CEUR-WS.org/Vol-2149/paper7.pdf

The theory and practice of coupling formal
concept analysis to relational databases

Jens Kotters and Peter W. Eklundf

tSchool of Information Technology
Deakin University, Geelong, Australia

Abstract. In Formal Concept Analysis, a many-valued context is a col-
lection of objects described by attributes that take on more than binary
values, such as age (as integers or ranges of integer values) or color (a list
or even a hierarchy of color combinations). Conceptual scaling is the pro-
cess by which such a many-valued context is transformed into a formal
context, by associating a concept lattice with the many-valued context.
A many-valued context can be compared to a single table in a relational
database populated with multiple rows and non-binary values. A gener-
alization of conceptual scaling as a relational database as a whole should
take into account the relations between objects, as expressed by means of
foreign keys. Previous approaches to scaling a relational database (e.g.
relational scaling) take such relations into account, but either do not
maintain a separation between objects and values, which is characteris-
tic for the unary case, or result in unary contexts only. In the approach
presented in this paper, the use of n-ary scales is suggested, whereby a
relational database is transformed into a family of n-ary contexts (a so
called power context family). This paper describes the fundamentals of
a Web application that allows connection to a relational database, its
scaling interactively into a power context family, and navigation within
that context family.

Keywords: Formal concept analysis, relational databases, conjunctive
queries, data navigation, power context families, conceptual scaling.

1 Background and Motivation

In a previous paper [12], a variant of Formal Concept Analysis was introduced
that uses conjunctive queries as concept intents, and resulting tables as concept
extents. The resulting complete lattice of these conjunctive-query/table pairs*
is a mathematical model of the information space over a relational database
(accessible through conjunctive querying). Conjunctive queries correspond to a
subset of logical formulas over a relational signature X' (i.e. X is the query vocab-
ulary), and thus have interpretations in a relational structure, which represents
the database.

! The actual concept lattices have been defined as certain sub-lattices €[{z1, ..., 2z, }].

When representing a database by a relational structure, we have to decide
whether the carrier set should consist of table entries or table rows. The impor-
tance of this decision is that it determines what the query variables represent;
queries will then either be formulated in the domain calculus or in the tuple cal-
culus(cf. [1, p.74]). The domain calculus is a natural choice if all database tables
represent relations (not just technically, but also conceptually) between objects.
We might then employ a simple one-to-one correspondence between databases
and relational structures: the n-column tables are precisely the n-ary relations
in the relational structure, and the query vocabulary X is the set of table names,
which are used as n-ary predicates.

In practice, databases are centered around object tables in the ORM-style,
and the above modeling option does not reflect how users conceptualize database
content. Because objects are represented by table rows, these should constitute
the carrier set, so that the relational structure provides interpretations for the tu-
ple calculus (which is also used by SQL [1, p.74]). But, unlike in the hypothetical
case above, there is no immediate suitable choice of relations. While the signa-
ture X should express conditions in a WHERE-clause, meaningless comparisons
(e.g. t.age = t.shoe_size) should be eliminated in the formation of concepts.

In this paper, we propose a method to build meaningful query vocabulary
around a relational database with reasonable effort. To this end, we utilize an al-
ternative formalization [13] of the conjunctive-query lattice model [12] consistent
with Wille’s concept graphs [18], work which relates FCA to Sowa’s Conceptual
Graphs [17]. In particular, the relational database is represented by a power
context family [18], i.e. by a sequence of formal contexts.

Power context families and relational structures correspond to each other in
an almost trivial way: the columns of the n-th context correspond to n-ary rela-
tions, i.e. its attributes are the n-ary symbols of . But the change of formalism
encourages to think about databases in terms of conceptual scaling [5, Section
1.3]. Conceptual scaling is a method of deriving a formal context from a many-
valued context, which can be seen as a database table with value columns only
(no foreign keys). Huchard et. al. [10] have presented a way to obtain a context
family from a database (a set of many-valued contexts, together with binary
inter-object relations), but only unary contexts (where attributes represent ob-
ject properties) are obtained. The idea of scaling a database into a power context
family has been formulated under the title of relational scaling [14, 8], but the
domain calculus has been used, which may have been the reason for a conflation
of objects and values, in so doing destroying the analogy to conceptual scaling.
Our scaling approach adheres to the analogy by maintaining a clear separation
between objects and values, which in turn leads to generic and reusable scales
so that (after the initial creation of scales) scaling a database can be done on a
point-and-click basis.

Section 2 describes the graph representation of conjunctive queries that is
used throughout this paper. The SQL translation of graphs is detailed in Sect. 3.
The scaling approach is described in Section 4. The scales are not only used for
the creation of the power context family; they define facets, which control the

user options in a navigation application. Navigation in the power context family
is discussed in Section 5. In this context, we revisit previous work on concept
graphs and propose a new definition.

2 Conjunctive Queries

Conjunctive queries are a natural subset of database queries with nice theoreti-
cal properties [6]. Different representations for conjunctive queries are in popular
use, including tableaux, formulas and Datalog rules [1]. In this paper, we repre-
sent conjunctive queries with windowed intension graphs [13] (similar to concep-
tual graphs [17]). An example windowed intension graph is shown in Fig. 2. This
represents a query for 20th-century-born British authors who published in the
21st century. The rectangles are called object nodes and the rounded rectangles
relation nodes. All object nodes of a query take on the role of variables. Colored
nodes represent the subject(s) of the query; they are called subject nodes. Only
object nodes can be subject nodes. The window represents the choice of subject
nodes; so it can be thought of as a window into the data. Every object node
carries a sort label, and a subject node carries in addition a marker, so that the
combined label is of the form sort/marker. Every subject node is associated with
a column in the result table, and the marker specifies the name of that column.
The available sorts are precisely the table names in the database.

Each relation node is connected to object nodes by n > 1 outgoing arrows,
labeled from 1 to n. A node with n outgoing arrows is said to have arity n. Two
or more arrows may point to the same object node. A relation node carries one
or more labels of the form facet:attribute. An attribute is a name for an n-ary
relation, and a facet acts as a namespace for attributes. The label facet:attribute
states that attribute applies to the objects at the end of the arrow tips (the
i-th arrow points to the i-th argument). If a node label comprises two or more
attributes, they must belong to the same facet.

A relation sort is an n-tuple (sq,. .., sp,) of table names. A facet only provides
attributes of a single relation sort (si,...,s;,), which means that its attributes
may only occur on m-ary relation nodes whose i-th arrows point to objects of
sort s; (i = 1,...,n). The nationality and DOB facets of Fig. 2 provide unary
relations on Authors, pubdate provides unary relations on Books and wrote binary
relations from Authors to Books.

Formally, an intension graph (cf. Fig. 1) is a 4-tuple (V, E,v, k) where V is
the set of object nodes, E is the set of relation nodes, v(e) := (v1,...,v,) is the
n-tuple of object nodes connected to e € E, and x(u) is the label on the node
u € V U E. In the original definition of intension graphs [13], v was required to
be injective, so it was omitted. This is convenient for theory, but multiple edges
make sense when working with facets.

A windowed intension graph is formalized as a pair (A, G), where G is an
intension graph and A : X - Vg is a partial map from a set X of markers to
the object nodes of G.

[nationality:GB] [DOB:20C]

N/

Author

é[wrote:wrote]2—> Book

pubdate:21C

1

v

Fig. 1. Intension Graph of the statement “20th-century-born British authors who pub-
lished in the 21st century”

[nationality:GB]

N/

[DOB:20C]
1

Author/x1

1

wrote:wrote

pubdate:21C

1

A4

Book

Fig. 2. Windowed Intension Graph of the statement “20th-century-born British au-
thors who published in the 21st century”

Book
Alice in Wonderland 1 1865-11-26
To the Lighthouse 2 1927-05-05
The Hitchhiker’s Guide to the Galaxy| 3 1979-10-12
Trigger Warning 4 2015-02-03
Harry Potter and the Deathly Hallows| 5 2007-07-21
The Casual Vacancy 5 2012-09-27
The Shining 6 1977-01-28
Doctor Sleep 6 2013-09-24
The Da Vinci Code 7 2003-03-18
Inferno 7 2013-03-14
Author
1| Lewis Carroll | British | 1832-01-27 Result Table
2| Virginia | Woolf British | 1882-01-25
3| Douglas | Adams British | 1952-03-11 Neil Gaiman
4 Neil Gaiman | British 1960-11-10 7. K. Rowling
5 J. K. Rowling | British | 1965-07-31 —
6| Stephen King | American | 1947-09-21
7 Dan Brown | American | 1964-06-22

Fig. 3. Database for the running example, consisting of tables Book and Author, and
result table for the query in Fig. 2.

3 SQL Translation

A facet ¢ provides an SQL-interpretation of its attributes by means of a function
@., which maps an attribute a to a WHERE-condition @.(a) in the syntax of the
target database. If the attribute a has sort (s1,..., $y), then @.(a) contains the
placeholders t4,...,t,, which have to be replaced by the respective arguments
in every concrete case.

The expressions below interpret the attributes of the graph in Fig. 2 in terms
of the schema of the database in Fig. 3.

(1)

Dnationality (GB) = t1.nationality="GB” (2)
Bpos(20C) = t,.date_of _birth BETWEEN ”1999-01-01” AND 71999-12-31” (3)
Dpubdate (21C) = t1.publication_.date BETWEEN ”2000-01-01” AND ”2099-12-31” (4)

Dyyrote (Wrote) = t1.id = tp.author

To obtain a result table as in Fig. 3, we have to specify in addition how the
objects of each sort (i.e. the rows of each table) are printed. This is achieved by
fixing an output expression {2 for each sort s. For the sorts of the database in
Fig. 3 we specify

Oputhor = CONCAT (t1. first_name,” 7, tl.last_name) (5)
QBook = tl.title . (6)

The SQL translation of a windowed intension graph is thus given by a statement
of the following form:

SELECT DISTINCT 2upi(uy)(u1) AS 1 ...,
Qsort(um)(um) AS Tm
FROM sort(vy) AS vy ...,
sort(v,) AS vy,
WHERE &, (a1)(v11, ..., 10,) AND ...
AND &, (ak)(Vk1, s Viny,)

In eqn. (7), the object nodes are represented by variables vy, ..., v,, and the
FROM-clause can be seen as a variable declaration, which declares v; to be of
sort sort(v;). In SQL terminology, v; is called a table alias. The WHERE-clause
contains for each attribute c; : a; a WHERE-condition @, (a;)(vj1,...,Vjn,),
where @, (a;)(vj1,-..,vjn,) denotes substitution of ¢; by the applicable table
alias vj;. The FROM-WHERE-part realizes the query’s underlying intension
graph (cf. Fig. 1). The SELECT-clause defines an output column for each marker
x; on a subject node u;. In SQL terminology, x; is called a column alias.

So far, result tables display objects, but no values are shown beyond those
that occur in the output expression (cf. Fig. 3). In a navigation application user
interface (cf. Sect. 5), we envision relation nodes as controls to show in addition
(or hide) the column values associated with a facet, by modifying the SELECT-
clause in eqn. (7). These additional columns are not part of the concept extent,
but they are of course informative. In the next section, we make precise how
facets are associated with column values.

4 Database Scaling

A syntactic interpretation defines the symbols of a given signature by expressions
over another signature (cf. [4]). The attributes provided by a facet ¢ can be
understood as symbols of a relational signature. The SQL-interpretation @, is in
this sense a syntactic interpretation: namely it interprets the attributes of ¢ in
a given database schema S (which is not exactly a signature, but the database-
theoretic analogue).

Each facet ¢ defines a context K.. This is how the extension of the attribute
a of K, is defined:

SELECT 2, (t1), ..., 2, (tn)
FROM sy ASty, ..., s, ASt, (8)
WHERE &.(a)(t1, .. ., tn)

Using eqns. (5) and (3) in eqn. (8), the 20C column in Fig. 4 is obtained. In
this manner, the contexts for the DOB and pubdate facets (Figs. 4 and 5) can be
derived from the database. The SQL definitions of the attributes 19C, 20C and

pubdate % % g
Q1010
DOB 219N Alice in Wonderland || x
Lewis Carroll X T(,) the.nghthou.se X
— Hitchhiker’s Guide X
Virginia Woolf ||x
Harry Potter 7 X
Douglas Adams X
- - The Casual Vacancy X
Neil Gaiman X - -
- Trigger Warning X
J. K. Rowling X —
- The Shining X
Stephen King X
Dan Brown ” Doctor Sleep X
The Da Vinci Code X
Fig. 4. Context for the DOB facet Inferno X

Fig. 5. Context for the pubdate facet

21, which occur in both contexts, are not defined in the facets. Instead, every
facet imports its attributes from exactly one underlying scale. A scale in FCA is
a formal context which describes values; examples are ordinal scales (Fig. 7) and
nominal scales (Fig. 8) [5]. The scale that underlies the DOB and pubdate facets
is the Centuries scale in Fig. 11. The scales that we use to scale databases (i.e.
generate context families from databases) should describe values that can occur
in a database column; for the Centuries scale, these are ISO 8601 dates. Of course,
it is generally not efficient or even possible to represent scales in the computer
as cross-tables; we would expect the Centuries scale to describe all possible dates
that can occur in a column, and not just the 17 dates of Fig. 11. A scale for a

database must be able to produce an SQL definition for an attribute. The SQL
definition for the 20C attribute is

z1 BETWEEN 71999-01-01” AND 71999-12-31" 9)

where z1, 22, 23, ... are variables reserved for values. A facet binds a scale to one
or more columns (each variable z; is bound to a column). The Centuries scale is
a unary scale, so its attributes are described by a single variable z;. The DOB
facet binds z; to the Author.date_of_birth column (which yields $pog, cf. (3)),
whereas pubdate binds z; to Book.publication_date. 2. Scales encode the actual
logic, whereas a facet merely translates a relation between values into a relation
between objects, by means of a syntactic substitution that is specified by the
binding. The scale interface and facet class are shown in Fig. 12.

Examples for binary scales are equality scales (Fig. 9), which have been used
in a prototype to generate binary single-column contexts for foreign keys, or
distance scales (Fig. 10), which can be used to measure spatial distance between
objects, or time spans between events. A comparison to the classic unary scales
(Figs. 7 and 8) shows that these binary scales are in the same spirit.

A syntactic interpretation provides, in addition to symbol definitions, a for-
mula that defines the carrier of the derived structure (cf. [4]). In our scaling ap-
proach, this is the object set of the derived context. We call this formula a domain
expression and denote it by @.(x), where * is a special symbol. The domain ex-
pression for the contexts in Figs. 4 and 5 is a sort restriction. Ideally, the domain
expression would also be a WHERE-condition, but SQL requires special treat-
ment in this case. However, a WHERE-condition is allowed in addition to the
sort, restriction. The domain expression for the wrote facet is ”¢t1.id=t2.author”,
where t1 is an Author and ¢2 is a Book. On top of this, the wrote facet uses a dis-
tance scale, bound to Author.date_of_birth and Book.publication_date, to measure
at what age an author wrote a particular book. A facet supports renaming of
attributes to allow for more expressive attribute names than the generic names
provided by the scales. The context derived from the wrote facet is the bottom
context in Fig. 6.

The contexts that are derived from the facets can be assembled into a power
context family (Fig. 6). Working with power context families is more convenient
for mathematical investigations, whereas working with the contexts derived from
the facets (as in Figs. 4 and 5) is more convenient for practical work. As with
the scales, it is not necessary that the power context family, or individual facets,
are explicitly constructed. The power context family has been realized in a pro-
totype as a virtual layer around the database, although the computation of re-
finement options (cf. Section 5) required an additional query, and SQL does not
adequately support all types of scales (such as taxonomies), which may require
post-processing of result tables.

2 Direct specification of @.(a) in the facet (thus by-passing scales) is not supported.

<t
o A
g 0= Qoo
=l I S22
=P zlzloolol7 TN
0 <|M 1 EESIS2] e |
el s 3|2 =N EEE
b= 5|8 |&|as|al S |S
2| 2 SlE|ololole .|l
HE-ESBEEE
Lewis Carroll X
Virginia Woolf x Lewis Carroll X X
Douglas Adams X Virginia Woolf X X
Neil Gaiman X Douglas Adams X X
J. K. Rowling x Neil Gaiman X X
Stephen King X J. K. Rowling X X
Dan Brown X Stephen King x| |x
Alice in Wonderland X Dan Brown % >
To the Lighthouse X Alice in Wonderland X
Hitchhiker’s Guide X To the Lighthouse X
Harry Potter 7 % Hitchhiker’s Guide X
The Casual Vacancy x Harry Potter 7 %
Trigger Warning X The Casual Vacancy X
The Shining X Trigger Warning >
Doctor Sleep X The Shining %
The Da Vinci Code X Doctor Sleep X
Inferno < The Da Vinci Code X
Inferno X
ololo
ol® =B
5 VIIVIIVI
= QO | D
&p| 5p| &0
2 HEARR
JEEE
Blz|z|E
(Lewis Carroll, Alice in Wonderland) |[x| |x|x
(Virginia Woolf, To the Lighthouse) ||x X
(Douglas Adams, Hitchhiker’s Guide) || x [X |x|x
(Neil Gaiman, Trigger Warning) X
(J. K. Rowling, Harry Potter 7) X X
(J. K. Rowling, The Casual Vacancy) || x X
(Stephen King, The Shining) X[x| x| %
(Stephen King, Doctor Sleep) X
(Dan Brown, The Da Vinci Code) x| |x|x
(Dan Brown, Inferno) X X

Fig. 6. Power Context Family

[Ordinal [[<1[<2[<3[<4[<5] Nominal||=1[=2[=3[=4]=5]
1 X | X | X | X[X 1 X
2 X | X | X | X 2 X
3 X | X | X 3 X
4 X | X 4 X
5 X 5 X
Fig. 7. Ordinal Scale Fig. 8. Nominal Scale
Equality || =] [Distance[[=0[<1[<?]
(1,1) X (1,1) x| x| x
(1,2) (1,2) X | X
(1,3) (1,3) X
(2,1) (2,1) X
(2,2) X (2,2) X | x| %
(2,3) (2,3) X | %
(3,1) (3,1) X
(3,2) (3,2) X | x
(3,3) X (3,3) X | x| %
Fig. 9. Equality Scale Fig. 10. Distance Scale
. OO0
Centuries SISI= DBFacet
1832-01-27|| x - name: String
1865-11-26| x - sortlr Tg%g[sfringl
- scale: cale
gg?g;gg a - - binding: Dict[String,String]
1947-09-21 X + sql(lterable:attributes)
1952-03-11 X + intent(lterable:objects)
1960-11-10 X
1964-06-22 X
1965-07-31 X
1977-01-28]| |x DBScale
1979-10-12 X - name: String
2003-03-18 x + sql(Iterable:attributes)
2007-07-21 a + intent(lterable:values)
2012-09-27 X
2013-03-14 X
2013-09-24 X
2015-02-03 X Fig. 12. The main API functions of the DB-

Facet class and DBScale interface. The in-
ternal representation of scales is up to the

Fig. 11. Centuries Scale implementation.

5 Navigation using Projectional Concept Graphs

The ideas of the previous sections can be turned to account in a navigation
application. The viability of its core features has already been explored in a
prototype; a full version will be presented in an upcoming paper.

The application provides for two roles, user and admin. In the admin role,
one can connect to an existing database, view its schema and a list of available
scales, bind scales to database columns (thus scaling the database) and store the
binding, together with the database connection info, in a file (i.e. the database
can be read-only). A binding, together with the database that it references,
constitutes a virtual power context family.

In the user role, one can choose from a list of available power context fam-
ilies to navigate in. Note that the user does not need to know that the power
context family originates from a relational database, and indeed, there could be
different back ends for different sources of data, such as RDF or object-oriented
databases (although we have only worked this out for relational databases with
SQL access). Different user interfaces are possible, but it is instructive to assume
that a conjunctive query looks to the user like the graph in Fig. 2. As mentioned
in Sect. 2, it is formalized by a windowed intension graph (), G).

A solution of an intension graph G in a power context family K is formalized
by amap ¢ : G — K from object nodes to objects (of the context Ko). The set of
all solutions is denoted by S(G, K) For a windowed intension graph (A, G), the
rows in the result table are the maps A o ¢ with ¢ € §(G, K) In the following,
we introduce projectional concept graphs as a basic structure for navigation.

Definition 1 (Projectional Concept Graph). A projectional concept graph
is a 5-tuple (V, E,v,k,exty) comprised of an intension graph G := (V,E,v, k)
and its extension map

exty(v) = {p(v) | ¢ € 8(G,K)} (10)

for a given power context family K with S(Q,K) # 0 (i.e. extg(v) # 0 for all
v e V). We call extg(v) the node extent of v.

The node extent of the Author node in Fig. 1 is the extent of the windowed
intension graph in Fig. 2. It is thus an extent in the lattice /3, (K) of unary con-
cepts over the power context family K (cf. [13]). Therefore, projectional concept
graphs should indeed be considered concept graphs.

Considering node extents rather than whole result tables spares the user
going through large result tables; the navigation approach allows however to
place windows of arbitrary size on the graph, if the specific combinations of
objects in the solution are of interest.

Refinement options are given by a triple (E™, kT, 67). For each v € V, E*(v)
is a set of facets for which a new relation node can be connected to v, extending
the graph structure. For each uw € V U E, k*(u) is a set of scale concepts which
can replace (u). And 07 is a set of pairs of object nodes in the graph which can
be merged. All refinement options lead to a refined projectional concept graph
that has at least one solution in K.

6 Related Work

Concept graphs and power context families were defined by Wille [18]. Rela-
tional context families, used in Relational Concept Analysis (RCA) developed
by Huchard et. al, [9] are similar to power context families but define different
contexts for objects of different sorts. The contexts derived from facets in this pa-
per represent facets of such sort contexts. Faceted navigation on the basis of FCA
was suggested by Priss [15] and later developed by Eklund and Ducrou [3]. In
RCA, conceptual scaling is generalized to relations but produces unary contexts
only. The idea of scaling databases into power context families was formulated
by Prediger and Wille [14] and expanded on by Hereth [8]. The scales presented
there correspond to facets in our work; a central idea to conceptual scaling, the
translation of properties of values into properties of objects, is not reflected in
this work, but is addressed by the scales in our work.

From the beginning, conceptual graphs have been considered as a database
interface [16]. Their translation into logical formulas, stated by Sowa [17], seems
to imply that an interpretation as conjunctive queries is intended for conceptual
graphs with variables. An SQL translation of Wille’s concept Graphs, which
treats concept graphs as conjunctive queries, is described by Groh and Ek-
lund [7]. Interpretations were provided by a power context family, but it was
encoded in a database (which imposes a particular format), not derived from
the database, so scaling (as we define it here) was not involved. Both object
and relation nodes were considered variables, whereas in the present work, only
object nodes are considered variables.

An intension graph can be thought of as Wille’s abstract concept graph (see
[18, p. 300]). A concept graph (in the standard definition) defines in addition a
realization p which, like the extension map in Def. 1, assigns to each object node
a nonempty set of objects. In a concept graph, the elements of the sets p(v) can
be freely combined to obtain solutions, whereas for projectional concept graphs,
each element of g(v) is part of some solution.

The navigation approach of Sect. 5 has been described in [11]. FCA-based
navigation in relational data is also the subject of [2].

7 Conclusion

This paper describes the fundamental theory of a Web application that allows
connection to a relational database, its scaling interactively into a power con-
text family, and navigation within that context family. The conceptual scaling
approach used is based on a syntactic interpretation of attributes, which results
in an FCA-based method to build suitable query vocabulary around a relational
database. Generic and reusable scales allow easy database scaling on a point-
and-click basis. Scales constitute facets in a faceted-navigation approach based
on projectional concept graphs, which are a new class of concept graphs.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Abiteboul, S.,; Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
1995

Ekzme)h, Z., Huchard, M., Napoli, A., Hacene, M.R., Valtchev, P.: Querying rela-

tional concept lattices. In: Proc. of the 8th Intl. Conf. on Concept Lattices and

their Applications (CLA’11). pp. 377-392 (2011)

Ducrou, J., Eklund, P.: Faceted document navigation using conceptual structures.
In: Hitzler, P., Schéarfe, H. (eds.) Conceptual Structures in Practice, pp. 245-271.
Chapman & Hall/CRC (2009)

Ebbinghaus, H.D., Flum, J., Thomas, W.: Mathematical Logic. Springer, New

York, second edn. (1994)

Ganter, B., Wille, R.: Formal concept analysis: mathematical foundations.
Springer, Berlin (1999)

Gottlob, G., Leone, N., Scarcello, F.: On tractable queries and constraints. In:
Bench-Capon, T.J., Soda, G., Tjoa, A.M. (eds.) Database and Expert Systems
Applications. pp. 1-15. Springer Berlin Heidelberg, Berlin, Heidelberg (1999)
Groh, B.; Eklund, P.W.: Algorithms for creating relational power context families
from conceptual graphs. In: Proceedings of ICCS 1999. pp. 389400 (1999), https:
//doi.org/10.1007/3-540-48659-3_24

Hereth, J.: Relational scaling and databases. In: Priss, U., Corbett, D., Angelova,
G. (eds.) Proceedings of ICCS 2002. LNAI, vol. 2393, pp. 62-76. Springer, Heidel-

berg (2002)

Huchard, M., Hacene, M.R., Roume, C., Valtchev, P.: Relational concept discovery
in structured datasets. Annals of Mathematics and Artificial Intelligence 49(1-4),
39-76 (2007)

Huchard, M., Roume, C., Valtchev, P.: When concepts point at other concepts:
the case of UML diagram reconstruction. In: Proceedings of FCAKDD 2002. pp.
32-43 (2002)

Kotters, J.: Object configuration browsing in relational databases. In: Valtchev,
P., Jaschke, R. (eds.) Proceedings of ICFCA 2011. LNCS, vol. 6628, pp. 151-166.
Springer (2011)

Kotters, J.: Concept lattices of a relational structure. In: Pfeiffer, H.D., Ignatov,
D.1., Poelmans, J., Gadiraju, N. (eds.) Proceedings of ICCS 2013. LNCS, vol. 7735,
pp. 301-310. Springer (2013)

Kotters, J.: Intension graphs as patterns over power context families. In: Huchard,
M., Kuznetsov, S. (eds.) Proceedings of CLA 2016. CEUR Workshop Proceedings,
vol. 1624. CEUR-WS.org (2016)

Prediger, S., Wille, R.: The lattice of concept graphs of a relationally scaled context.
In: William M. Tepfenhart, W.R.C. (ed.) Proceedings of ICCS 1999. LNAI, vol.
1640, pp. 401-414. Springer (1999)

Priss, U.: Lattice-based information retrieval. Knowledge Organization 27(3), 132
142 (2000)

Sowa, J.F.: Conceptual graphs for a data base interface. IBM Journal of Research
and Development 20(4), 336-357 (1976)

Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley, Reading, MA (1984)

Wille, R.: Conceptual graphs and formal concept analysis. In: Lukose, D., Delu-
gach, H.S., Keeler, M., Searle, L., Sowa, J.F. (eds.) Proceedings of ICCS 1997, 5th
International Conference on Conceptual Structures. LNCS, vol. 1257, pp. 290-303.
Springer, Heidelberg (1997)

