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Abstract. A concept lattice is said to be binary if every formal concept
covers at most two other concepts and is covered by at most two. These
particular lattices can be seen as a generalization of decision trees (which
rely on binary yes/no decisions). A non-binary lattice is binarizable if and
only if it can be embedded into a binary lattice. We show in this paper
that crown-free lattices are exactly binarizable ones. We also provide an
algorithm which binarizes any crown-free concept lattice by adding and
modifying a minimum number of concepts.
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1 Introduction

Binary decision systems (choosing one among two possibilities) are usually more
interpretable and clearer than more complex systems (choosing one among k)
and for many data structures, the binary case is the standard case. For instance,
in machine learning, decision trees [3] can be de�ned with any number of children
per nodes, but one generally uses binary decision trees.

Moreover, the use of decision trees for prediction can be seen as recursively
asking whether a particular individual has or not a chosen attribute hence nodes
can be seen as sets of individuals sharing some attribute(s). As formal concepts
are elements of concept lattices which also represent objects with common at-
tributes, concept lattices and decision trees are strongly linked : concept lattices
can be seen as a collection of overlapping decision trees [2].

We study binary lattices associated with formal contexts. By binary, we mean
a concept lattice such that each formal concept covers at most two other concepts
and is covered by at most two concepts. We will focus on binarizable lattices,
i.e. lattices which can be embedded into a binary lattice. This is similar to
the transformation of a non-binary node in a decision tree into an equivalent
sequence of binary nodes. In a concept lattice, this amounts to adding some new
formal concepts and modifying some existing concepts by adding some objects
and/or attributes.

We show in this paper that binarizable lattices are exactly crown-free lattices.
Crown-free lattices are an interesting case of lattices as they only have a poly-
nomial number of elements, admit strong properties and a convenient graphical



representation [4], [5]. These lattices are equivalent to totally balanced hyper-
graphs which can be seen as a generalization of trees (they are hypergraphs with
no special cycle) and can be characterized by a sequence of trees [7].

This paper is organized as follows: the next section contains basic results and
de�nitions linked to crown-free lattices and formal concept analysis. Section 3
presents our algorithm of binarization of a crown-free set system used to prove
the equivalence between crow-free and binarisable lattices. Section 4 gives an
illustrative example of binarization applied to formal concept analysis. Finally,
Section 5 concludes and gives some topics of future research.

2 Preliminaries

In this paper, all the sets, posets and lattices are �nite.
A poset (partially ordered set) is a pair (A,≤) such that A is a nonempty set

and ≤ a re�exive, antisymetric, transitive binary relation on A. (A,≥) is called
the dual of (A,≤).

De�nition 1. A poset (A,≤) can be embedded into a poset (B,≤) if there exists
f : A→ B such that for all A1, A2 ∈ A, A1 ≤ A2 if and only if f(A1) ≤ f(A2)

In a poset (A,≤), we note ≺ the covering relation : ∀U, V ∈ A, U ≺ V (V
covers U or U is covered by V ) if and only if U < V and @X ∈ A, U < X < V .
One can then represent a poset by its Hasse diagram. On such a diagram, each
element of A is represented by a node and U, V ∈ A are linked by a segment
going upward if and only if U ≺ V .

A poset (L,≤) is a lattice if inf{U, V } (the largest element that is smaller
than or equal to U and V , written U ∧ V and also called the meet of U and V )
and sup{U, V } (the smallest element that is larger than or equal to U and V ,
written U ∨ V and also called the join of U and V ) exist for all U, V ∈ L.

In formal context analysis, a formal context is a triplet K = (G,M, I) with
G a set of objects, M a set of attributes and I ⊆ G×M a binary relation.

De�nition 2. A formal concept associated with a formal context K = (G,M, I),
is a pair (A,B) with:

� A ⊆ G, B ⊆M
� {y ∈M |∀x ∈ A, xIy} = B
� {x ∈ G|∀y ∈ B, xIy} = A

A is called an extent and B is called an intent.

The concept lattice LK associated with a formal context K is the lattice
of all concepts of the formal context with (A1, B1) ≤ (A2, B2) if and only if
A1 ⊆ A2 and B2 ⊆ B1. An example of a concept lattice is represented in Figure
1 with blue semicircles representing attributes and black semicircles representing
objects and Table 1 gives the concepts of this formal context. We will call extent



(∅, {c1, c2, c3, c4, c5, c6, c7, c8})
({r2}, {c6, c7, c8})
({r1}, {c3, c4, c5})
({r3}, {c2, c3, c4, c6, c8})
({r5}, {c1, c2, c3})
({r2, r4}, {c7, c8})
({r2, r3}, {c6, c8})
({r1, r3}, {c3, c4})
({r3, r5}, {c2, c3})
({r2, r3, r4}, {c8})
({r1, r3, r5}, {c3})
({r1, r2, r3, r4, r5}, ∅)

Table 1: Example of formal
concepts (associated with Ta-
ble 2)

c1 c2 c3 c4 c5 c6 c7 c8
r1 × × ×
r2 × × ×
r3 × × × × ×
r4 × ×
r5 × × ×

Table 2: Example of a
cross table associated
with Table 1

lattice of a concept lattice the lattice (A,⊆) with A the set of extents of the
formal concepts and intent lattice the lattice (B,⊆) with B the set of intents.
These two lattices are the dual of each other and the concept lattice can be seen
as merging them hence working on the intent lattice or on the extent lattice is
equivalent to working on the concept lattice.

The intent lattice and the extent lattice of a concept lattice are lattices whose
elements are subsets of the same set. They are set systems.

De�nition 3. S is a set system on a set V if :

� S ⊆ 2V ,
� S is closed under intersection (i.e. A ∈ S,B ∈ S =⇒ A ∩B ∈ S),
� S has a minimum and a maximum element.

Note that all the de�nitions given in this paper for lattices (embdedded, binary,
crown-free, ...) can be extended to set systems as for a given set system S, (S,⊆)
is a lattice.

Formal contexts can also be represented as matrices, rows being the objects
and columns the attributes they can have. Table 2 gives the matrix associated
with the concept lattice of Figure 1 (with 1 replaced by × symbols and 0 replaced
by a blank for readability purposes).

Moreover, every �nite lattice L = (L,≤) can be associated with a formal
context KL ([1], [6]) such that its concept lattice LKL is equivalent to the initial
lattice.

We will focus on a particular type of lattices : crown-free lattices (i.e. lattices
with no crown).

De�nition 4. A crown is a poset (X1, X
′
1, . . . , Xn, X

′
n) such that for all i ≥ 2,

Xi < X ′i−1, Xi < X ′i and X1 < X ′n, X1 < X ′1 and there is no other comparability
relation between these elements.
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Fig. 1: Concept lattice associated with the formal context of Table 2

The Hasse diagrams of a 3-crown and of an n-crown are given in Figure 2.
The concept lattice represented in Figure 1 does not contain any crown. One can
remark that if (L,≤) is a 3-crown free lattice, for all A,B,C ∈ L, A ∧ B ∧ C ∈
{A ∧B,A ∧ C,B ∧ C}.

X ′1 X ′2 X ′3

X1 X2 X3

(a) 3-crown

X ′1 X ′2 X ′n−2 X ′n−1 X ′n

X1 X2 X3 Xn−1 Xn

......

(b) n-crown

Fig. 2: Hasse diagram of a crown

3 Binary lattices and crown-free lattices

In binary decision trees, each internal node has exactly two children. More gen-
erally, binary trees are trees such that each node has at most two children.
Moreover the structure of tree implies that every node has only one parent.
The use of a decision tree is based on the simple idea to ask successive yes/no
questions about an individual in order to classify it according to the known in-
dividuals. We extend the de�nition of these binary structures to lattices, taking
into account that elements of a lattice can be covered by more than one element.
In these structures, yes/no questions about a single attribute are replaced by a
question about two di�erent attributes. An object can then have only one of the
two attributes or both of them.



De�nition 5. Let L = (L,≤) be a �nite lattice. L is said to be binary if

∀v ∈ L, v 6= ⊥ =⇒
{
|{u ∈ L | u ≺ v}| ≤ 2
|{w ∈ L | v ≺ w}| ≤ 2

If only the �rst condition is respected, L is said to be lower-binary.

We will characterize binary lattices and those which can be embedded into a
binary lattice.

De�nition 6. Let L = (L,≤) be a �nite lattice. L is binarizable if and only if
there exists a lattice L′ = (L′,≤) such that L can be embedded in L′ and L′ is
binary.

We will �rst prove that binarizable lattices are crown-free (Proposition 8).
The intuition of this result can be summarized as follows : considering an element
Y covering more than three elements, in an attempt to binarize the lattice, Y
would cover two elements Y ′ and Y ′′ which must be the joins of the incomparable
elements they cover. We show that in a crown, Y ′ = Y or Y ′′ = Y which is not
possible. The intuition is easy to understand on a 3-crown. For example in Figure
2, it is impossible to create the union of X ′1 and X ′2 without X ′3.

Property 7. Let L = (L,≤) be a �nite lattice and X1, X
′

1, . . . , Xn, X
′

n ∈ L. If
(X1, X

′
1, . . . , Xn, X

′
n) is a crown of L then (X1, X1 ∨X2, . . . , Xn, Xn ∨X1) is a

crown of L.

Proof. We show that Xi ∨Xi+1 ‖ Xj for all j 6= i, i+1 mod n. Indeed, Xi ‖ Xj

and Xi+1 ‖ Xj by de�nition of a crown hence Xi ∨ Xi+1 � Xj . Moreover
Xj ‖ X ′i by de�nition of a crown. Yet for all i ≤ n, Xi ≤ X ′i and Xi+1 ≤ X ′i
hence Xi ∨Xi+1 ≤ X ′i. Hence Xj � Xi ∨Xi+1. Hence Xj ‖ Xi ∨Xi+1. ut

We will therefore only consider cycles of the form (X1, X1∨X2, . . . , Xn, Xn∨
X1) in the proofs.

Proposition 8. Let L = (L,≤) be a �nite lattice. If L is binarizable then L is
crown-free.

Proof. We �rst show that any binary lattice is crown-free by induction on the
size of the crown. Suppose (L,≤) is a binary lattice containing a 3-crown. Let
(X1, X1 ∨X2, X2, X2 ∨X3, X3, X3 ∨X1) a 3-crown and Y = sup(X1, X2, X3) =
sup(X1∨X2, X2∨X3, X3∨X1). (L,≤) is binary so Y covers at most two elements
Y ′ and Y ′′ and {Xi ≤ Y ′ ∪ Y ′′} = {X1, X2, X3}. Y is the supremum of X1 ∨
X2, X2 ∨X3, X3 ∨X1 and Y ′ ≺ Y, Y ′′ ≺ Y hence, by the pigeonhole property,
we can suppose without loss of generality that X2 ∨X3 ≤ Y ′ and X3 ∨X1 ≤ Y ′.
Hence X1 < Y ′ and X2 < Y ′ so X1 ∨ X2 ≤ Y ′ hence Y ′ ≥ Y which is a
contradiction.

Suppose that any (L,≤) containing a crown of size inferior or equal to n− 1
(with n > 3) is not binary. Let (L,≤) a binary lattice containing an n-crown.
Let (X1, X1 ∨X2, . . . Xn, Xn ∨X1) a crown and Y = sup(X1, . . . Xn). (L,≤) is



Y

X1 X2

...
Xn−1 Xn

(a) Initial con�guration

Y

X1

... ......

Xi ∪Xj

Xi Xj Xn

(b) Example of �rst step

Fig. 3: Binarization

binary hence Y covers at most two elements Y ′ and Y ′′. Y = sup(X1, . . . , Xn)
hence 1 ≤ |{Xi ≤ Y ′|i ≤ n}| < n and 1 ≤ |{Xi ≤ Y ′′ | i ≤ n}| < n. Y is
binary hence {Xi ≤ Y ′ | i ≤ n} ∪ {Xi ≤ Y ′′ | i ≤ n} = {Xi | 1 ≤ i ≤ n} so we
can suppose without loss of generality that |{Xi ≤ Y ′ | i ≤ n}| ≥ 2. Suppose
moreover that X1 � Y ′. Let j = min{i ≤ n | Xi ≤ Y ′} and j′ = max{i ≤
n | Xi ≤ Y ′}. (Xj′ , Xj′ ∨ Xj′+1 mod n, Xj′+1 mod n . . . , Xn, Xn ∨ X1, X1, X1 ∨
X2, X2 . . . , Xj , Y

′) is a crown of size inferior or equal to n − 1 and superior to
3. Indeed for all i < j and for all i > j′, Xi � Y ′. Hence the lattice has a crown
of size inferior or equal to n− 1 hence by induction hypothesis the lattice is not
binary.

By de�nition of embedding and of a crown, for all lattice (L,≤) containing a
crown, if (L,≤) can be embedded in (L′,≤) by a function f , then (X1, X

′
1, . . . Xn,

X ′n) is a crown in (L,≤) if and only if (f(X1), f(X
′
1), . . . , f(Xn), f(X

′
n)) is a

crown in (L′,≤). By the previous result, if (L′,≤) has a crown then (L′,≤) is
not binary hence if (L,≤) has a crown, (L,≤) is not binarizable.

In this proof we only used the fact that for all Y in a binary lattice, Y covers
at most two elements. If Y is covered by more than 3 elements, the same proof
can be applied to the dual of the lattice in which Y covers more than 3 elements.

ut

We will now show that any crown-free lattice can be embedded in a binary
lattice (Proposition 14). We will work on set systems associated with lattices
and use Algorithm 1 in order to transform any crown-free set system into a
lower-binary set system. Each non-binary element is transformed into a binary
one by creating unions of some of the elements it covers. In order to keep the
closure under intersection of the set system, the elements used to created the
new elements have to be chosen wisely.

De�nition 9. Let {X1, . . . , Xn} be a set of incomparable subsets of the same
set. Xi and Xj are said to be of maximal intersection among {X1, X2, . . . Xn}
if and only if there does not exist k 6= i, j such that Xi ∩ Xj ( Xi ∩ Xk or
Xi ∩Xj ( Xj ∩Xk.

One step of the process is illustrated in Figure 3.



Algorithm 1: Lower-binarization of a crown-free set system

Data: S a set system
Result: B(S) a set system such that every element covers at most two other

elements and S can be embedded into B(S)
1 B(S) = S
2 for Y ∈ S do

3 C = {X ∈ B(S) | X ≺ Y }
4 while |C| > 2 do

5 Find Xi, Xj of maximal intersection among C
6 B(S) = B(S) ∪ {Xi ∪Xj}
7 C = C ∪ {Xi ∪Xj}\{Xi, Xj}
8 return B(S)

The process adds as few elements as possible to the set system to make it
binary. Indeed, if an element Y covers k elements X1, . . . , Xk, our construction
adds exactly k − 2 elements.

The following technical lemmas will be used to prove Proposition 13. Note
that all these lemmas only require the set system to have no 3-crowns and not
to be crown-free.

Lemma 10. Let L be a set system with no 3-crown and {X1, . . . , Xn} ⊂ L a
set of incomparable elements of L.

Let Xi and Xj of maximal intersection among {X1, . . . Xn}.
Then,

∀l ∈ {1, . . . , n}, Xl ∩ (Xi ∪Xj) =

{
Xi ∩Xl

or
Xj ∩Xl

Proof. Let Xi, Xj of maximal intersection among {X1, . . . , Xn}.
L has no 3-crowns, so Xi ∩Xj ∩Xl ∈ {Xi ∩Xj , Xi ∩Xl, Xj ∩Xl}.
Xi and Xj are of maximal intersection so Xi ∩Xj * Xl ∩Xi and Xi ∩Xj *

Xl ∩ Xj . Hence Xi ∩ Xj ∩ Xl ∈ {Xi ∩ Xl, Xj ∩ Xl} i.e. Xj ∩ Xl ⊆ Xi ∩ Xl or
Xi ∩Xl ⊆ Xj ∩Xl. Yet

∀l,Xl ∩ (Xi ∪Xj) = (Xi ∩Xl) ∪ (Xj ∩Xl)

Hence

∀l,Xl ∩ (Xi ∪Xj) =

{
Xi ∩Xl

or
Xj ∩Xl

⇐⇒

{
Xj ∩Xl ⊆ Xi ∩Xl
or
Xi ∩Xl ⊆ Xj ∩Xl

ut

Lemma 11. Let L be a set system with no 3-crown and {X1, . . . , Xn} ⊂ L
the set of elements covered by Y ∈ L. Taking Xi, Xj, two elements of maximal
intersection among {X1, . . . Xn} :

∀Z ∈ L\ {X1, . . . , Xn, Y } , Z ∩ (Xi ∪Xj) ∈ L ∪ {X ∪ Y }.



Proof. If Z ∩ Xi ⊆ Xj then Z ∩ (Xi ∪ Xj) = Z ∩ Xj . As L is closed under
intersection, Z ∩Xj ∈ L. The same goes for Xj .
Suppose now Z ∩Xi\ {Xj} 6= ∅ and Z ∩Xj\ {Xi} 6= ∅. Hence Xi ∩Xj ⊆ Z, as
L has no 3-crowns. So Xi ∩Xj ⊆ Z ∩ Y .
If Y ⊆ Z, the result is obvious. If Z ‖ Y or Z ( Y then Z ∩ Y ( Y so there
exists k such that Z ∩ Y ⊆ Xk as Y exactly covers the elements (X1, . . . , Xn).
Xi∩Xj ⊆ Z ∩Y ⊆ Xk and Xi, Xj are of maximal intersection so k = i or k = j.
Hence Z∩Y ⊆ Xi (or symmetrically Z∩Y ⊆ Xj) which leads to Z∩Y ⊆ Z∩Xi

so Z ∩ Y ⊆ Z ∩ (Xi ∪Xj).
Moreover as Xi ∪Xj ⊆ Y , Z ∩ (Xi ∪Xj) ⊆ Z ∩Y , by double inclusion Z ∩ (Xi ∪
Xj) = Z ∩ Y . Yet Z ∩ Y ∈ L as L is closed under intersection, which completes
the proof. ut

Lemma 12. Let L be a set system with no 3-crown and {X1, . . . , Xn} ∈ L
the set of elements covered by Y ∈ L. For all Xi, Xj of maximal intersection
among {X1, . . . , Xn}, all elements of {X1, . . . Xn} ∪ {Xi ∪Xj} \ {Xi, Xj} are
incomparable.

Proof. We prove that for all k 6= i, j, Xi ∪Xj ‖ Xk.
As, for all k 6= i, j, Xi, Xj and Xk are incomparable, Xi * Xk and Xj * Xk

hence Xi ∪Xj * Xk.
As L has no 3-crown, Xi ∩Xj ∩Xk ∈ {Xi ∩Xj , Xi ∩Xk, Xj ∩Xk} so as Xi and
Xj are of maximal intersection, Xi ∩ Xj 6⊂ Xi ∩ Xk and Xi ∩ Xj 6⊂ Xj ∩ Xk.
So Xi ∩ Xj ∩ Xk ∈ {Xi ∩ Xk, Xj ∩ Xk}. Suppose Xi ∩ Xj ∩ Xk = Xi ∩ Xk.
We then have Xi ∩Xk ⊆ Xj . Moreover, as (X1, . . . Xn) are incomparable, there
exists x ∈ Xk such that x /∈ Xj . Xi ∩ Xk ⊆ Xj hence x /∈ Xi. So there exists
x ∈ Xk, x /∈ Xi ∪Xj so Xk * Xi ∪Xj . ut

Proposition 13. Algorithm 1 applied on a set system S returns a set system
B(S) such that:

� for all X ∈ B(S), X covers at most two elements,
� S ⊆ B(S),
� for all X ∈ S, X is covered by the same number of elements in S and in
B(S).

Proof. By Lemma 10 and 11, creating new elements as described in the construc-
tion preserves the closure under intersection of the system. Lemma 10 shows
that the intersection of any element of the considered part of the system and
the new element is already in the system and Lemma 11 shows the same for
other elements. Moreover, the minimum element and the maximum element are
unchanged as the algorithm only adds unions of two elements hence the system
is a set system. Lemma 12 shows that if Xi and Xj are chosen from the set of
incomparable elements {X1, . . . , Xn} covered by an element Y to create a new
element, the only changes in the covering relation of the system are Xi∪Xj ≺ Y ,
Xi ≺ Xi ∪ Xj and Xj ≺ Xi ∪ Xj . Hence, no new crown is added and the set
system is still crown-free. Moreover, for k = i, j, Xk is not anymore covered by



Y but by Xi ∪ Xj which keeps unchanged the number of covering elements of
Xk. The other elements are unchanged. Lemma 12 also proves that the process
can be iterated if the set system still has no 3-crowns.

The algorithm ends when all elements of the initial system cover at most two
elements. Moreover, the elements added by the construction cover exactly two
elements by construction. ut

Proposition 14. Let L = (L,≤) be a �nite lattice. If L is crown-free then L is
binarizable.

Proof. Let (A,⊆) be the extent lattice of KL (the formal context associated
with L). Algorithm 1 can be applied on the set system A. By Proposition 13,
the obtained set system B(A) is such that A ⊆ B(A) and B(A) is lower-binary.
Moreover L can trivially be embedded in the lattice L′ = (B(A),⊆).

Let (B,⊆) be the intent lattice of L′. By Proposition 13, B(B), the result of
Algorithm 1 applied on B, is binary. Finally, L′ can be embedded in the binary
lattice L′′ = (B(B),⊆) so L can also be embedded into L′′ by transitivity of the
embedding. ut

Propositions 8 and 14 prove the main result of this paper.

Theorem 15. Let (L,≤) be a �nite lattice. (L,≤) is binarizable if and only if
(L,≤) is crown-free.

4 Example

We will now apply our binarization algorithm on a small concept lattice. Table
3a gives a small formal context describing some animals to apply our algorithm.
The formal concepts associated with this context are given in Table 3b. The
representation of the Hasse diagram of the concept lattice associated with this
formal context (Figure 4) gives an easy way to see non-binary formal concepts.

Here, the concept representing the duck is covered by three concepts and
the concept representing the attribute swim covers three concepts. This repre-
sentation also shows that the lattice is crown-free so it it binarizable and our
algorithm can be applied.

A binarization of the set system associated with the extent lattice of this con-
cept lattice gives the Hasse diagram given in Figure 5a with the new latent node
(a new attribute) represented as a rectangle. We deliberately ignore the fact that
the element ⊥ is not binary as binarizing it would not increase interpretability or
help using the model in machine learning. The Hasse diagram associated with a
binarization of the extents and of the intents is represented in Figure 5b and is as-
sociated with the formal context of Table 4. The process creates two new formal
concepts : one associated with a new object obj (which could be interpreted as the
existence of a bird eating seeds, for example a canary) and one associated with a
new attribute att (which suggests the existence of an attribute allowing to distin-
guish salmon, shark, barracuda and crocodile from frog and duck) and modi�es
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salmon × ×
shark × ×

barracuda × × ×
frog × ×

crocodile × × ×
eagle × × ×

ostrich × × ×
duck × × × × ×

(a) Cross-table of animals
data

({∅}, {scale, teeth, swim, �y, seed, feather, air})
({crocodile}, {teeth, swim, air})
({duck}, {swim, �y, seed, feather, air})
({barracuda}, {scale, teeth, swim})
({ostrich, duck}, {seed, feather, air})
({salmon, barracuda}, {scale, swim})
({eagle, duck}, {�y, feather, air})
({shark, barracuda, crocodile}, {teeth, swim})
({frog, crocodile, duck}, {air, swim})
({eagle, ostrich, duck}, {feather, air})
({frog, crocodile, eagle, ostrich, duck}, {air})
({salmon, shark, barracuda, frog, crocodile}, {swim})

(b) Formal concepts of animals formal context

Table 3: Animal example formal context
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salmon × × ×
shark × × ×

barracuda × × × ×
frog × ×

crocodile × × × ×
eagle × × ×

ostrich × × ×
obj × × × ×
duck × × × × ×

Table 4: Binarized formal context

⊥

barracuda
crocodile

duck

salmon

scale teeth

shark
frog

eagle

�y
seed

ostrich

feather

swim air

>

Fig. 4: Hasse diagram of the lattice associated with Table 3b
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(a) Binarization of the extents

⊥

barracuda
crocodile

duck
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scale teeth

shark

att

frog
obj

eagle

�y
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feather

swim air

>

(b) Binarization of the extents and the in-
tents

Fig. 5: Hasse diagram of binarization of the lattice associated with Table 3b

other formal concepts using this new attribute and object. The binarization pro-
cess does not give a unique solution. Indeed, att could have been associated with
a new concept {(shark, frog, barracuda, crocodile, duck), (teeth, att, swim)} in-
stead of {salmon, shark, barracuda, crocodile), (scale, att, swim)} as the two in-
tersections concerned are incomparable. This allows to make interactive systems
giving the user di�erent choices to binarize each concept. The model can then
be used in the same way a decision tree is used : beginning from the top of the
lattice, a new element is propagated in the nodes asking at each node whether it
has the attribute of the right child or of the left child of the current node beforce
classifying it as close to some known concept.

5 Conclusion

We presented a simple and e�cient algorithm to transform a crown-free set
system into a binary one. This construction allows us to prove the equivalence
between binary lattices and crown-free ones. Our algorithm can be easily used
in formal context analysis in order to modify a concept lattice to obtain a bi-
nary one, adding some objects and attributes. Moreover, our algorithm can be
independently applied on the intents only or on the extents only or on both. The
system being binary, it is easy to interpret and understand. The equivalence be-
tween binary lattices and crown-free ones makes of crown-free lattices a perfect
candidate to extend machine learning ideas developped in decision trees to more
complex systems. Indeed, it can then be used in machine learning to predict the



class of a given object by propagating it in the concept lattice recursively asking
whether the object has or not the attribute represented by the predecessor of
the concept in the lattice. Moreover, the binarization we proposed is not unique
but always adds the same number of elements to the lattice, which allows the
development of interactive systems to build the model. Topics for future work
include :

� a top-down process to build binary lattices inspired from decision trees,
� machine learning applications of lattice structures,
� study of the interest of intersecting classes in the machine learning perspec-

tive and the classi�cation one.
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