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Abstract. Analogical proportions are statements of the form “A is to
B as C is to D”, where A,B,C,D are items of the same nature, or not.
In this paper, we more particularly consider “relational proportions”
of the form “object A has the same relationship with attribute a as
object B with attribute b”. We provide a formal definition for relational
proportions, and investigate how they can be extracted from a formal
context, in the setting of formal concept analysis.
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1 Introduction

A statement such as “Carlsen is to chess as Mozart is to music” introduces
Carlsen as a precocious virtuoso of chess, a quality that Mozart is well known to
have concerning music. It relates two types of items, here people and activities.
It is an example of what we call relational proportions which are statements
of the form “object A has the same relationship with attribute a as object B
with attribute b”. This can be viewed as a special case of analogical proportions
which are statements of the form “A is to B as C is to D”. In the case where
A,B,C,D are items which can be represented in terms of the same set of features,
a formal definition has been proposed for analogical proportions in the setting
of Boolean logic and then extended using multiple-valued logic for handling
numerical features [2, 9], by stating that “A differs from B as C differs from D
and B differs from A as D differs from C”.

The nature of relational proportions suggests to handle them in the setting
of formal concept analysis. This leads us to the question of defining analogical
proportions between formal concepts. The paper first recalls the definition of
analogical proportions in non distributive lattices, as already presented in [4].
Then it brings original material, firstly by studying the links between analogical
proportions between formal concepts and analogical proportions between objects
or attributes. It also shows how relational proportions can be obtained in a formal
context from the identification of an analogical complex.



2 Analogical proportions: basics and formalization

Analogical proportions are usually characterized by three axioms. The first two
axioms acknowledge the symmetrical role played by the pairs (x, y) and (z, t) in
the proportion ‘x is to y as z is to t’, and enforce the idea that y and z can be
interchanged if the proportion is valid, just as in the equality of two numerical
ratios where means can be exchanged. This view dates back to Aristotle. A third
(optional) axiom, called determinism, insists on the uniqueness of the solution
t = y for completing the analogical proportion in t: (x : y :: x : t). These
axioms are studied in [1].

Definition 1 (Analogical proportion). An analogical proportion (AP) on
a set X is a quaternary relation on X, i.e. a subset of X4. An element of this
subset, written (x : y :: z : t), which reads ‘x is to y as z is to t’, must obey
the following axioms:

1. Reflexivity of ‘as’: (x : y :: x : y)
2. Symmetry of ‘as’: (x : y :: z : t) ⇔ (z : t :: x : y)
3. Exchange of means: (x : y :: z : t) ⇔ (x : z :: y : t)

Then, thanks to symmetry, it can be easily seen that (x : y :: z : t) ⇔
(t : y :: z : x) should also hold (exchange of the extremes). According to the
first two axioms, four other formulations are equivalent to the canonical form
(x : y :: z : t). Finally, the eight equivalent forms of an analogical proportion
are: (x : y :: z : t), (z : t :: x : y), (y : x :: t : z), (t : z :: y : x),
(z : x :: t : y), (t : y :: z : x), (x : z :: y : t) and (y : t :: x : z).

With respect to this axiomatic definition of AP, Stroppa and Yvon [3] have
given another definition, based on the notion of factorization when the set of
objects is a commutative semigroups. From these previous works, Miclet et al.
[4] have derived the following definitions in the lattice framework.

Definition 2. A 4-tuple (x, y, z, t) of a lattice (L,∨,∧,≤)4 is a Factorial Ana-
logical Proportion (FAP) (x : y :: z : t) iff:

x = (x ∧ y) ∨ (x ∧ z) x = (x ∨ y) ∧ (x ∨ z)
y = (x ∧ y) ∨ (y ∧ t) y = (x ∨ y) ∧ (y ∨ t)
z = (z ∧ t) ∨ (x ∧ z) z = (z ∨ t) ∧ (x ∨ z)
t = (z ∧ t) ∨ (y ∧ t) t = (z ∨ t) ∧ (y ∨ t)

Definition 3. A 4-tuple (x, y, z, t) of (L,∨,∧,≤)4 is a Weak Analogical Propor-
tion (WAP) when x∧ t = y∧z and x∨ t = y∨z. It is denoted x : y WAP z : t.

In the case of a distributive lattice (e.g. a Boolean lattice), this alternative
definition is equivalent to the FAP. But, in general, a FAP is a WAP and the
converse is false, which explains the use of adjective “weak” [4].

Example 1. Let us consider a finite set Σ and the associated Boolean lattice
(2Σ ,∪,∩,≤). When saying of subsets x, y, z, t of Σ that “x is to y as z is to t”,
we express that x differs from y in the same way as z differs from t. For example,



if x = {a, b, e} and y = {b, c, e}, we see that to transform x into y, we have to
remove a and add c. Now, if z = {a, d, e}, we can construct t with the same
operations, to obtain t = {c, d, e}. In more formal terms, with this definition,
the following properties are asked to x, y, z and t (with x\y = x∩¬y): x\y = z\t
and y \ x = t \ z, which are equivalent to x ∩ t = y ∩ z and x ∪ t = y ∪ z. These
relations linking x, y, z, t are clearly symmetrical, and satisfy the exchange of the
means. Hence it is a correct definition of the AP in the Boolean setting [2].

The next proposition gives a simple example of FAP in a lattice.

Proposition 1. Let y and z be two elements of a lattice, the proportion y :
y∨z :: y∧z : z is a FAP. We call it a Canonical Analogical Proportion (CAP).

Proof. The first equality of Definition 2, namely y = (y ∧ (y ∨ z))∨ (y ∧ (y ∧ z)),
is true since the right member is equal to (y) ∨ (y ∧ z) = y. The verification of
the three other equalities of Definition 2 is similar, using the absorption laws.

3 Analogical proportions in FCA

In order to derive more specifically the AP notion in a Formal Concept Analysis
framework (FCA), we first recall some basic elements of FCA, before studying
the relations between several kinds of AP and their characterization in FCA.

3.1 Formal concept analysis

FCA starts with a binary relation R defined between a set O of objects and a
set A of attributes. The tuple (O,A, R) is called a formal context. The notation
(o, a) ∈ R or oRa means that object o has attribute a. We denote o↑ = {a ∈
A|(o, a) ∈ R} the attribute set of object o and a↓ = {o ∈ O|(o, a) ∈ R} the
object set having attribute a. Similarly, for any subset o of objects, o↑ is defined
as {a ∈ A|a↓ ⊇ o}. Then a formal concept is defined as a pair (o,a), such that
a↓ = o and o↑ = a. One calls o the extension of the concept and a its intension.

The set of all formal concepts is equipped with a partial order (denoted ≤)
defined as: (o1,a1) ≤ (o2,a2) iff o1 ⊆ o2 (or, equivalently, a2 ⊆ a1). Then it is
structured as a lattice, called the concept lattice of R.

Example 2. The concept lattice of the following context R is shown in Figure 1.

a1 a2 a3 a4 a5 a6 a7 a8 a9

o1 × × × × × ×
o2 × × × × × ×
o3 × × × × × ×
o4 × × × × × ×
o5 × × × × × × × × ×

The following preliminaries are simple consequences of the definition of con-
cept lattice and the Main Theorem of Formal Concepts [5, 6]. They allow for a
quick demonstration of propositions in the next section.



{o5}
{a1, . . . , a9}

{o1, o5}
{a2, a3, a4, a7, a8, a9}

{o2, o5}
{a1, a3, a4, a5, a7, a9}

{o3, o5}
{a1, a2, a4, a6, a8, a9}

{o4, o5}
{a1, a2, a3, a5, a6, a9}

{o2, o4, o5}
{a1, a3, a5, a9}

{o3, o4, o5}
{a1, a2, a6, a9}

{o1, o3, o5}
{a2, a4, a8, a9}

{o1, o2, o5}
{a3, a4, a7, a9}

{o1, o4, o5}
{a2, a3, a9}

{o2, o3, o5}
{a1, a4, a9}

{o1, o2, o3, o4, o5}
{a9}

{o2, o3, o4, o5}
{a1, a9}

{o1, o3, o4, o5}
{a2, a9}

{o1, o2, o4, o5}
{a3, a9}

{o1, o2, o3, o5}
{a4, a9}

x y u vz t

Fig. 1. The formal concept lattice of R (it is a Boolean lattice).

Preliminary 1 Given two concepts x = (ox,ax) and y = (oy,ay), one has

(ox ∪ oy)
↑

= ax ∩ ay and (ax ∪ ay)
↓

= ox ∩ oy.

Preliminary 2 Given two concepts x = (ox,ax) and y = (oy,ay), one has
ox ∪ oy ⊆ ox∨y, ox ∩ oy = ox∧y, ax ∪ ay ⊆ ax∧y and ax ∩ ay = ax∨y.

Preliminary 3 Let o (resp. a) be a subset of O (resp. A), there exists at most
one concept x such that ox = o (resp. ax = a).

3.2 Weak and strong analogical proportions in FCA

Since concepts are associated to a set of attributes and objects, the main objec-
tives of this section are to relate the AP definitions with these sets and to study
the links the AP on concept lattice and AP on object or attribute sets.

Proposition 2. Let x, y, z and t be four concepts, one has:
(x ∨ t = y ∨ z iff ax ∩ at = ay ∩ az) and (x ∧ t = y ∧ z iff ox ∩ ot = oy ∩ oz).

As consequence, (x : y WAP z : t) iff ax∩at = ay∩az and ox∩ot = oy∩oz.

Proof. From Preliminary 2, x∨t = y∨z implies ax∩at = ay∩az and conversely,
ax ∩ at = ay ∩ az implies ax∨t = ay∨z. Thus, x ∨ t = y ∨ z using Preliminary 3.
The proof of the second equivalence can be done in a similar manner.

Proposition 3. Let x, y, z and t be four concepts, if (ax : ay :: az : at or
ox : oy :: oz : ot) then x : y WAP z : t.

Proof. Let x, y, z and t be four concepts such that ax : ay :: az : at, or
equivalently ax ∩ at = ay ∩ az and ax ∪ at = ay ∪ az (the APs between the
subsets of attributes correspond to FAPs in the Boolean lattice of (2A,∪,∩,⊆)).
Thanks to Proposition 2, ax∩at = ay∩az is equivalent to x∨t = y∨z. Moreover,
using Preliminary 1, we have (ax∪at)

↓ = ox∩ot and (ay∪az)
↓ = oy∩oz. Thus,

ax∪at = ay ∪az implies ox∩ot = oy ∩oz. In the case where ox : oy :: oz : ot,
the proof is similar since we also have (ox∪ot)

↑ = ax∩at and (oy∪oy)↑ = ay∩az.



Comments. The converse is false. Let us consider the following formal context

a1 a2 a3 a4 a5

o1 × ×
o2 × ×
o3 × ×
o4 × × ×

its concept lattice is displayed on Figure 2. Concepts x = ({o1}, {a3, a4}), y =
({o2}, {a1, a3}), z = ({o3}, {a2, a4}) and t = ({o4}, {a1, a2, a5}) are in WAP, due
to Proposition 2. However, the Boolean APs ax : ay :: az : at and ox : oy ::
oz : ot are both false. The WAP between concepts is less restrictive than the AP
between sets of attributes: in a WAP, objects are allowed to possess attributes
which are not shared by any other object concerned in the WAP.

∅
{a1, a2, a3, a4, a5}

{o1}
{a3, a4}

{o2}
{a1, a3}

{o3}
{a2, a4}

{o4}
{a1, a2, a5}

{o1, o2}
{a3}

{o1, o3}
{a4}

{o2, o4}
{a1}

{o3, o4}
{a2}

{o1, o2, o3, o4}
∅

x y z t

z′ t′ x′ y′

>

⊥

Fig. 2. In this lattice, x, y, z and t are in WAP but ax : ay :: az : at and ox : oy ::
oz : ot are both false. Besides, x′, y′, z′ and t′ are in WAP and ox′ : oy′ :: oz′ : ot′

is true, but ax′ : ay′ :: az′ : at′ and the FAP x′ : y′ :: z′ : t′ are both false.

We give now a proposition which leads us to a corollary in which is defined
yet another analogical proportion between formal concepts, the strongest of all.

Proposition 4. Let x, y, z and t be four concepts, if (ax ∪ at = ay ∪ az and
ox ∪ ot = oy ∪ oz) then the FAP x : y :: z : t holds.

Proof. ax ∪ at = ay ∪ az implies that ax = (ax ∩ ay)∪ (ax ∩ az). It results that,

using Preliminaries 1 and 2, ox = (ax)↓ = (ax ∩ ay)
↓ ∩ (ax ∩ az)

↓
. Then,

ox = (ax∨y)
↓ ∩ (ax∨z)

↓
= ox∨y ∩ ox∨z = o(x∨y)∧(x∨z)

and Preliminary 3 permits to obtain x = (x ∨ y) ∧ (x ∨ z).
In a same way, from ox∪ot = oy ∪oz, we get that ox = (ox∩oy)∪ (ox∩oz)

and ax = (ox)↑ = (ox ∩ oy)↑ ∩ (ox ∩ oz)
↑. Then,

ax = (ox∧y)↑ ∩ (ox∧z)
↑ = ax∧y ∩ ax∧z = a(x∧y)∨(x∧z).

Thus, x = (x∧y)∨(x∧z). All the equalities of Definition 2 are similarly checked.



Corollary 1. Let x, y, z and t be four concepts, the following two conjunctions
are equivalent:

ax ∪ at = ay ∪ az and ox ∪ ot = oy ∪ oz

ax : ay :: az : at and ox : oy :: oz : ot

This characterizes a particular case of FAP between concepts that we call a Strong
Analogical Proportion (SAP). It is denoted x : y SAP z : t. In other words,
four concepts in analogical proportion on attributes and on objects are said to be
in strong analogical proportion.

Proof. Let x, y, z and t be such that ax ∪ at = ay ∪ az and ox ∪ ot = oy ∪ oz,
Proposition 4 implies the FAP x : y :: z : t, and then x : y WAP z : t.
Hence, using Proposition 2, we have ax ∩ at = ay ∩ az and ox ∩ ot = oy ∩ oz.
Consequently, ax : ay :: az : at and ox : oy :: oz : ot. The converse is trivial.

Comments. From Corollary 1, ax : ay :: az : at and ox : oy :: oz : ot imply
the FAP x : y :: z : t. However, the reciprocal is false. Let us consider the
concept lattice displayed in Figure 2: we have the FAP y : > :: ⊥ : z (which is
a CAP) but oy ∪ oz 6= o> ∪ o⊥ and ay ∪ az 6= a> ∪ a⊥.

Example 3. In the Boolean lattice displayed in Figure 1, concepts x, y, u and
v form a FAP but are not in SAP. Indeed, ax : ay :: au : av does not hold.
However, without changing the lattice, the formal context can be reduced to

a1 a2 a3 a4

o1 × × ×
o2 × × ×
o3 × × ×
o4 × × ×

and the reduced representation of x, y, u and v gives (x : y SAP u : v):

a1 a2 a3 a4

ax × ×
ay × ×
au × ×
av × ×

o1 o2 o3 o4
ox × ×
oy × ×
ou × ×
ov × ×

These observations stem from the fact that the FAP and WAP between
concepts are directly related to the lattice whereas the Boolean AP between
object or attribute sets directly depends on the formal context.

4 Formal concepts and relational proportion

4.1 From a RP to concepts in AP

In this section, we study if we can deduce from a relational proportion “A is the
B of a”, or “A is to a as B is to b”, formal concepts in WAP and an analogical
complex from this knowledge.



As an example, we have found in a web magazine3 the following propor-
tion “Massimiliano Alajmo is the Mozart of Italian cooking”. The background
knowledge allowing to understand this relational proportion is the following: mu-
sic and Italian cooking are disciplines practiced by humans, such disciplines can
be practiced with different levels of ability, Mozart is a musician and Mozart is
a genius in music discipline. Since the quality “to be a genius” is not possessed
by everybody, there must exist many “ordinary gifted” musicians. Then, the
background knowledge can be expressed by the following formal context:

a1 a2 a3

o1 × ×
o2 × ×

where o1 stands for Mozart, o2 for one of “ordinary gifted” musicians, a1 is the
attribute “practices music”, a2 “is a genius” and a3 “has an ordinary ability”.

Now, when the new data “Alajmo is the Mozart of Italian cooking” is intro-
duced, the knowledge extends as follows: Alajmo practices Italian cooking, and
he has something in common with Mozart that is not Italian cooking. The rela-
tional proportion is a reduced form of “Alajmo is to Italian cooking as Mozart
is to music”. Since Mozart has only the other attribute “Genius”, Alajmo must
have it. Moreover, since cooking is a discipline practiced by humans, there must
exist some ordinary gifted Italian cook. At last, we must introduce the notion of
non-genius in our universe. If we do not, we implicitly suppose that everybody
is a genius for some activity. The knowledge is now as follows

a1 a2 a3 a4

o1 × ×
o2 × ×
o3 × ×
a4 × ×

where o3 stands for Alajmo, o4 an ordinary gifted Italian cook and a4 Italian
cooking. This context is called the analogical context. Considering the associated
concept lattice, the closest analogical proportion to “Alajmo is the Mozart of
Italian cooking” is ({o3}, {a2, a4}) : ({o4}, {a3, a4}) WAP ({o1}, {a1, a2}) :
({o2}, {a1, a3}) which translates into “Mozart is to some ordinary musician as
Alajmo is to some ordinary cook”.

More formally, from the relational proportion “o1 is the o2 of a”, we can derive
an analogical context as above. It is composed of objects o1 and o2, described by
four attributes: a is possessed by o1 and not by o2, ã is possessed by o2 and not
by o1, b is possessed both by o1 and o2 and b̃ is some attribute not possessed by
o1 nor o2. Secondly we complete the context with two objects o3 and o4 that are
the complements of o2 and o1 with respect to the four attributes. The resulted
context is the analogical context where a1 = b, a2 = a, a3 = ã and a4 = b̃.

3 http://www.slate.fr/story/43841/massimiliano-alajmo



4.2 Analogical complex

In the previous paragraph, it turns out that the analogical context is an inter-
esting pattern, from which we can extract relational proportion. A more general
definition of this pattern, named analogical complex, has been given in [7].

An analogical complex is a subcontext of a formal context described by:

× ×
× ×

× ×
× ×

associated with the binary matrix AS =

0 0 1 1
0 1 0 1
1 0 1 0
1 1 0 0

. Matrix AS

exhibits characteristic pattern of a Boolean analogical proportion [2] and is called
an analogical schema. We write AS(i, j) if its value at row i and column j is 1.

Definition 4. Given a formal context (O,A, R), a set of objects o ⊆ O, o =
o1 ∪ o2 ∪ o3 ∪ o4, a set of attributes a ⊆ A, a = a1 ∪ a2 ∪ a3 ∪ a4, and a binary
relation R, the subcontext (o,a) forms an analogical complex (o1,4,a1,4) iff

1. the binary relation is compatible with the analogical schema AS:
∀i ∈ [1, 4], ∀o ∈ oi, ∀j ∈ [1, 4], ∀a ∈ aj , ((o, a) ∈ R)⇔ AS(i, j).

2. The context is maximal with respect to the first property (⊕ denotes the
exclusive or and \ the set-theoretic difference):
∀o ∈ O \ o,∀i ∈ [1, 4], ∃j ∈ [1, 4],∃a ∈ aj , ((o, a) ∈ R)⊕AS(i, j).
∀a ∈ A \ a,∀j ∈ [1, 4], ∃i ∈ [1, 4],∃o ∈ oi, ((o, a) ∈ R)⊕AS(i, j).

An analogical complex is complete if none of sets a1, . . . ,a4,o1, . . . ,o4 are empty.

Comments.

1. In order to simplify the notations, the Cartesian products o1 × . . .× o4 and
a1 × . . .× a4 are respectively denoted o1,4 and a1,4.

2. In [7], it has been shown that the set of the analogical complexes of any
formal context is itself structured as a lattice.

Example 4. Let us consider a subcontext, called SmallZoo, extracted from the
Zoo data base [8], it has been shown in [7] that 24 analogical complexes (18
complete ones) can be derived, like the following complete one:

SmallZoo h
a
ir

fe
a
th

er
s

eg
g
s

m
il
k

a
ir

b
o
rn

e
a
q
u
a
ti

c

p
re

d
a
to

r

to
o
th

ed

a0 a1 a2 a3 a4 a5 a6 a7

o0 aardvark × × × ×
o1 chicken × × ×
o2 crow × × × ×
o3 dolphin × × × ×
o4 duck × × × ×
o5 fruitbat × × × ×
o6 kiwi × × ×
o7 mink × × × × ×
o8 penguin × × × ×
o9 platypus × × × × ×

a1 a2 a3 a4

a5 a0 a3 a7 a1 a2 a4

o1
o1 × × ×
o2 × × ×

o2 o5 × × × ×
o3 o8 × × ×
o4 o7 × × × ×



From the analogical complex structure, we derive a formal definition of a
relational proportion.

Definition 5. Let (o1,4,a1,4) be a complete analogical complex in a formal con-
text, the following sets of objects and attributes are said to be in the formal rela-
tional proportion (o1 is to a3 as o2 is to a2), and we write: (o1 ˜ a3 ˜̃ o2 ˜ a2).

Comments.

1. The reduced form of the relational proportion would be (o1 is the o2 of a3).
2. From the same complex, we can extract the 4 following formal relational pro-

portions
(
o1 ˜ a4 ˜̃ o3 ˜ a1

)
,
(
o2 ˜ a4 ˜̃ o4 ˜ a1

)
and

(
o3 ˜ a3 ˜̃ o4 ˜ a2

)
.

Since the operator ˜̃ is commutative, it gives a total of 8, but permuting
the extreme and the means in a relational proportion may lead to awkward
phrasings.

Example 5. Let us take the complex from SmallZoo described above. It implies
all attributes but a6 (predator) and objects o1 and o2 (chicken and crow), o5
(fruitbat), o8 (penguin) and o7 (mink). From this context, the RP in reduced
form “a fruitbat is the mink of airborne animals” can be derived for instance,
meaning that fruitbat and mink have hair, are toothed and produce milk, but
that the mink is aquatic at the contrary of the fruitbat. Of course, the interest
of such phrases has to be taken in context: the SmallZoo data base is supposed
to be the only knowledge.

4.3 WAP and analogical complex

In this section we explore the links between WAP between concepts and complete
analogical complex, and then the formal relational proportion.

First, we are interested in defining a non degenerated WAP, called complete,
forbidding inclusion between two of its concepts. It is a key notion for building
WAPs between concepts with a sound cognitive interpretation.

Definition 6. Let us consider (x : y WAP z : t), this WAP is complete when

1. either (ax ∩ ay) \ a∩, (ax ∩ az) \ a∩, (ay ∩ at) \ a∩ and (az ∩ at) \ a∩ are
nonempty (called complete WAP through attributes),

2. or (ox∩oy)\o∩, (ox∩oz)\o∩, (oy∩ot)\o∩ and (oz∩ot)\o∩ are nonempty
(called complete WAP through objects).

where a∩ = ax ∩ ay ∩ az ∩ at and o∩ = ox ∩ oy ∩ oz ∩ ot.

Proposition 5. 1. A complete WAP is an antichain of concepts.
2. For a complete WAP through attributes, (x ∨ y), (x ∨ z), (y ∨ t) and (z ∨ t)

are in antichain. Similarly, for a complete WAP through objects, (x ∧ y),
(x ∧ z), (y ∧ t) and (z ∧ t) are in antichain.

3. A FAP in antichain forms a complete WAP through attributes and objects,
and reciprocally.



Proof. 1. Let us suppose that (x : y WAP z : t) and x ≤ y. From Preliminary 2,
we get ax ∩ ay = ax∨y. Then ax ∩ ay = ay and using Proposition 2

ax ∩ az = (ax ∩ ay) ∩ az = ax ∩ (ay ∩ az)

= ax ∩ (ax ∩ at) = ax ∩ at = a∩ .

Thus, ax ∩ az \ a∩ = ∅ and (x : y WAP z : t) is not a complete WAP.
2. From a complete WAP through attributes, ax∨y = ax ∩ ay and three

analog equalities hold. Due to this completeness, there is no inclusion between
ax∨y, ax∨z, az∨t and ay∨t. The associated concepts are then in antichain.

3. Let us consider the FAP x : y :: z : t where {x, y, z, t} is an antichain.
From Proposition 2, we have x = (x∧y)∨ (x∧ z) and x = (x∨y)∧ (x∨ z) which
are equivalent to ax = ax∧y∩ax∧z and ox = ox∨y∩ox∨z thanks to Preliminary 2.
Similarly, ay = ax∧y ∩ ay∧t and ox = ox∨y ∩ oy∨t and

a∩ = ax ∩ ay ∩ az ∩ at = ax ∩ at

o∩ = ox ∩ oy ∩ oz ∩ ot = ox ∩ ot

due to Proposition 2 and the fact that a FAP is a WAP. Therefore, we have
ax∧y \ (ax ∩ at) ⊆ ax ∩ ay \ a∩. Moreover, ax∧y \ (ax ∩ at) = ax∧y \ ax∨t is
nonempty. Indeed, ax∧y \ax∨t = ∅ implies that x∨ t ≤ x∧y which is impossible
since {x, y, z, t} is an antichain. Similarly, we can prove that ox ∩ oy \ o∩ 6= ∅.

Reciprocally, let us take a complete WAP through attributes and objects.
From the previous properties, {x, y, z, t} is an antichain, as well as {x ∨ y, x ∨
z, y ∨ t, z ∨ t} and {x ∧ y, x ∧ z, y ∧ t, z ∧ t}. Therefore, these 12 concepts are
distinct and it can be proved that they generate a Boolean sublattice. Because
of the distributivity of this sublattice, the WAP (x : y WAP z : t) is then a
FAP.

In order to derive relational proportion from an analogical proportion be-
tween concepts, we consider a complete WAP through attributes (a similar rea-
soning can be done from a complete WAP through objects) and introduce a
process to extract an analogical complex.

Due to the completeness, sets a1 = (az ∩ at) \ a∩, a2 = (ay ∩ at) \ a∩,
a3 = (ax∩az)\a∩ and a4 = (ax∩ay)\a∩ are nonempty. We also define o1 = õx
the set of objects proper to x (that appear in ox but not in the objects of y, z
and t) and similarly o2 = õy, o3 = õz and o4 = õt.

By construction, every object of o1 is in relation with every attribute of
a3∪a4. It is also the case between o2 and a2∪a4, o3 and a1∪a3, o4 and a1∪a2.
For all the other combinations, for instance o1 and a1, for any o ∈ o1, there
exists a ∈ a1 such that o and a are not in relation. However, these properties do
not guarantee that the subcontext (o1,4,a1,4) is an analogical schema, even if it
is a closed schema. Indeed, it can exists an object o ∈ oi in relation with an at-
tribute a ∈ aj , where (i, j) ∈ {(1, 1), (1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3), (4, 4)}.
In such a case, either a or o is removed and this postprocessing permits to obtain
an analogical schema. But this schema is not necessarily a complex, since the



associated subcontext may be not maximal. Then a second postprocessing max-
imises the schema into complex, adding new attributes and/or objects chosen
among those which do not appear in ax ∪ . . . ∪ at nor ox ∪ . . . ∪ ot. Finally, we
check that the resulting analogical complexes are complete.

This method can lead to several complexes, according to the choices in both
postprocessings. This set of complexes is a sub-lattice of the lattice of complexes.

Example 6. In SmallZoo, x = ({o1, o2, o4}, {a1, a2, a4}), y = ({o5}, {a0, a3, a4, a7}),
z = ({o4, o8}, {a1, a2, a5}), t = ({o7, o9}, {a0, a3, a5, a6}) are concepts in com-
plete WAP through attributes. At the beginning, o1 = {o1, o2}, o2 = {o5},
o3 = {o8}, o4 = {o7, o9}, a1 = {a5}, a2 = {a0, a3}, a3 = {a1, a2} and a4 = {a4}
and, due to the relation between o9 and a2, the first postprocessing can remove
(either o9 or) a2:

a5 a0 a3 a1 a2 a4

o1 × × ×
o2 × × ×
o5 × × ×
o8 × × ×
o7 × × ×
o9 × × × ×

a1 a2 a3 a4

a5 a0 a3 a1 a4

o1
o1 × ×
o2 × ×

o2 o5 × × ×
o3 o8 × ×

o4
o7 × × ×
o9 × × ×

After removing a2, the right table is an analogical schema and we can check
that it is maximal in SmallZoo. Note that if we had chosen to remove o9, the
postprocessings would have produced the analogical complex previously detailed
in Example 4.

For example, from the complete analogical complex described above, we can
derive the following relational proportion: “the chicken and the crow are to the
feathers as the fruitbat is to the hair, the milk and the teeth”. It makes sense
when considering that all these animals share the attribute “airborne”.

Likewise, another proportion from the same complex is “the fruitbat is to the
airborne animals as the mink and the platypus are to the aquatic animals” (fruit-
bat, mink and platypus share the attributes hair and milk). The reduced form
“the fruitbat is the mink of airborne animals” is the same as that of Example 5,
Section 4.2, although the complexes involved are slightly different.

5 Conclusion

The paper has shown how relational proportions can be identified in a formal
context. Relational proportions offer a basis for concise forms of explanations.
Indeed, if B has some well-known features, the proportion “object A is to at-
tribute a as object B is to attribute b” provides an argument for stating that
“object A is the B of a”, when A possesses these well-known features also, as
in “Carlsen is the Mozart of chess”. It is worth pointing out that two cognitive
capabilities, namely conceptual categorization and analogical reasoning can be
handled together in the setting of formal concept analysis. This introductory



presentation has left aside the algorithmic side (based on the identification of
formal complexes), which is discussed in the long version of the paper [10].

Our study of proportions between concepts explores a simple and fixed re-
lation between concepts in a single lattice. It would be interesting to connect it
with the general framework of Relational Concept Analysis (see e.g., [11]), and
with a recent proposal based on antichains [12].

Following the pioneering work of Rumelhart and Abrahamson [13], a num-
ber of recent woks in computational linguistics (e.g., [14]) have been using a
parallelogram-based modeling of analogical proportions in numerical settings,
where words are represented by vectors of great dimension. Bridging this compu-
tational view of analogical proportions with the work presented here is certainly
a challenging task for the future.
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