ t

tmeal
Ra(t)dt

(2)

where Cin is the amount of CHO ingested, Cbio is the
bioavailability, tmax denotes the time of the maximum ap-
pearance rate of glucose in the accessible glucose compart-
ment and tmeal is the time instant which a meal is consumed.

Activity on Board (AOB)
The activity on board (AOB) is computed using the informa-
tion related with the total steps performed throughout the day
[Ozaslan et al., 2017]. The total number of steps performed
over each sampling time is weighted by an exponential decay
curve:

AOB(t) = steps(t)e(−kst) (3)
where steps(t) is the total number of steps performed at time
instant t and ks is a constant related to the duration of the ef-
fects of physical activity on blood glucose control. One AOB
curve is obtained for each time instant t, and the final value of
the AOB represents the superposition of all the curves. The
parameters considered for the physiological models in this
work are presented in Table 1.

2.3 Regression models for continuous prediction of
blood glucose level

The continuous prediction of BG levels aims to predict future
BG values, allowing subjects to anticipate harmful situations
by taking correction actions in advance. ANN are considered
to create individualized models, which are based on glucose,
insulin, carbohydrate and physical activity data.

Table 2: Rules to select in which subset R an instance should be
classified according to CGM(t0).

rj Conditions∗

1 CGM(t0) < 54
2 54 ≤ CGM(t0) < 70
3 70 ≤ CGM(t0) < 120
4 120 ≤ CGM(t0) < 180
5 180 ≤ CGM(t0) < 250
6 CGM(t0) ≥ 250
∗ values are considered in mg/dL.

Table 3: Parameters considered during the ANNs’ training process
for regression models.

Training algorithm Levenberg-Marquardt
Performance Function mean square error
Number of inputs 5
Number of units - hidden layer 8
Activation function - hidden layer Hyperbolic tangent
Number of units - output layer 1
Activation function - output layer Linear

Consider the datasets S described in 2.1 with k sam-
ples. For each subject, S = {(xi, yi)}, i = 1, ..., k, where
xi ∈ X is a sample in the q-dimensional feature space
X = {f1, f2, ..., fq}, and yi ∈ Y = {target} is the de-
sired target output. Furthermore, S has been divided into two
subsets: Strain representing the m instances considered for
training and Stest the remaining n instances considered for
testing, so Strain ∪ Stest = {S} and m + n = k. Stest is
composed by approximately the final 10 days of S, and the
previous days were located in Strain.

Feature subspace is composed by CGM measurements and
also by informations obtained from the physiological models
presented in 2.2. In total, five features were considered (q=5):
CGM(t0), ˙CGM(t0), COB(t0), IOB(t0) and AOB(t0),
where ˙CGM(t0) is computed as CGM(t0)−CGM(t0−5)

5 . Fi-
nally, CGM(t0+PH) was determined as target value and
PH is the prediction horizon. Thereon, all the m instances
were divided again into a subset rj (j = 1, ..., R), based on
the value of CGM(t0) in each instance. Table 2 shows the
rules to select in which subset r an instance should be located.
Instances without CGM(t0), ˙CGM(t0) or CGM(t0+PH)
data were discarded in both Strain and Stest.

Each one of the r subsets were used separately to train
feed-forward ANNs. For convenience, all the ANN have
identical hyper-parameters, presented in Table 3. Firstly,
these parameters were tuned using k-fold cross validation for
PH = 30 minutes, and the same parameters were replicate
for PH = 60 minutes. After the end of the training procedure
of all r subsets, a group of five regression models was gener-
ated for every r subset. Each one of the n instances located
in Stest was evaluated in only one group of the R regression
models produced. The selection of which group of regression
models should be used was based on CGM(t0) and the con-
ditions presented in Table 2. Thus, each group generated five
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Figure 1: Methodology considered to generate regression models for
BG levels prediction.

values of CGM(t0 + PH), that were later post-processed.
The minimum and maximum of those five values were dis-
carded, and the average of the remaining three intermediate
values was computed (trinmed mean), resulting in the final
predicted value. This value was bounded between 40 mg/dL
and 400 mg/dL. Figure 1 summarizes the methodology for
BG level prediction.

The performance was evaluated by the root mean square
error (RMSE) between the predicted value (ŷ) and the target
(y).

RMSE =

√√√√ 1

n

n∑
a=1

(ŷa − ya)
2 (4)

2.4 Classifications models for nocturnal
hypoglycemia prediction

The prediction of nocturnal hypoglycemic events is consid-
ered as a two-class classification problem in this work. The
aim of such classification models are to inform subjects re-
garding the possibility of the occurrence of low BG levels
while subjects are sleeping. With such information, subjects
may be able to act pro-actively to avoid such adverse situa-
tion by consuming snacks or reducing insulin infusion for the
following night period. Subjects must inform that they are
preparing to sleep (sleep announcement - tsleep). Then the
system may be able to predict the possibility of hypoglycemia
in the following hours, based on daily activities performed by
the subject.

Similarly as presented in 2.3, dataset S has been divided
into Ztrain and Ztest, with Ztest containing the last 10 nights
from S and the remaining data has been located in Ztrain.
For such classification problem, S = {(λi, χi)}, i = 1, ..., h,
where λi ∈ Λ is a sample in the Q-dimensional feature space
Λ = {f1, f2, ..., fQ}, and χi is a class identity label associ-
ated with the instance λi.

Table 4: Distributions of instances in Ztrain and Ztest for the six
subjects.

Patient ID Instances in Ztrain Instances in Ztest

(Class 0 / Class 1) (Class 0 / Class 1)

#559 35 (26/9) 7 (4/3)
#563 27 (23/4) 7 (7/0)
#570 34 (32/2) 9 (9/0)
#575 37 (31/6) 10 (8/2)
#588 43 (38/5) 10 (9/1)
#591 37 (33/4) 8 (8/0)

Table 5: Parameters considered during the ANNs’ training process
for classification models.

Training algorithm Scaled conjugate gradient
Performance Function Cross-entropy
Number of inputs 22
Number of units - hidden layer 16
Activation function - hidden layer Hyperbolic tangent
Number of units - output layer 1
Activation function - output layer Logarithmic sigmoid

Subjects self-reported the beginning and the ending of
sleep period. The time-stamp related with the beginning of
sleep period was determined as tsleep. Feature subspace is
composed by the 22 features (Q=22). Inputs related to glu-
cose data were the CGM value at tsleep, hourly average of
CGM readings over the last six hours before tsleep, hourly
area under the curve below 70 mg/dL of CGM readings over
the last six hours before tsleep, and rate of change (ROC) of
CGM readings during the previous 30 minutes before tsleep.
In addition, the values of the COB, AOB, and IOB at tsleep
were also included. The six-hour period following tsleep was
used to assign the class of the respective instance. Class 1 was
assigned (i.e. indicating hypoglycemia) if any of following
situations were identified: 1) three consecutive CGM read-
ings below 70 mg/dL, 2) any self-monitoring blood glucose
(SMBG) performed during this period bellow 70 mg/dL, 3)
subjects consumed CHO to treat hypoglycemia (i.e. a meal
tagged as hypoglycemia rescue). Otherwise, if none of the
previous conditions occurred, the instance was labeled as
Class 0.

Instances were excluded in both training and testing
datasets in case of more than 25% of CGM missing data for
the six previous hours before tsleep or in case than more than
25% of CGM missing data in the following six hours of pre-
diction, after tsleep. Table 4 presents the total amount of in-
stances obtained in each set.

Individualized classification models were built considering
the parameters in Table 5. Models hyper-parameters were
optimized using k-fold cross validation. Due to the intrinsic
characteristics of the dataset, an imbalance between classes
can be notice in both Ztrain and Ztest. To deal with such
problem, the adaptive synthetic sampling algorithm [He and
Garcia, 2009] has been considered during the training pro-
cess. Performance was analyzed according to the metrics pre-
sented in Table 6.



Table 6: Metrics to assess the performance of the classification mod-
els.

Accuracy TP+TN
TP+FN+TN+FP

Sensitivity TP
TP+FN

Specificity TN
TN+FP

TP: true positive; TN: true negative;
FP: false positive; FN: false negative.

Table 7: RMSE results for the regression models for the test dataset.

Patient ID PH=30 PH = 60

#559 18.83 32.52
#563 19.43 31.33
#570 15.88 27.48
#575 22.86 35.28
#588 17.84 30.12
#591 21.12 33.60

AVG 19.33 31.72

3 Results
This section presents the results for both methodologies de-
scribed in 2.3 and 2.4. Results for continuous BG prediction
considering two different PH are presented in Table 7. In ad-
dition, Figure 2 shows the predictions performed during the
first day of Stest for Patients #570 and #575. Results regard-
ing the performance of the classification models are presented
in Table 8.

4 Discussion
The results achieved with the ANN for short-time BG pre-
diction are similar (in terms of RMSE) with a study which
considered a recursive ANN [Mirshekarian et al., 2017]. An-
other study [Zecchin et al., 2012] also considered ANN and
meal absorption model to predict BG levels, achieving bet-
ter results (RMSE ≈ 14 mg/dL for PH = 30) in data from
real patients. However, further comparisons regarding results
should be performed when different methods are evaluated
with the same dataset.

As demonstrated by [Zecchin et al., 2016], the inclusion of
physiological signals contributes to improve continuous BG
predictions. In this work, in addition to COB and IOB, we
also included the effects of physical activities (represented by
the signal AOB) as input of the models. As well known, phys-
ical activity plays an important role in BG regulation in T1D
[Riddell et al., 2017], but there are few works that address the
use of physical activity signals in BG levels prediction.

The continuous prediction is intended to support patients
decisions in case of hyper- or hypoglycemia prediction. How-
ever, while subjects are sleeping, it is not possible to follow
the continuous predictions. Therefore, it is necessary for the
subject to be awakened by some alarm whether necessary, im-
pairing in subjects’ quality of life. The prediction of nocturnal
hypoglycemic events allows subjects to anticipate dangerous
situations without the need to be awakened.

Table 8: Performance metrics for the classification models for the
test dataset. Results are shown in percentage.

Patient ID Sensitivity Specificity Accuracy

#559 66.67 75 71.43
#563 – 100 100
#570 – 88.89 88.89
#575 50 87.50 80
#588 100 100 100
#591 – 100 100

The occurrence of nocturnal hypoglycemic events are asso-
ciated with activities performed in the previous day [Metcalf
et al., 2014; Bachmann et al., 2016]. In this work, we con-
sidered different inputs aiming to learn the effects of these
inputs in the behavior of BG during overnight. Results in-
dicate the feasibility to obtain classification models able to
predict hypoglycemia during overnight. Based on this infor-
mation, patients can take preventive actions to increase their
safety. In case of prediction of hypoglycemia, individuals
may consume a snack prior to sleep. Such tool is more advan-
tageous for patients whose are not under sensor-augmented
pump therapy or under closed-loop therapy. Patients who are
under multiple-daily injections (MDI) therapy or under con-
ventional pump therapy do not have any tool to assist them to
avoid hypoglycemia during overnight. Therefore, a tool sim-
ilar to the one presented in this paper can be very helpful to
increase users’ safety.

The results obtained by the classification models indicate
the feasibility of such approach. Although some patients do
not have experienced hypoglycemia in the days used to test
the models, outcomes obtained by other patients are satisfac-
tory. An important remark regarding this dataset is that pa-
tients’ insulin pump had threshold suspend feature. Such fea-
ture allows the pump to stop insulin delivery when BG drop
a pre-set threshold. Clinical results showed that this feature
can reduce the time spent in hypoglycemia, especially dur-
ing the night [Ly et al., 2013]. Therefore, it is expected that
the methodology presented in this study will have a greater
impact on patients who actually have hypoglycemia during
night, like MDI users.

5 Conclusions
Two different prediction tools for T1D management were
presented in this paper considering ANN. The first one has
been developed to provide short-time prediction of BG lev-
els. The second tool aimed to predict nocturnal hypoglycemic
events based on classification models. Results of both tools
showed that ANNs appear to be suitable to perform satisfac-
torily these tasks and can be used in decision support system
to assist patients with T1D to improve BG control and safety.
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Figure 2: Comparison between CGM readings and predictions performed during the first 24-h of Stest considering PH = 30 minutes. (a)
patient #570 and (b) patient #575.
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