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Abstract

Blood glucose levels prediction provides the possi-
bility to issue early warnings related to ineffective
or poor treatments. Advance notifications of ad-
verse glycemic events can provide sufficient time
windows to issue appropriate responses and adjust
the therapy. Consequently, patients could avoid hy-
perglycemia and hypoglycemia conditions which
would improve overall health, safety, and the qual-
ity of life of insulin dependent patients. This re-
port concerns to the application of a search-based
algorithm to generate models able to capture the
dynamics of the blood glucose at a personalized pa-
tient level. The grammar-based feature generation
allows to build complex empirical models using the
data gathered by a sensor augmented therapy, a fit-
ness band and a basic knowledge of T1D dynamics.
Final model solutions provide blood glucose levels
estimations using prediction horizons of 30, 60 and
90 minutes.

1 Introduction

The human body requires that blood glucose (BG) levels are
maintained in a narrow range, approximately in the range of
70 to 110 mg/dl. BG levels are affected by a large number of
exogenous factors and, therefore, the pancreas is required to
regulate these levels by releasing the insulin and glucagon
hormones that are secreted by S-cells and a-cells, respec-
tively. Type 1 diabetes (T1D) is the consequence of an au-
toimmune attack on [S-cells that significantly impairs insulin
production. Thus, individuals with T1D fully rely on external
insulin to manage their BG.

The increasing interest in the improvement of the manage-
ment of this disease and its comorbidities is accompanied by
several research efforts focused on therapeutic solutions for
T1D. One of the most challenging efforts is placed in the ar-
tificial pancreas (AP) field. AP refers to an automated system
that combine a glucose sensor, a closed-loop control algo-
rithm, and an insulin infusion device which are all engaged
together to manage BG and reduce T1D adverse events. AP
has promoted the emergence of increasing research in predic-
tion engines [Cobelli er al., 2011] and its role. Additionally,
it has boosted the commercialization and recent technological

advances of continuous glucose monitoring sensors (CGM).
Thus, the popularization of CGM sensors has led to more ro-
bust and portable devices which has stimulated the availabil-
ity of semi-continuous BG measurements which in turn are
frequently used as data source for predictive modeling in di-
abetes.

It is well-known in clinical practice that is complex to
achieve a tight glycemic control specially since certain pa-
tients exhibit large variations in their BG signals. There are
plenty of factors that influence the blood glucose dynamics
and thereby influence glycemic control response. Some of
the factors strongly affecting the glucose metabolism are the
exercise or physical activity, weather conditions, dietary dis-
turbances, physical conditions, psychological status of pa-
tients ([Brusko et al., 2005; Fuchsjéger-Mayrl et al., 2002;
Mianowska er al., 2011]) together endogenous processes,
such as circadian cycles [Hinshaw et al., 2013], menstrual
periods and pregnancies in women ([Evers er al., 2004;
Cramer, 1942]) and other diseases. These varied factors are
often complex to identify, and therefore the prediction of BG
values using personalized models is specially important in
these scenarios [I. et al., 2016]. Customized models can cap-
ture lifestyle factors which influence the physiologic response
of a patient to its carbohydrate intake and insulin dosage.
Thus, the wide range of variability in the glucose dynamics
of T1D patients makes the generation of predictive models a
challenging and crucial task.

On the one hand, the treatment of diabetes is conditioned
by a high inter-patient variability which leads to a lack of gen-
eral models to respond to the particularities of patients. On
the other hand, intra-patient variability makes it complex to
generalize models for the glucose response of a singular pa-
tient. The variability points at personalized and dynamic glu-
cose models as one of the best options to implements features
to deal with the treatments variability. At present, intelligent
algorithms are obtaining a substantial success applying data
driven methods to support advanced analytics and providing
individualized medical aid to patients suffering with diabetes.
The incremental repositories of data together with the im-
proved performance of intelligent methodologies to handle
and process this information have led to the development of
tools and applications that enhance the effective management
of diabetes [Contreras and Vehi, 2018]. This report propose
the implementation of customizable models for patients using
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Figure 1: Schematic representation of the method implemented to generate prediction models for blood glucose values

an evolutionary computation approach. The article focuses on
the critical problem of anticipating BG levels in a short-term
(30 to 90 min). The proposal involves a prediction tool based
on the grammatical evolution method which introduces multi-
ple features with the aim of dealing with unforeseen changes.

2 Related Work

BG prediction models can be classified into three different
subsets: physiological models, data-driven models, and hy-
brid models. First, physiological models are usually gener-
ated by the experts with wide knowledge and comprehen-
sion of insulin, glucose metabolism and other parameters.
Second, data-driven models completely relies on BG mea-
surements and other data inputs. These type of models are
typically based on artificial intelligence techniques such as
genetic algorithms, robust filters, fuzzy logic, case reason-
ing, auto-regressive models, reinforcement learning, random
forests, support vector regression, and artificial neural net-
works models. Finally, an alternative architecture involves a
combination of the two previous approaches. These models
are commonly used in a pre-processing stage, and the prepro-
cessed inputs enter a data driven model. These type of mod-
els are commonly known as hybrid models and some recent
approaches were examined in previous studies [Balakrishnan
et al., 2013; Estrada et al., 2010; Zecchin et al., 2014]. We
redirect interested readers to a more comprehensive review of
prediction BG models in [Oviedo er al., 2016].

Previous studies using grammatical evolution (GE) to es-
timate BG values include the studies [Hidalgo et al., 2014;
2017] in which a novel customization of BG models for five
virtual patient using GE was first proposed. The incorpora-
tion of medical knowledge into the grammar led to the im-
plementation of an expression for glucose that considered the
previous BG values, carbohydrate intake, and insulin admin-
istration. This involved exploring four different grammars
and five fitness functions and evaluated all the grammars and
functions with respect to all the patients in terms of average
error as a performance metric. The results indicated that it

is feasible to evolve useful models that consider BG read-
ings, meals, and insulin dose information to model BG val-
ues. Later, authors extended the findings by including three
additional virtual patients and using the root mean squared
error (RMSE) as the fitness function. The authors tested the
clinical significance of the results with an error grid analysis
(EGA) by means of Clarke error grid (CEG) and Parkes er-
ror grid (PEG). Other previous studies tested the feasibility
of GE prediction systems based on time series of BG levels
[Contreras and Vehi, 2016; Contreras et al., 2017]. These
studies extended the fore-mentioned research to investigate
the utility of a novel and complementary approach by using
symbolic regression through GE to evolve personalized BG
predictive models that incorporate physiological models as
part of the inputs. These models included the glucose absorp-
tion rate and the insulin on board model.

3 Materials and methods

Figure 1 shows a schematic representation of the overall
methodology proposed in this study. Initially, we collect
the experimental datasets (A). Here we use the Ohio dataset
[Marling and Bunescu, 2018] which consists on information
from a CSII-CGM therapy and the data from a fitness tracker
band. Next, data was subjected to a preprocessed stage (B)
where we perform an exploratory analysis and a data clean-
ing tasks. Next, we perform a feature engineering phase (C),
which encompasses tasks to provide additional value to the
dataset. The most representative transformations involve the
implementation of the following physiological models (D):

e The insulin on board (IOB): the insulin that remains ac-
tive within the body [Wilinska er al., 2005]:
9O — 4y(t) — KaiaCi(t)
dcjt(t) = Kgia(C1(t) — Ca(t)) )
IOB(t) = C1(t) + Ca(t)
where the compartments C; and C5 have initial values

set as 0, u(t) is the insulin dose, and K 4;, is a constant
related to the duration of insulin action (hs) set as 0.013.




e The glucose absorption rate RA(t) (mg/min): carbohy-
drate intake of the patient. [Hovorka et al., 2004]:
Cin Cbio t e(_t/tnla:t,G)
t2

max,G

RA(t) = @)

where C};, is the amount of carbohydrates digested, C;,
is the carbohydrate bioavailability, and ¢4, (min) de-
notes the time of the maximum appearance rate of glu-
cose in the glucose compartment.

e The activity on board (AOB): model based on the total
steps of an individual [Ozaslan et al., 2017].

AOB(t) = steps(t)e(~Fst) 3)

where steps(t) is the total number of steps performed at
time instant ¢ and k, is a constant related to the duration
of the effects of physical activity set as 0.0115.

After pre-processing stages the dataset will provide crucial
information to the system training and subsequent validation
of the method (D). The system requires the definition of a
problem specific function (E), which evaluates the solutions,
and a customized grammar (F), which defines the structure
of the generated solutions. Solutions will be iteratively com-
bined to create new and better solutions aiming to incremen-
tally improve the quality of solutions and reach a final so-
lution that minimizes the fitness function satisfactorily (G).
Once a final solution is generated (H), the prediction model is
evaluated using data from the remaining data base informa-
tion. Next, we describe the complete methodology setup in
detail.

3.1 Grammatical Evolution Approach

The grammatical evolution (GE) method is a type of search-
based algorithm designed to evolve computer programs or ex-
pressions defined by a context free grammar, usually defined
in Backus normal form (BNF notation). Using the context
free grammar, GE performs a genotype-phenotype mapping
process which decodes bit strings to generate programs in
an arbitrary language. GE methodology involves two main
design phases. On the one hand, the generation of the con-
text free grammar which is in charge of defining the effective
search space of the problem. On the other hand, the search
process of the solution, that is, the expression derived from
the grammar which states what should be done. Furthermore,
the separate approach for the search and solution spaces can
lead to the generation of complex phenotypes, as all genetic
operators are applied to the genotype. The GE method thus
becomes an attractive method thanks to its flexibility, closely
associated with the high degree of modularity provided by a
well-structured grammar.

The context-free evolutionary grammars is a set of deriva-
tion rules expressed in the form:

[non-terminal] — {production, | ... | production  }

Each rule is composed by two key elements, a non-terminal
at the left-hand-side {symbol}, and a definition of the non-
terminal at the right-hand-side {productions}. Each defini-
tion involves one or more alternatives that are split by the

Table 1: General parameters of the GE implementation and its oper-
ators

Parameters Value Parameters Value
Population size 200 Tournament size 2
Generations 500 Max. Wraps 0
Crossover prob. 0.90  Codon length 256

Mutation prob.  0.03 ~ Chromosome length 100

character “|”. Each of the alternatives, known as productions,
are composed of a sequence of terminals and non-terminals.
These definitions indicate that a non-terminal can be substi-
tuted for any of the productions listed. The quality of the
generated solutions depends directly on this structure. The
context free grammar proposed here combines insulin, carbo-
hydrates, BG values and physical activity. Furthermore, we
have also considered the circadian rhythm of T1D patients
and the reliance of generated models from the time. A gram-
mar is represented by a 4-Tuple N, T, P, S, N being the non-
terminal set, T is the terminal set, P the Production rules for
the assignment of elements on N and T. And finally, a start
symbol S which should appear in N. Next we present an ex-
cerpt of the defined grammar:

[Body] — ([Term][Op][Body]) | [Term][Op][Body] |
([Term]) | [Term]

[Term] — getG([PrevIni], [Cte], [Op], [Preop], [Exp]) |
getRa([PrevIni], [Cte], [Op], [Preop], [Exp]) |
getIO B([PrevIni], [Cte][Op], [Preop], [Exp]) |
get AO B([PrevIni], [Cte][Op], [Preop], [Exp]) |
getCircadian([OpB], [Cte], [Cte], [Cte]) |

[Preop] — sqrt | sin | log | pow | exp | [Preop][Preop] | A

[Op] — [OpA] | [OpB]

[Previni] - 0]1]2[3[4]5]6]|7]|8]9

[OpA] — + | —

[OpB] — / |

Where )\ defines the empty set which does not contain any
terminals. This grammar is designed to constraint the search
space of solutions by using functions that operate the histor-
ical values of the input signals (insulin, carbohydrates, and
BG). Additionally, they can be biased by a sinusoidal function
to account for the circadian variations of the patients’ physiol-
ogy. Summarizing, the generated solutions are combinations
of five expressions, namely ([G], [Ra], [IOB], [AOB], and
[Circadian]).

As other evolutionary techniques, the goodness of the fit
achieved by the generated prediction models not only relies
in a grammar definition, but also requires the definition of an
objective. Through this objective, GE measures the value of
each solution of the population and guides the methodology
towards a final solution. The definition of this objective is
managed by the so-called fitness function which is the other
key factor of the GE methodologies. In this paper we use the
root mean square error (RMSE), see Equation (4), with the
aim to train the predictor according to the aim of the present
challenge. However, there are multiple possibilities to define
a fitness function in this approach, including fitness functions
considering the clinical assessment of the predictions. We
have used two of these metrics to assess the results, the glu-
cose specific RMSE (gRMSE) proposed by [Del Favero et al.,



Table 2: Mean values of the RMSE, gRMSE and Clarke error grid zones for the 6 patients (PH=30, 60 and 90 minutes)

Patientpy; gRMSE RMSE CEG, CEGp CEGe CEGp CEGg
P(559)50  25.11 2098 886 10.5 0.0 0.8 0.0
P(563)3,  22.60 1936  91.6 7.7 0.0 0.6 0.0
P(570)35 2392 1955 932 6.4 0.0 0.3 0.0
P(575)3  30.10 2449 824 14.3 0.0 32 0.0
P(588)3  23.18 2045 895 10.4 0.0 0.1 0.0
P(591)3, 2408 2228 769 19.6 0.0 34 0.0
Average;, 24.83  21.19  87.1 11.5 0.0 1.4 0.0
P(559)¢0  35.19 3247 746 23.0 0.3 2.1 0.0
P(563)go 2843 2752 755 233 0.1 1.1 0.0
P(570)¢o  29.17 2645 832 15.6 0.1 1.1 0.0
P(575)60 3277 3529  63.0 325 0.5 3.8 0.0
P(588)so 3478 3153 746 243 0.1 0.8 0.1
P(591)¢o 3397 3477  68.0 29.3 0.2 2.3 0.1
Averageg, 3239 3134 73.1 247 0.2 1.9 0.0
P(559)9 4590  39.81 647 313 0.6 3.4 0.0
P(563)9 3749 3422 718 26.6 0.0 1.6 0.0
P(570)g0 3481 3127 813 17.9 0.0 0.8 0.0
P(575)9 4132 3978  59.4 337 0.3 6.6 0.0
P(588)9  40.06  36.85 718 26.3 1.1 0.8 0.0
P(591)gy 4176 3563 585 35.7 0.3 5.4 0.0
Average,, 4023 3626 679 28.6 0.4 3.1 0.0

2012] and the Clarke error grid [Clarke et al., 1987].

RMSE = % f:(BG(t) — BG(t))? )

t=1

The operators implemented in this GE approach are the
modulo operator as a mapping operator, the classic crossover
by a single point, the integer flip mutation, the selection by
tournament and the elitism. Candidate solutions to a the prob-
lem were randomly initialized. The related parameters are
defined in Table 1.

4 Results

Table 2 summarizes the results of all patients and approaches
involved in this study. The results include values for gRMSE,
RMSE and percentages by zone from the Clarke error grid. In
addition, Figure ?? shows the predictions performed during
the first day of the testing data for patients 563 and 575.

5 Discussion And Conclusions

This paper has described a methodology based on grammati-
cal evolution (GE) to generate individualized and customized
models for BG dynamics. The approach method relies on the
generation of a set of rules that determine the search space of
solutions for a search-based algorithm. We have implemented
a hybrid model using GE and insulin on board, activity on
board and glucose rate of absorption models to predict BG
values 30, 60 and, 90 minutes ahead. The experimental re-
sults with PH=30 minutes of are promising since they reflects

a fitted representation of hyper and hypoglycemic events and
an satisfactory RMSE values. Regarding the Clarke error
grid, the 30, 60 and 90 minutes GE approaches achieved that
more than 98%, 97% and 96% respectively of the prediction
results fell inside regions A and B for the test data, which im-
plies that the prediction was safe from a therapeutic point of
view. Predictive models for patients 559, 575 and 591 obtain
the worst results in all the approaches, while models for pa-
tients 563, 570 and 588 achieve the best results in that order.
Future work involves further improving the performance and
safety of predictions by generating sets of models based on
the determination of individual specific dynamics, lifestyle,
and other factors.

Advantages of GE over other techniques such as linear
regression, neural networks or support vector machines are
the flexibility, the modularity and the extensive exploratory
power of the method which provides ample room for im-
provement. The integration of tools with the potential to pro-
vide timely warning of poor or ineffective insulin treatment,
which could lead to adverse glycaemic events, is of major
relevance for open and closed loop applications. Continuous
short-term predictions of BG levels are plausible, but chal-
lenging due to variability, delays in insulin and food absorp-
tion, and delayed BG measurements. Methods that appropri-
ately address such delays and variabilities are likely to pro-
vide accurate forecasts which would promote numerous po-
tential applications of benefit to T1D patients. These systems
would involve features such as, warning alerts of immediately
impending problems, automatic recommendations to prevent
BG excursions or fail detection in pumps or sensors.
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