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Abstract. In this paper we study a classification process on relational
data that can be applied to the web of data. We start with a set of ob-
jects and relations between objects, and extensional classes of objects.
We then study how to provide a definition to classes, i.e. to build an
intensional description of the class, w.r.t. the relations involving class ob-
jects. To this end, we propose three different approaches based on Formal
Concept Analysis (FCA), redescription mining and Minimum Descrip-
tion Length (MDL). Relying on some experiments on RDF data from
DBpedia, where objects correspond to resources, relations to predicates
and classes to categories, we compare the capabilities and the comple-
mentarity of the three approaches. This research work is a contribution
to understanding the connections existing between FCA and other data
mining formalisms which are gaining importance in knowledge discovery,
namely redescription mining and MDL.

Keywords: Relational data, Formal Concept Analysis, Redescription
mining, DBpedia.

1 Introduction

In this work, we are interested in checking the completeness and the quality
of RDF data in the linked open data (LOD), and the potential to discover
definitions from these sets of linked data. Such definitions can be reused in the
design of Knowledge Bases (KBs). This challenge is of main importance when
we consider the masses of data which are currently published in LOD.

At an abstract level, we can view the current problem as follows. We have
at hand a set of interconnected objects –objects connected by relations– just
as an ABox in a description logics (DL) framework [2], and the objective is to
classify the objects with respect to and in compliance with the connections they
are involved in. Objects are classified in the same class, actually an extension,
as soon as they share common elements. This sharing can be strict –elements
are the same– or soft –elements are similar. Finally, we obtain a set of classes,
possibly partially ordered, and their associated descriptions. These descriptions
are important if not mandatory as they are a basis for building the definitions
of classes. Definitions are considered as sets of necessary (NC) and sufficient
conditions (SC) used for classifying new objects. If x is an instance of class Red



then x has color red (NC), and conversely, if x has color red then x is an instance
of class Red (SC).

Continuing the analogy with DLs, the idea in this paper is to build and apply
induction rules having the form: r(x, y) and y : C then x : ∃r.C. This means that
given a relation such as r(x, y) between objects x and y, with y instance of class
C, then we infer that x is an instance of a class say D whose description includes
the expression ∃r.C, i.e. instances of D are related to instance(s) of C.

In this work, we aim to build definitions from RDF data. To this end, we
use three approaches including Formal Concept Analysis (FCA), redescription
mining and translation rule discovery. Then the main operations that we should
perform are (i) the preparation of the data, (ii) the discovery of definitions, (iii)
the evaluation of the quality of definitions. To compare the three algorithms, we
run experiments on data extracted from DBpedia. This paper is in continuation
of a line of research work on the discovery of definitions within RDF triples in the
linked open data. The originality in this paper is to compare three approaches
which are not based on the same principles but which can complement each
other. Moreover, to the best of our knowledge, this is one of the first papers
where such a study and comparison is drawn at a theoretical and practical level.

The paper is organized as follows. In the second section, we present the data
on which we will be working and the basis of the classification process in the
linked open data. The third section details the three classification approaches
and their application. The following section is related to the experiments which
have been carried out for evaluating the three approaches. Finally, a discussion,
related and future work conclude the paper.

2 Data representation

In this section, we present basics of linked open data, and how we represent RDF
triples as a formal context.

2.1 Linked Open Data

Linked open data (LOD) are relational data that can be seen as a set of inter-
connected knowledge bases (KB). A KB relies on two main components, a TBox
which defines the schema of the KB and includes the concept definitions and the
ABox which introduces individuals and the expressions in which individuals are
involved. The basic units in a KB are RDF triples 〈s, p, o〉, which encode subject–
predicate–object assertions. The elements of a triple can be a resource uniquely
identified, a literal (values like strings, dates or integers) or a blank node (ex-
istential quantifier). For the sake of simplicity, in this paper we consider that
〈s, p, o〉 ∈ U×U×U , where U is the set of all identified resources. Resources can
refer to any object or abstraction and are identified by a URI (Uniform Resource
Identifier). A URI is an address that is composed of two parts. The first part is
the namespace, which indicates from which KB the resource comes from. The
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(a) Relational data.

ex:x0 ex:r1 ex:x1 .
ex:x0 ex:r2 ex:x2 .
ex:x0 rdf:type ex:C0 .
ex:x1 rdf:type ex:C1 .
ex:x2 rdf:type ex:C2 .

(b) RDF data.

MC MD

C0 C1 C2 ∃r1:x1 ∃r2:x2

x0 × × ×
x1 ×
x2 ×

(c) Formal context.

Fig. 1: Relational data, the associated set of RDF triples and the formal context
built from RDF triples.

second part names the resource in this KB. The relation rdf:type is a specific
relation of RDF which corresponds to the relation of instanciation.

LOD can be queried thanks to SPARQL queries. For example, the query
SELECT ?x WHERE {?x rdf:type ex:C0} returns all the instances of C0. Con-
sidering the example in Figure 1b, only ex : x0 is returned.

2.2 Formal Concept Analysis and RDF data

We rely on Formal Concept Analysis (FCA) from [6] in order to compare the
approaches. Given G a set of objects, M a set of attributes and I ⊆ G ×M
a binary relation between G and M , (G,M, I) is a formal context. Derivation
operators (denoted .′) for a set of entities X ⊆ G and a set of attributes Y ⊆M
are X ′ = {m ∈M | ∀x ∈ X,xIm} and Y ′ = {g ∈ G | ∀y ∈ Y, gIy}.

From RDF data describing a KB, we build a formal context where G is the
set of subjects of the triples (i.e. G = {s | 〈s, p, o〉 ∈ KB}) and M is the set
of pairs (predicate, object) that appear in the RDF data (i.e. M = {(p, o) |
〈s, p, o〉 ∈ KB}). The incidence relation is defined as sI(p, o)⇔ 〈s, p, o〉 ∈ KB.

The set of attributes is a partition of two sets:M = MC∪MD andMC∩MD =
∅. The setMC is the set of all attributes (p, o) such that p = rdf:type. Since all
the resources in the range of rdf:type are classes, MC corresponds to the set
of all the classes we are trying to define. Hereafter, an attribute (rdf : type, C)
will simply be denoted C. The set MD is the set of all attributes (p, o) such
that p 6= rdf:type. Hereafter, an attribute (p, o) ∈ MD will be referred as a
description and denoted ∃p : o where o is an abbreviation of an abstract class
containing only o. Considering the example Figure 1b, the associated context is
presented Figure 1c.

Our goal is to build definitions of classes of the form C ≡ e1 u e2 u . . . u en,
where the ei is an expression of the form ∃r.x. To this end, we are searching
for two sets of attributes C ⊆ MC and D ⊆ MD such that their derivations
are the same (C ′ = D′). For example, in Figure 1, we have {C0}′ = x0 and
{∃r1:x1,∃r2:x2}′ = x0. Thus, the definition C0 ≡ ∃r1:x1 u ∃r2:x2 can be con-
structed. Since data may be incomplete, it is possible that there is no equal-
ity between the derivations of a class and the derivation of its description, i.e.
{Ci}′ 6= {∃r : xj}′. Therefore, we need to find some kind of approximation. This
is allowed by the three algorithms presented in next section.



3 Rule mining algorithms

In this section, we briefly present the three approaches we are interested in,
namely association rule mining, redescription mining and translation rule min-
ing. Interested reader may refer to the original publications for further explana-
tions.

3.1 Association rules

The goal of association rule mining [7] is to find dependencies between attributes.
An association rule between two sets of attributes A and B, denoted A → B
means that A′ ⊆ B′. This rule has a confidence which can be considered as a
conditional probability:

conf(A→ B) = |A
′ ∩B′|
|A′|

where (.)′ corresponds to the derivation operator. Confidence is used as a quality
measure of the rule. An association rule is valid if its confidence is superior to a
given threshold θ. When conf(A→ B) = 1, the rule is an implication, denoted
byA⇒ B. If B ⇒ A, then A and B form a definition, denoted by A ≡ B.

Since the confidence is not symmetric, A → B can be valid but B → A not
valid. Potentially, an association rule A → B can be considered together with
its reverse B → A, and we can wonder how far they are from being implications.
Accordingly, we introduce the notion of a quasi-definition which is to definition
what association rule is to implication.

Definition 1 (Quasi-definition). Given two sets of attributes A,B and a
user-defined threshold θ, a quasi-definition A ↔ B holds if A → B,B → A
and

min(conf(A→ B), conf(B → A)) > θ

The algorithm Eclat [11] is one of the existing algorithms for enumerating
frequent itemsets. From frequent itemsets, association rules can be enumerated.
Here, we use Eclat as implemented in the Coron system1 for computing associ-
ation rules. It exhaustively enumerates all the association rules that hold w.r.t. a
given threshold. Here, we rely on Eclat to mine association rules.

Since we want to provide definitions of classes, we are interested in rules
X → Y such that X ⊆MC and Y ⊆MD or, conversely, X ⊆MD and Y ⊆MC .
Given a rule R: X → Y , the consequent can be decomposed into two rules
RC : X → YC and RD: X → YD where YC = Y ∩MC and YD = Y ∩MD

respectively. Since YC ⊆ Y , Y ′ ⊆ Y ′C , thus |X ′ ∩ Y ′| 6 |X ′ ∩ Y ′C |, which means
that if R holds, then RC holds. Similarly, if R holds, then RD holds.

We take advantage of this property to keep the quasi-definitions we are
interested in. For example, ∃r1:x1, C0 → ∃r2:x2 is not kept because the an-
tecedent include both categories and descriptions. On the other hand, ∃r1:x1 →
1 http://coron.loria.fr/

http://coron.loria.fr/


{∃r2:x2, C0} can be decomposed intoR1: ∃r1:x1 → ∃r2:x2 andR2: ∃r1:x1 → C0.
The rule R2 is kept. If its converse is valid, we obtain the quasi-definition
C0 ↔ ∃r1:C1.

3.2 Redescriptions

Redescription mining [8] provides multiple characterizations of a given set of
entities. Contrasting association rules, redescriptions rely on the separation of
the set of attributes into views. The set of all views corresponds to a partition
of the set of attributes. We work here with two views, corresponding to the two
kinds of attributes we distinguished: MC and MD.

The similarity between the sets of attributes, coming from two different views,
is measured thanks to the Jaccard coefficient:

jacc(A,B) = |A
′ ∩B′|

|A′ ∪B′|

where (.)′ corresponds to the derivation operator. We say that the redescription
holds if the Jaccard coefficient is above a given threshold. Contrary to confidence,
the Jaccard coefficient is symmetric. A redescription with a Jaccard coefficient
equal to 1 corresponds to a definition as introduced in the previous section. A
redescription is necessarily a quasi-definition. Indeed,

min(conf(A→ B), conf(B → A)) > jacc(A,B).

Example 1. Given the context Figure 1, the two views are distinguished by the
vertical line in gray. From this context, {C0} ↔ {∃r1:x1,∃r2:x2} is a redescrip-
tion with a Jaccard coefficient of 1.

The algorithm ReReMi [5] is used in this work to mine redescriptions. It
searches for a pair of attributes–one in each view–that may constitute a definition
and tries to extend it by adding one attribute at each step. More than binary
data, ReReMi also handles numerical and categorical data. It also enables to
consider Boolean functions including conjunctions, disjunctions and negations
over the attributes. Here, we only use a binary dataset and conjunctions of
attributes in order to compare the results with the other algorithms.

3.3 Translation rules

The algorithm Translator [10] also relies on two views and searches for a set of
associations between these two views, but the construction of the associations is
based on a different approach, that is minimum description length (MDL).

The associations consist in rules that enable building one context from the
other, as shown in Figure 2. The set of rules has to be compact and representa-
tive. In one hand, it should cover most of the data. In the other hand, the rules
have to be as small as possible in term of attributes. To check these two con-
straints, Translator relies on MDL. Given K = (G,M, I) a context and X ⊆M



Context K1

a b c d
1 × ×
2 × ×
3 × × ×
4 × × e f g h

1 × ×
2 × ×
3 × × ×
4 ×

Temp.

e f g h
1 × ×
2
3
4 ×

Mask

Context K2

e f g h
1 × ×
2 × ×
3 × × ×
4 × ×

Goal: translate K1 into K2 and K2 into K1

Rules
r1 : a, b→ g, h

r2 : c→ f

Fig. 2: Translator is searching for a set of rules that enables transforming K2
into K1 and K1 into K2. Here we represent only the construction of K2 from K1.
For each object in K1 and for each rule, if the object has all the attributes of
the condition, then all the attributes of the conclusion are added to K2.

a set of attributes, the length of X w.r.t. K corresponds to the minimum number
of bits required in order to encode X. That is:

L(X) = −
∑
x∈X

log2 P (x | K) where P (x | K) = | x
′ |

| G |
.

In [10], the authors compare the mining process to a translation task. A rule
is considered as a translation from one context to an other. The underlying idea is
that, with enough translation rules, one can build the first context from the other
and vice versa. The general idea is depicted Figure 2. The errors introduced in
the target context are fixed with a mask. Thus, the size of the mask corresponds
to the number of errors added. The algorithm Translator compute rules step by
step. At the beginning of the process, the mask corresponds to the target context.
The algorithm searches for the rule which has the best trade-off between lowering
density of the mask and not being too long, i.e. the rule which maximizes ∆:

∆(X → Y ) = L(Mask−)− L(Mask+)︸ ︷︷ ︸
Information gain

−L(X ∪ Y )︸ ︷︷ ︸
Rule length

where Mask+ corresponds to the items added to the mask (errors introduced by
the rule) and Mask− corresponds to items removed from the mask (errors fixed
by the rule). Rules are added while ∆ > 0.

The mask is updated each time a rule is added. Since the information gain
depends on the mask, the quality ∆ of a rule depends on the rules that are
already found. Thus, Translator is the only algorithm which takes into account
rules already found to choose which rule is added.

4 Related work

In [1], authors rely on association rule mining to provide a navigation space
over RDF resources. To this end, they search for implications and rank them



w.r.t. the confidence of their converse. Our work is in the continuity of this one:
our purpose is the same, but here we use two other approaches and compare
them.

The AMIE algorithmn, extended to AMIE+ [4], is a reference for mining
rules in KBs. Those rules have the form B1 ∧B2 ∧ . . . Bn−1 ⇒ Bn where Bi is a
relation between two objects r(xi, xj). Authors add a constraint: all the variables
have to appear twice in the rule, in different atoms. Our work is distinct from
this one in two manners. We consider rules and their converse, and we do not
focus on relations (i.e. predicates), but on the pair (predicate, object).

In a survey, Sertkaya [9] presents papers trying to bridge the gap between
FCA and ontologies. In ontologies, the knowledge is constructed with top-down
approaches (e.g experts who encode knowledge of a domain). At the contrary, in
FCA, knowledge is discovered with a bottom-up approach, starting from facts
and trying to generalize them. Thus, one way to take advantage of FCA is to
allow bottom-up construction of ontologies and to complete existing ontologies.
This is what is done in our approach: we start from RDF statements and try to
find definitions of classes.

In [3], an extension to FCA for conceptual graphs, called G-FCA, is proposed.
Compared to RDF graphs, conceptual graphs (CG) are oriented bipartite graphs.
The two kinds of nodes are classes and relations. Contrasting RDF graphs which
only consider binary relations, CGs handle n-ary relations. The approach enables
to find projected graph patterns. A projected graph pattern is a pair containing
a graph query and a set of candidate solutions. It is similar to a SPARQL query
where the graph query is the intent and the candidate solutions are the extent.
This work is complementary to our work in the sense that, instead of dealing
with rule mining, it considers the full lattice.

5 Experiments

We run our experiments on DBpedia data, which is one of the most impor-
tant knowledge bases of the linked open data, built from Wikipedia. We are
interested in categories of DBpedia, that is, resources in the range of the rela-
tion dct:subject. Categories are a specific kind of classes. They are built from
specific Wikipedia pages which lists other pages (for example the page Cate-
gory:Smartphones2). The advantage of considering these categories instead of
common classes is that there are much more categories than classes, and the
only information about them provided in DBpedia is which resources belong
to each category. Thus, finding why some resources are gathered together (for
example, “because they all are smartphones”) is an interesting challenge.

To this end, we extracted a subset of DBpedia thanks to a SPARQL query.
The triples extracted are transformed in a context as presented in section 2.2.
We run algorithms which are introduced above, then, we compare and evaluate
the extracted quasi-definitions. Both data and results are available online3.
2 https://en.wikipedia.org/wiki/Category:Smartphones
3 https://gitlab.inria.fr/jreynaud/DefinitionMiningComparison

https://en.wikipedia.org/wiki/Category:Smartphones
https://gitlab.inria.fr/jreynaud/DefinitionMiningComparison


Table 1: Statistics of the datasets extracted with the SPARQL query. D is one of
the four domains, whereas the predicate owl:objectProperty ensures that ?o
is a resource, and not a literal nor a blank node.

SELECT DISTINCT * WHERE {
?s ?p ?o .
?s dct:subject dbc:C .
?p a owl:ObjectProperty .

}

D Triples Objects |MC | |MD|
Turing_Award 2 642 65 503 857
Smartphones 8 418 598 359 1 730
Sports_cars 9 047 604 435 2 295
French_films 121 496 6 039 6 028 19 459

5.1 Methodology

We extracted four different subsets of triples, of different size and different do-
mains, from DBpedia, with SPARQL queries. All the queries follow the same
pattern. The datasets correspond to the categories Smartphones, Sports_cars,
Turing_Award_laureates and French_films. Statistics of the datasets are pro-
vided Table 1.

For each dataset, the partition of the attributes is constructed as follows:
MC is the subset of attributes whose predicate is dct:subject whereas MD is
the set of attributes whose predicate differs from dct:subject. For Eclat, since
both attributes of classes and descriptions are in the same context, the input
data is one file which contains the context in a tabular format. For ReReMi and
Translator, the input data are two tabular files.

5.2 Results

Each algorithm returns an ordered set of quasi-definitions. Each quasi-definition
is manually evaluated by three phD students familiar with linked open data,
playing the role of experts. Given a definition C0, . . . , Cn ↔ D0, . . . , Dm from a
dataset X, each evaluator answers the question “ Taking X as a reference, is it
true that belonging to C0 and C1 . . . and Cn and having the properties D0 and
D1 . . . and Dm is equivalent ? ” The final evaluation is the majority between the
experts. Experts gave the same answer in 95.4% of the cases. If evaluated true,
the quasi-definition is added to the set of definitions (see Fig. 3).

The comparison between the algorithms is based on definitions (i.e. quasi-
definition evaluated as true by at least 2 experts) that have been extracted and
categories that have been defined. Figure 4 shows two Venn diagrams for each
dataset: one for the number of definitions extracted and one for the number of
categories defined. In the dataset Turing_Award_laureates, for example, there
are 22 definitions only extracted by Eclat and 8 definitions extracted by both
Eclat and Translator. Eclat extracted 30 definitions in total. A category is
considered as defined as soon as it appears in a definition. Therefore, in one
definition, there can be one or more categories considered as defined.



Turing_Award_laureates
R Harvard_University_alumni↔ (almaMater Harvard_University) R1
ET Harvard_University_alumni, Turing_Award_laureates ↔ (a Agent), (a Person), (a Scientist), (al-

maMater Harvard_University)
R2

E Turing_Award_laureates↔ (a Agent), (a Person), (award Turing_Award) R3
ET Turing_Award_laureates↔ (a Agent), (a Person), (a Scientist), (award Turing_Award) R4
E Modern_cryptographers↔ (field Cryptography) R5

Sports_cars
R McLaren_vehicles↔ (manufacturer McLaren_Automotive) R6
R McLaren_vehicles↔ (assembly Surrey) R7
ET McLaren_vehicles, Sports_cars↔ (a Automobile), (a MeanOfTransportation), (assembly Woking),

(assembly Surrey), (assembly England), (bodyStyle Coupé), (manufacturer McLaren_Automotive)
R8

E McLaren_vehicles, Sports_cars↔ (a Automobile), (a MeanOfTransportation), (assembly England),
(assembly Surrey), (bodyStyle Coupé)

R9

E McLaren_vehicles, Sports_cars ↔ (a Automobile), (a MeanOfTransportation), (assembly Surrey),
(bodyStyle Coupé)

R10

Smartphones
ET Firefox_OS_devices, Open-source_mobile_phones, Smartphones, Touch-

screen_mobile_phones↔ (a Device), (operatingSystem Firefox_OS)
R11

R Nokia_mobile_phones↔ (manufacturer Nokia) R12
ET Nokia_mobile_phones, Smartphones↔ (a Device), (manufacturer Nokia) R13
R Samsung_Galaxy ↔ (manufacturer Samsung_Electronics), (operatingSystem An-

droid_(operating_system))
R14

ET Samsung_Galaxy, Samsung_mobile_phones, Smartphones ↔ (a Device), (manufacturer Sam-
sung_Electronics), (operatingSystem Android_(operating_system))

R15

French_films
R Pathé_films↔ (distributor Pathé) R16
R Films_directed_by_Georges_Méliès↔ (director Georges_Méliès) R17
ET Films_directed_by_Georges_Méliès, French_films, French_silent_short_films ↔ (a Film), (a

Wikidata:Q11424), (a Work), (director Georges_Méliès)
R18

ET Films_directed_by_Jean_Rollin, French_films↔ (a Film), (a Wikidata:Q11424), (a Work), (director
Jean_Rollin)

R19

ET Film_scores_by_Gabriel_Yared, French_films↔ (a Film), (a Wikidata:Q11424), (a Work), (music-
Composer Gabriel_Yared)

R20

Fig. 3: Definitions extracted by Eclat, ReReMi and Translator for each dataset.
In order to be more readable, namespaces have been removed.

6 Discussion
Hereafter, we will denote BX

cand the set of all the quasi-definitions extracted by
the algorithm X and BX

def the set of quasi-definitions from BX
cand evaluated true

by the experts, i.e. the set of definitions extracted by X. The set Bcand denotes
the set of all the quasi-definitions definitions extracted, regardless the algorithm.
Similarly, Bdef denotes the set of all the definitions extracted.

6.1 Precision, recall and completeness
The precision of an algorithm X is |B

X
def |

|BX
cand|

. The precision of ReReMi has a high
variability (from 33% to 75%) and is overall the weakest, especially for the
dataset French_films. The precision of Eclat is stable (from 64% to 72%).
Translator has the best precision which is always over 74%.



Table 2: Evaluation of the results. For each dataset, the number of quasi-
definitions extracted (|Bcand|) and evaluated true (|Bdef |) are reported, along
with the average number of categories (|Ci|) and descriptions (|Di|) per rule.

(a) Turing_Award_laureates

X Eclat ReReMi Translator
|Bcand| 47 12 11
|Bdef | 30 9 9∣∣BX

def

∣∣/∣∣BX
cand

∣∣ .64 .75 .85
|Ci|–|Di| 2–4 1–1 3–5

(b) French_films

X Eclat ReReMi Translator
|Bcand| 132 52 31
|Bdef | 95 30 23∣∣BX

def

∣∣/∣∣BX
cand

∣∣ .72 .68 .74
|Ci|–|Di| 2.8–4.5 1.3–1.4 2.6–4.1

(c) Sports_cars

X Eclat ReReMi Translator
|Bcand| 810 98 41
|Bdef | 521 57 31∣∣BX

def

∣∣/∣∣BX
cand

∣∣ .64 .58 .76
|Ci|–|Di| 4.3–7.8 1.6–1.8 3.1–3.1

(d) Smartphones

X Eclat ReReMi Translator
|Bcand| 546 36 93
|Bdef | 371 12 89∣∣BX

def

∣∣/∣∣BX
cand

∣∣ .68 .33 .96
|Ci|–|Di| 2.8–4.4 1.2–1.1 2.3–4.2

The recall could be defined as |B
X
def |
|Bdef | . However, it cannot be used as a per-

formance measure. Indeed, some of the definitions overlap (i.e. have attributes
in common in both sides). This is the case for the rules R6 to R10 in Figure
3 : all the rules define the category McLaren_vehicules. Whereas Translator
extracts only one rule (R8), ReReMi extracts 2 rules (R6 and R7) and Eclat
extracts 9 rules (only 3 of them, R8 to R10, are reported here).

Given the valid quasi-definitions, the uncompleteness of the KB can be mea-
sured as the number of triples which can be inferred from the quasi-definitions
and that are not already in the KB. For example, given the rule Pathé_Films↔
(distributor Pathé), if a resource r belongs to Pathé_Films (i.e. 〈r, subject,
Pathé_Films〉 ∈ KB), then the triple 〈r, distributor, Pathé〉 is expected to
be in the KB. Conversely, if the triple 〈r, distributor, Pathé〉 belongs to the
KB, then 〈r, subject, Pathé_Films〉 is expected to be in the KB. Figure 4c
counts, for each dataset, the number of inferred triples that were not in the KB.

6.2 Shape and interpretation of the rules

From Figure 4, 70% of the categories defined by Eclat or Translator are defined
by both algorithms. However, Translator extracts much less rules than Eclat
(until 16 times less for the dataset Smartphones). This is due to the extraction
process of association rules: if the rule A→ B has the same support as the rule
A → {B,C}, then only the rule A → {B,C} is kept. However, if the support
of A→ B is higher, both rules are kept. Consequently, Eclat mines rule which
can differ from only one attribute (R9 and R10), contrary to Translator (only
R8).
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Fig. 4: Definitions extracted, categories defined, and triples inferred by Eclat(E),
ReReMi(R) and Translator(T) for each dataset.

None of the definitions mined by ReReMi are shared by Eclat or Translator.
This is due to the heuristic used by ReReMi. If C is a category and D1 and D2
are two descriptions such that C ′ = D′1 = D′2, then ReReMi generates the two
definitions C ↔ D1 and C ↔ D2 rather than one definition C ↔ {D1, D2}
as Eclat does. This is the case for definitions R6 and R7 mined by ReReMi,
and R8 mined by Eclat. If C ′ = D′1 and D′1 ⊂ D′2, ReReMi generates the
definition C ↔ D1 whereas Eclat generates C ↔ {D1, D2}, as shown with
definitions R12 and R13 for example. Another consequence of the heuristic used
by ReReMi is that it mines smaller definitions than definitions mined by Eclat
and Translator wrt the number of attributes. On average, definitions mined
by ReReMi have 1 or 2 attributes on each side whereas definitions mined by
Eclat and Translator have 3 categories and 4 descriptions. These differences
raise the question of the semantics of the conjunctions. Indeed, the semantics
of the conjunctions in the definitions mined by ReReMi differs from the one
in definition mined by Eclat and Translator. For example, in rule R15, the
attribute (a, Device) can be removed without repercussion on the meaning.
On the opposite side, in definition R14, no attribute can be removed without



changing the meaning of the definition. That is, all the attributes are necessary.
In our approach, it seems more interesting to consider only attributes that are
necessary in the definition. Thus, R14 is better than R15 according to the ease
of interpretation.

7 Conclusion
In this paper, we compared three algorithms to find definitions in the linked open
data. Each algorithm has its specificities and we verified that these specificities
are reflected in the results of our experiments. We showed that, despite their very
different approaches, Eclat and Translator extract a lot of identical rules. At
the opposite, ReReMi, in spite of a quality measure very similar to Eclat, extracts
shorter rules. The advantage of each algorithm depends on the goal of the user. In
our experiments, Eclat is the algorithm which defines the most of the categories,
at the cost of a huge number of quasi-definitions extracted. Translator extracts
significantly less quasi-definitions but defines less categories. ReReMi, despite a
low number of categories defined, offers definitions easier to understand which
do not include attributes that do not contribute to the definition.
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