
Benchmark Machine Learning Approaches with Classical Time Series Approaches
on the Blood Glucose Level Prediction Challenge

Jinyu Xie1, Qian Wang2,
1 Mathworks, Inc.

2 The Pennsylvania State University
xjygr08@gmail.com, quw6@engr.psu.edu

Abstract

There is a growing trend of applying machine learn-
ing techniques in time series prediction tasks. In
the meanwhile, the classic autoregression models
has been widely used in time series prediction for
decades. In this paper, experiments are conducted
to compare the performances of multiple popular
machine learning algorithms including two major
types of deep learning approaches, with the clas-
sic autoregression with exogenous inputs (ARX)
model on this particular Blood Glucose Level Pre-
diction (BGLP) Challenge. We tried two types
of methods to perform multi-step prediction: re-
cursive method and direct method. The recur-
sive method needs future input feature informa-
tion. The results show there is no significant dif-
ference between the machine learning models and
the classic ARX model. In fact, the ARX model
achieved the lowest average Root Mean Square Er-
ror (RMSE) across subjects in the test data when
recursive method was used for multi-step predic-
tion.

1 Introduction

The Blood Glucose Level Prediction Challenge with
OhioT1DM Dataset [Marling and Bunescu, 2018] is aiming
at developing powerful predictive models to predict the blood
glucose level in 30 minutes. The dataset includes data col-
lected from 6 anonymous patients with ID 559, 563, 570, 575,
588 and 591. For each patient, the following data were col-
lected: a blood glucose level from continuous glucose mon-
itor (CGM) every 5 minutes; periodic finger sticks blood
glucose levels from; insulin doses, both bolus and basal;
self-reported meal times with carbohydrate estimates; self-
reported times of sleep, work, and exercise; and 5-minute ag-
gregations of heart rate, galvanic skin response (GSR), skin
temperature, air temperature, and step count.

This paper not only describes the detailed procedures of
how the challenge results are obtained, but also conducts ex-
periments to compare the performances of a wide spectrum
of machine learning algorithms. In the light of No Free

Lunch Theorem [Wolpert, 1996] 1, it is worth trying out var-
ious learning algorithms on a given problem. In the mean-
while, plenty of literature have reported the blood glucose
level prediction results separately with different datasets us-
ing either classical time series approaches [Gani et al., 2009;
Eren-Oruklu et al., 2009; Sparacino et al., 2007; Turksoy
et al., 2013; Wang et al., 2014; Xie and Wang, 2017] and
machine learning approaches [Zecchin et al., 2012; Plis et
al., 2014; Mirshekarian et al., 2017; Mhaskar et al., 2017;
Fox et al., 2018]. However, it is hard to compare the perfor-
mance of different approaches since different datasets were
used by different papers. Even with the same dataset, differ-
ent features or regressors might be used to train the model,
which profounds the comparison of different algorithms. We
hope the comparison results listed in this paper is able to pro-
vide some empirical insights of algorithm selection on this
particular blood glucose level prediction problem. The al-
gorithms that are implemented for comparison include the
classic autoregression with exogenous inputs (ARX) model,
Huber Regression, Ridge Regression, Elastic Net Regres-
sion, Lasso Regression, Support Vector Regression with Lin-
ear Kernel, Support Vector with Radial Basis Kernel, Ran-
dom Forest, Gradient Boosting Trees. In addition, the results
of two deep learning models, a vanilla Long-Short-Term-
Memory (LSTM) Network and a Temporal Convolution Net-
work (TCN) [Bai et al., 2018], are also reported. It is worth
pointing out the LSTM Network model has its special mech-
anism to handle the memory of the sequence, which diverges
from the typical autoregression manner used by the other ap-
proaches. Keep in mind that the results of LSTM Network
might not be a fair comparison with the other models.

2 Model Structures
Here we introduce the general autoregression model structure
which is suitable for most of the machine learning algorithms
(except Recurrent Neural Network which maintains hidden
states to keep memories) on time series prediction problems.
In the end of the section, we introduce two methods to make
multi-step predictions. To make the results of this paper com-
parable with other results, we will report the results using
both multi-step prediction methods.

1There is no such a learning algorithm that outperforms any other
learning algorithms in every problem set.



2.1 General Autoregression Model
The general autoregression model relies on the histories of
both the target values and input feature values to make k-
step-ahead predictions. The model structure is represented as
follows.

y(t+ k) =f(y(t), ..., y(t− p+ 1),

X(t), ...,X(t− q + 1)) + e(t)
(1)

where y(t) is the target time series to predict, X(t) is a multi-
variate time series containing the input features used for pre-
diction. p and q are the regression orders for the target se-
quence and the input sequence. The noise term e(t) is as-
sumed to be identically independently distributed. Now the
time series prediction problem is formulated as a general re-
gression problem. Function f(·) is the actual model that
varies among different machine learning algorithms. All the
non-deep-learning models implemented in this paper fall into
this category. By fixing the regression orders p, q and varying
the model type of f(·), fair comparison of different machine
learning algorithms can be made. Note that for one-step-
ahead prediction problem, when the ordinary least squares
(OLS) algorithm is used to fit f(·), the predictive model be-
comes an ARX model with input order q and output order
p.

2.2 Deep Learning Models
Recurrent Neural Network (RNN) and Convolution Neural
Network (CNN) are the two major types of deep neural net-
works that achieved notable improvements recently in mul-
tiple machine learning tasks. We selected a vanilla Long-
Short-Term-Memory (LSTM) RNN structure [Hochreiter and
Schmidhuber, 1997] and a Temporal Convolution Network
(TCN) [Bai et al., 2018] as representatives to benchmark their
performances in this Blood Glucose Level Prediction prob-
lem.

Vanilla Long-Short-Term-Memory Network
The vanilla LSTM network implemented in the paper is sim-
ply cascading multiple layers of LSTM cells with a fully-
connected linear layer in the end to produce the predicted
blood glucose value k step ahead. Unlike the general autore-
gression model, the prediction of the general RNN depends
on both the current measurements and the recurrent hidden
state:

y(t+ k) = f(h(t), y(t),X(t))

h(t+ 1) = g(h(t), y(t),X(t))
(2)

RNN relies on the hidden state to keep its memory of the se-
quence. This fundamental structural difference between the
general autoregression model and RNN model makes it diffi-
cult to make fair comparisons of their performances.

Temporal Convolution Network
The Temporal Convolution Network (TCN) we implemented
is identical to the network introduced in [Bai et al., 2018].
TCN adopted the key structures from state of the art networks
WaveNet [Van Den Oord et al., 2016] and ResNet [He et al.,
2016]. It utilizes the dilated causal convolution of WaveNet
to obtain long term memories of the input sequence, and uses

the residual connection inspired by ResNet to make training
deep network easier. Similar to the vanilla LSTM Network,
a fully-connected linear layer is appended in the end to make
the final prediction.

Note that TCN is stateless when making predictions. The
target prediction at time t+k is still a function of its receptive
field, i.e.

y(t+ k) =fTCN (y(t), ..., y(t− r + 1),

X(t), ...,X(t− r + 1)) + e(t)
(3)

where r is the receptive field length of the TCN model. For
a n layer TCN with convolution kernel size k and dilation
factor d, the receptive field r is equal to (k − 1)dn [Bai et
al., 2018]. Hence, TCN is still under the framework of the
general autoregression model, which makes fair comparison
possible with other machine learning algorithms.

2.3 Multi-step Prediction
There are two major strategies to obtain multi-step prediction:
recursive method and direct method. To apply the recursive
method, first a model is trained to predict the target value one
step ahead. Then the predicted one-step ahead value is reused
to produce the make the prediction of the next step. By iterat-
ing this procedure, one is able to obtain multi-step prediction.
It should be noted that predicted input feature values X̂(t+k)
is also needed to make recursive predictions. To simplify the
prediction procedure, the ground truth values of input features
values X(t+ k) was used instead of the predicted values in
the paper, so the prediction error only reflects the uncertain-
ties that the model fails to capture (if predicted values X̂ are
used, the final prediction error is the uncertainty of X plus the
model uncertainty).

Direct method treats the k-step-ahead value y(t+k) as tar-
get values directly and only uses the input feature values till
current time t. There is no future information leakage using
this method. The results using direct method is not compara-
ble with the results using recursive method in this paper.

3 Data Cleaning
The data in the OhioT1DM Dataset is highly unsynchronized,
since the data are collected from multiple devices, and some
of the data is logged by patient manually. In addition, miss-
ing data exists in the data collected from the CGM sensors
and the Basis Peak fitness band. Therefore, the data clean-
ing procedures can be split into two stages: resample stage
to align all the data onto the same time grid, and imputation
stage to fill the missing data.

At the resample stage, a time grid with 5 minute sample
period was derived based on the start and end timestamps of
the CGM blood glucose signal. Then all the signal were re-
sampled to the time grid in a “forward filling” manner, which
means if the value is missing at some time point on the des-
ignated time grid, then the closest value before the time point
will be used. In addition to the “foward filling” rule, the same
value can only be used once at most in the resampling pro-
cess. As long as the closest previous value has been used
once for resampling, the following missing values will just
be tagged as missing. By resampling the data in this way, we



are able to reindex the signals onto the same timestamps and
preserve the locations of the missing data at the same time.
To perform this cleaning process, reindex function in the
pandas package of python was used with method set to
ffill, and limit set to 1. To be noted that, this resampling
strategy was only applied to CGM sensor data and data col-
lected from the Basis Peak fitness band. For the other event
based data like basal bolus insulin, meal and exericse, the re-
sample strategy is based on the context provided by the data
description [Marling and Bunescu, 2018]. For example, the
<basal> and <temp basal> data only contains basal rate
change time and the changed value. We combined the infor-
mation provided by both to obtain the continously sampled
insulin basal rate. Also notice that insulin bolus is in unit of
dose in the original data. It was converted to rate (dose/min)
by dividing “normal” or “square normal” type bolus by 5 min-
utes (sample period) and dividing “square dual” type bolus by
its duration during the resampling process. Figure 1 shows
the resampled data of subject 559.

Figure 1: Resampled OhioT1DM training data, subject 559

At the imputation stage, each signal with missing data
is imputed by a Kalman Smoothing technique described in
[Moritz and Bartz-Beielstein, 2017]. The kernel model used
by the Kalman Smoothing technique is a structural time se-
ries model introduced in [Commandeur et al., 2011]. It is
important to keep in mind that this Kalman Smoothing im-
putation technique requires the future information to perform
the imputation. It cannot be used to impute data in real time.
In practice, na.kalman function in the ImputeTS pack-
age of R was used with method set to “StructTS”. Figure 2
shows the CGM blood glucose level before and after imputa-
tion. Same cleaning procedures were performed in the final
testing dataset as well.

4 Feature Selection
Feature engineering is not a focus of this paper. Hence little
effort was spent to search for useful features. The only feature

Figure 2: Blood glucose level before and after imputation

engineering we made was adding the insulin basal rate and
bolus rate (the raw bolus dosage data was converted to dosage
rate during the data cleaning stage) to get the total insulin
delivery rate2. To benchmark different learning algorithms,
same input features X(t) were used for training, which are the
derived total insulin delivery rate, meal sizes, and the heart
rate measured by the Basis Peak fitness band.

5 Training and Testing Data Preparation
While taking the data challenge, only the training data is
available for model development. To evaluate the perfor-
mances of each learning algorithm, the cleaned training data
was split into sub-training data and sub-testing data. We only
used the sub-training data to train the models. The sub-testing
data was leveraged to pick the model for final submission of
the challenge. The model that achieved the best performance
on the sub-testing dataset were used to make the final predic-
tion of the testing dataset of the challenge. In our case, the
Linear Regression (ARX) model was selected for final chal-
lenge result submission.

For subject 559, 563, 570 and 588, the sub-training data
takes the first 80% of the original data, while the rest is treated
as the sub-testing data. For subject 575 and 591, noticeable
amount of continuously missing data is observed between
date Dec 26 to Dec 28 and Dec 26 to Jan 5 respectively.
Therefore, the dates of missing data are used as split point
for subject 575 and 591.

6 Model Training
For each learning algorithm, we trained two models for each
subject, one model for 1-step-ahead (5-minute-ahead) predic-
tion and the other for 6-step-ahead (30-minute-ahead) predic-
tion. The 1-step-ahead predictive model was used in the re-
cursive method to produce 6-step-ahead predictions.

Training non-deep-learning models
For training non-deep-learning models, the sub-training data
is further split into 4 folds. Then three cross-validation
datasets were generated: 1st fold for training and rest for

2The units of basal and bolus insulin are assumed to be the same,
since they are not provided by the dataset.



Model Hyperparameters

Huber alpha=0.0001, epsilon=1.3
Ridge alpha=0.0001

ElasticNet alpha=0.0001, l1 ratio=0.3
Lasso alpha=0.0001

SVR-LinearKernel C=1, epsilon=0.01
SVR-RadialBasis C=100, epsilon=0.01, gamma=0.003

RandomForest n estimators=100, min samples split=20, max depth=30
GradientBoostingTrees n estimators=3000, max depth=30, gamma=0.001

Table 1: Hyperparameters chosen by grid search when using the
recursive method. Hyperparameter names follow scikit-learn
and XGB (for GradientBoostingTrees) packages of python. Hyper-
parameters not listed in the table used default settings of the pack-
age.

Model Hyperparameters

Huber alpha=0.0001, epsilon=1.35
Ridge alpha=0.0001

ElasticNet alpha=0.0001, l1 ratio=1
Lasso alpha=0.0001

SVR-LinearKernel C=30, epsilon=0.015
SVR-RadialBasis C=100, epsilon=0.03, gamma=0.008

RandomForest n estimators=300, min samples split=80
GradientBoostingTrees n estimators=3000, max depth=10, gamma=0.1

Table 2: Hyperparameters chosen by grid search when using the di-
rect method. Hyperparameter names follow scikit-learn and
XGB (for GradientBoostingTrees) packages of python. Hyperpa-
rameters not listed in the table used default settings of the package.

validation; 1st and 2nd folds for training and rest for vali-
dation; first 3 folds for training and the last 1 fold for valida-
tion. Grid search was performed for each learning algorithm
to fine-tune the hyperparameters. The model with the lowest
average mean square error across all three cross-validation
datasets was saved, and was used later on to generate multi-
step predictions (6 steps to get 30-minute-ahead predictions
in this case) on the sub-testing dataset and the final challenge
testing dataset. The hyperparameters used in each model is
listed in Table 1 and Table 2. Before fitting the model, the
blood glucose, insulin, meal and heart rate data was normal-
ized to the scale of 0 to 1. Note that the normalization only
utilized the information of data to fit, which prevented infor-
mation leakage when producing the validation scores. Ex-
actly the same normalization operation was performed on the
sub-testing data and the final challenge testing data. The re-
gression orders p and q were set to 12 (1 hour) for all the
learning algorithms.

Training deep learning models
While training the two deep learning models, the sub-training
data is further split into 5 folds with the first 4 folds for train-
ing and the last fold for validation. The validation data was
used for early stopping. In practice, the training algorithm
checks the validation score at the end of each epoch, and only
saves the model when it achieves the best validation score
so far. The training and validation data was also normalized
to the scale of 0 to 1 in the same way of training non-deep-
learning models.

At the training stage, the original long sequence data of
each subject was truncated in a sliding window fashion so
that each subject will have multiple training examples. Here

we set the sliding window size to 576 samples (48 hours), and
step size was 12 samples (1 hour). Adam optimization with
learning rate 0.001 was used in training both models. The
coefficients used for computing running averages of gradient
and its square were set to 0.9 and 0.999 respectively. Learning
rate is shrunk to its 1/10 if the model has been trained for
more than 10 epochs and the validation loss is larger than the
loss in the last 3 epochs. The gradient norm was clipped at 1.
Batch size was set to 1. All the deep learning networks were
trained for 20 epochs.

The vanilla LSTM Network has 3 hidden LSTM layers
with hidden size of 50. The TCN model has 2 layers of TCN
blocks (referred to TCN2 in Table 4 and Table 5) with kernel
size of 4 and dilation factor of 2, so that it has the same regres-
sion order of 12. To investigate the performance of the TCN
model with a deeper structure, another TCN model with 10
layers of TCN blocks (other parameters were the same as the
shallower one) was implemented (referred to TCN10 in Table
4 and Table 5). Dropout of 0.5 was applied after each TCN
layer. It should be noted that both the vanilla LSTM Network
and the 10-layer TCN model might not be a fair comparison
with other models.

7 Prediction
The final challenge testing dataset was first cleaned under
the exactly the same procedures as the training data. With
the cleaned challenge data, two sets of 30-minute-ahead pre-
diction were produced by the 1-step-ahead models and the
6-step models using recursive method and direct method re-
spectively. Table 3 shows the test points change after each
data cleaning step, and the final test points used to produce
the challenge results. Though the target blood glucose signal
was imputed during the cleaning stage, the imputed values
were ignored when computing the final RMSE scores. Since
the regression order p = q = 12, and the model is making
6-step-ahead prediction, the first 12 + 6− 1 = 17 test points
were ignored as well when generating the final results. That is
why the final test points used are 17 points less than the test
points after resampling. It should be noted that 1 test point
was removed from the data of subject 570, and 8 new test
points were introduced to the data of subject 575 during the
resampling stage. The results of 575 might not be comparable
in the challenge.

Subject 570 575* 588 559 591 563

Original 2745 2590 2791 2514 2760 2570
Resampled 2744 2598 2791 2514 2760 2570
Imputed 2879 2719 2880 2876 2847 2691

Test point used 2727 2581 2774 2497 2743 2553

Table 3: Test points used to compute RMSE. *8 new points were
introduced in the data of subject 575 during the resampling stage,
which makes the challenge results of subject 575 less comparable.

8 Results
The final test scores for each model using recursive method
and direct method are reported in Table 4 and Table 5. The



Model 559 563 570 575 588 591 Mean SD

ZOH (Baseline) 23.20 20.71 19.05 25.63 21.99 24.64 22.54 2.25
Linear Regression (ARX) 18.36 19.02 16.03 23.90 18.25 21.99 19.59 2.85
ElasticNet 19.28 18.51 16.83 24.08 19.13 22.04 19.98 2.62
GradientBoostingTrees 22.60 19.74 17.61 23.83 18.82 22.30 20.82 2.45
Huber 19.09 20.39 16.16 25.95 18.65 24.48 20.79 3.72
Lasso 19.89 18.85 17.59 24.38 20.17 22.25 20.52 2.44
RandomForest 21.35 20.04 16.90 24.60 19.72 22.31 20.82 2.61
Ridge 18.36 19.02 16.03 23.90 18.25 21.99 19.59 2.85
SVR-LinearKernel 18.69 19.71 15.73 25.00 17.90 22.80 19.97 3.38
SVR-RadalBasisKernel 19.13 20.08 15.84 25.59 17.66 22.23 20.09 3.45
VanillaLSTM* 69.57 56.30 46.28 90.47 71.72 73.09 67.91 15.20
TCN2 19.86 18.91 19.60 23.46 20.72 25.35 21.32 2.53
TCN10* 20.74 19.50 17.67 27.55 20.74 23.33 21.59 3.46

Table 4: Root Mean Square Error (RMSE) on the final challenge testing data using recursive method. Models tagged by star might not be a
fair comparison. ARX results will be the final result for the challenge if future feature values are legitimate to use in the prediction.

Model 559 563 570 575 588 591 Mean SD

ZOH (Baseline) 23.20 20.71 19.05 25.63 21.99 24.64 22.54 2.25
Linear Regression 18.30 19.11 16.02 23.85 18.20 22.25 19.62 2.89
ElasticNet 18.71 18.51 18.95 23.92 18.66 22.12 20.15 2.30
GradientBoostingTrees 20.53 19.79 18.38 23.80 19.32 22.53 20.73 2.06
Huber 18.47 19.08 16.10 25.24 17.98 22.69 19.93 3.38
Lasso 18.86 18.51 18.95 23.97 18.91 22.12 20.22 2.27
RandomForest 21.07 20.22 18.05 24.47 19.71 22.76 21.05 2.29
Ridge 18.30 19.11 16.02 23.84 18.20 22.25 19.62 2.89
SVR-Linear Kernel 18.25 19.29 15.69 24.61 17.82 22.65 19.72 3.31
SVR-RadalBasisKernel 18.19 19.12 15.67 24.61 17.49 22.12 19.53 3.27
VanillaLSTM* 21.23 18.62 17.12 25.09 19.81 22.47 20.72 2.85
TCN2 19.86 18.91 19.60 23.46 20.72 25.35 21.32 2.53
TCN10* 19.15 21.24 17.60 24.39 20.21 24.65 21.20 2.84

Table 5: Root Mean Square Error (RMSE) on the final challenge testing data using direct method. Models tagged by star might not be a
fair comparison. Linear Regression results will be the final result for the challenge if future feature values are not legitimate to use in the
prediction.

zero order hold approach (use current measurement as the
prediction in 30 minutes) is used as a baseline performance.

The results using recursive method indicate that the clas-
sical ARX model performs the best in average. Ridge Re-
gression achieved almost the same results as ARX because
the coefficient of regularization penalty was set to 0.0001 as
a result of grid search, which makes the Ridge Regression
nearly identical to the Linear Regression used by ARX. Non-
linear models like SVR with Radial Basis Kernel, Random
Forest, Gradient Boosting Trees and the two types of Deep
Neural Network did not outperform other linear models. Per-
formance degraded for some subjects when using a deeper
10-layer-TCN structure compared to the 2-layer-TCN.

It is noticed that the RMSE of the vanilla LSTM Network
using recursive method is significantly higher than other mod-
els. Further investigation found that the one-step-ahead pre-
diction of the vanilla LSTM is still accurate, while the re-
cursive multi-step prediction accumulated undesirable errors
resulting in large oscillation of the prediction. The vanilla
LSTM Network potentially overfits the training data. The

Subject 559 563 570 575 588 591

RMSE 4.10 5.39 3.42 5.40 4.20 5.16

Table 6: One-step-ahead-prediction performance of the vanilla
LSTM Network

one-step-ahead performance of the vanilla LSTM Network is
listed in Table 6.

When using direct method to make multi-step predictions,
SVR with Radial Basis Kernel had the best average perfor-
mance, while the Linear Regression is still very competitive
with the second best average performance. Again Ridge Re-
gression selected 0.0001 penalty on the regularization terms
during the grid search, so its performance was nearly iden-
tical to Linear Regression. Unlike the recursive method, the
direct method does not prone to error accumulating issues,
and the vanilla LSTM Network is doing a decent job in the
multi-step prediction compared to its poor performance in re-



cursive method. It is worth pointing out that TCN models
failed to outperform the baseline model for some subjects.

9 Conclusion
This paper benchmarked multiple popular machine learning
algorithms including the classical ARX method and 2 mod-
ern deep neural networks on the OhioT1DM Dataset. The
results indicate that the classical ARX model achieved the
lowest RMSE in the final testing dataset when making multi-
step prediction in a recursive manner. The Linear Regression
is also a good choice when making predictions with the di-
rect method, since there is no need of hyperparameter tuning
in Linear Regression and short training time can be achieved.
Though the predictive models achieved decent performance
in glucose level prediction, whether the predictive model cap-
tured the correct relationships between blood glucose and the
input features like insulin, meal and heart rate is the still an
important aspect to investigate in the future.

References
[Bai et al., 2018] Shaojie Bai, J Zico Kolter, and Vladlen

Koltun. An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. arXiv
preprint arXiv:1803.01271, 2018.

[Commandeur et al., 2011] Jacques JF Commandeur,
Siem Jan Koopman, Marius Ooms, et al. Statistical
software for state space methods. 2011.

[Eren-Oruklu et al., 2009] Meriyan Eren-Oruklu, Ali Cinar,
Lauretta Quinn, and Donald Smith. Estimation of fu-
ture glucose concentrations with subject-specific recur-
sive linear models. Diabetes technology & therapeutics,
11(4):243–253, 2009.

[Fox et al., 2018] Ian Fox, Lynn Ang, Mamta Jaiswal, Rod-
ica Pop-Busui, and Jenna Wiens. Deep multi-output fore-
casting: Learning to accurately predict blood glucose tra-
jectories. arXiv preprint arXiv:1806.05357, 2018.

[Gani et al., 2009] Adiwinata Gani, Andrei V Gribok, Srini-
vasan Rajaraman, W Kenneth Ward, and Jaques Reifman.
Predicting subcutaneous glucose concentration in humans:
data-driven glucose modeling. Biomedical Engineering,
IEEE Transactions on, 56(2):246–254, 2009.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and
Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[Marling and Bunescu, 2018] Cindy Marling and Razvan
Bunescu. The ohiot1dm dataset for blood glucose level
prediction. 2018.

[Mhaskar et al., 2017] Hrushikesh N Mhaskar, Sergei V
Pereverzyev, and Maria D van der Walt. A deep learning
approach to diabetic blood glucose prediction. Frontiers
in Applied Mathematics and Statistics, 3:14, 2017.

[Mirshekarian et al., 2017] Sadegh Mirshekarian, Razvan
Bunescu, Cindy Marling, and Frank Schwartz. Using
lstms to learn physiological models of blood glucose be-
havior. In Engineering in Medicine and Biology Society
(EMBC), 2017 39th Annual International Conference of
the IEEE, pages 2887–2891. IEEE, 2017.

[Moritz and Bartz-Beielstein, 2017] Steffen Moritz and
Thomas Bartz-Beielstein. imputeTS: Time Series Missing
Value Imputation in R. The R Journal, 9(1):207–218,
2017.

[Plis et al., 2014] Kevin Plis, Razvan C Bunescu, Cindy
Marling, Jay Shubrook, and Frank Schwartz. A machine
learning approach to predicting blood glucose levels for
diabetes management. In AAAI Workshop: Modern Arti-
ficial Intelligence for Health Analytics, number 31, pages
35–39, 2014.

[Sparacino et al., 2007] Giovanni Sparacino, Francesca Zan-
derigo, Stefano Corazza, Alberto Maran, Andrea
Facchinetti, and Claudio Cobelli. Glucose concentration
can be predicted ahead in time from continuous glucose
monitoring sensor time-series. Biomedical Engineering,
IEEE Transactions on, 54(5):931–937, 2007.

[Turksoy et al., 2013] Kamuran Turksoy, Elif S Bayrak,
Laurie Quinn, Elizabeth Littlejohn, and Ali Cinar. Adap-
tive multivariable closed-loop control of blood glucose
concentration in patients with type 1 diabetes. In Amer-
ican Control Conference (ACC), 2013, pages 2905–2910.
IEEE, 2013.

[Van Den Oord et al., 2016] Aaron Van Den Oord, Sander
Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
Alex Graves, Nal Kalchbrenner, Andrew Senior, and Ko-
ray Kavukcuoglu. Wavenet: A generative model for raw
audio. arXiv preprint arXiv:1609.03499, 2016.

[Wang et al., 2014] Qian Wang, Peter Molenaar, Saurabh
Harsh, Kenneth Freeman, Jinyu Xie, Carol Gold, Mike
Rovine, and Jan Ulbrecht. Personalized state-space model-
ing of glucose dynamics for type 1 diabetes using contin-
uously monitored glucose, insulin dose, and meal intake
an extended kalman filter approach. Journal of diabetes
science and technology, 8(2):331–345, 2014.

[Wolpert, 1996] David H Wolpert. The lack of a priori dis-
tinctions between learning algorithms. Neural computa-
tion, 8(7):1341–1390, 1996.

[Xie and Wang, 2017] Jinyu Xie and Qian Wang. A person-
alized diet and exercise recommender system in minimiz-
ing clinical risk for type 1 diabetes: An in silico study.
In ASME 2017 Dynamic Systems and Control Conference,
pages V001T08A003–V001T08A003. American Society
of Mechanical Engineers, 2017.

[Zecchin et al., 2012] Chiara Zecchin, Andrea Facchinetti,
Giovanni Sparacino, Giuseppe De Nicolao, and Claudio
Cobelli. Neural network incorporating meal information
improves accuracy of short-time prediction of glucose con-
centration. Biomedical Engineering, IEEE Transactions
on, 59(6):1550–1560, 2012.


	Introduction
	Model Structures
	General Autoregression Model
	Deep Learning Models
	Multi-step Prediction

	Data Cleaning
	Feature Selection
	Training and Testing Data Preparation
	Model Training
	Prediction
	Results
	Conclusion

