
RA: An XML Schema Reduction Algorithm

Angela C. Duta1, Ken Barker1, and Reda Alhajj12

1 ADSA Laboratory, Department of Computer Science, University of Calgary
2500 University Drive NW, Calgary, Canada
{duta,barker,alhajj}@cpsc.ucalgary.ca

http://www.adsa.cpsc.ucalgary.ca
2 Department of Computer Science, Global University, Beirut, Lebanon

Abstract. XML file comparison and clustering are two challenging tasks
still accomplished predominantly manually. XML schema contains infor-
mation about data structure, types, and labels found in an XML file. By
reducing the XML schema tree to its significant nodes the task of finding
structural equivalent schemas, and implicit XML files that refer to the
same entities, is simplified.

1 Introduction

1.1 Hypothesis and Methodology

New XML files are added daily to databases triggered by the increased popularity
of XML as the new database exchange standard. Organizing XML files in clusters
must be based on the information they store related to a set of entities. This
task is done by determining some equivalence measure between XML schemas
and checking that it is above a minimum threshold. There is much work ([5],
[6], [8], [9], [10]) in this area but we believe there is still room to contribute
by finding files that refer to the same set of entities if their tree structures
are significantly different. To determine schema equivalence for files that have
a different organization, we propose a preparatory step for an efficient schema
comparison.

The difficulty of comparing and finding matchable schemas arises for two
reasons: (1) there are three data storage units in XML: elements, attributes, and
text content, and (2) the hierarchical feature of XML structures. Thus, XML
schema equivalence must be evaluated from three perspectives: (1) hierarchi-
cal structure (structural equivalence), (2) elements and attributes data types
(syntactic equivalence), and (3) elements and attributes names (semantic equiv-
alence). This paper focuses on the structural equivalence of XML schema trees.
We challenge the current trend in XML equivalence that considers “elements at
higher levels ... more relevant than subelements deeply nested” [2] by focusing on
leaf nodes. Our argument is that leaf nodes store data in XML data files, while
higher level nodes are used primarily to intelligibly organize the information
stored in leaves.

1.2 Contribution

By reducing an XML schema to its essential nodes, our method improves the
process of determining structural equivalence. This paper defines the essential
information that must be extracted from each XML schema so that a comparison
between them is efficient. The novelty of our method is to prepare XML schemas
for structural matching based on the equivalent leaves content rather than hier-
archical context and vicinities. A leaf content3 is defined by (1) data type and
(2) number of minimum and maximum occurrences. The Reduction Algorithm
(RA) eliminates from XML trees organizational nodes and nodes with no data
content; but it preserves the leaf nodes and their connections to other leaf nodes.
The result is a simplified structure that stores the same data as the source struc-
ture but is efficiently compared to other XML structures. This paper presents
the preprocessing step for structural matching that is formed by schema reduc-
tion. It will be followed by a full method for determining structural equivalence
in the near future.

1.3 Motivating Example

Figures 1 and 2 illustrate two simple examples of DTDs that store data about
employees, projects, and tasks for a company. Note that the element data type
definitions have not been included. No mechanism has yet appeared in the lit-
erature to clearly compare these types of XML schemas to decide if they are
equivalent. This paper presents a reduction method for XML schemas to be
used before the equivalence algorithm is executed.

1.4 Paper Organization

The balance of this paper is organized as follows. Section 2 briefly discusses sev-
eral developed methods to evaluate XML schema equivalence. Section 3 defines
several concepts used in this paper while Section 4 introduces the Reduction
Algorithm which is evaluated in Section 5. This paper draws some conclusions
in Section 6.

<!ELEMENT company1 (employee+, project*)>
<!ELEMENT employee (eid | sin, name, pid*)>
<!ATTLIST employee address CDATA #REQUIRED>
<!ELEMENT project (pid, description)>

Fig. 1. Repeated employee and project elements

3 Note that a leaf content is different from the term element content used by W3C
[4], which is formed by text and attributes.

<!ELEMENT company2 (employee+)>
<!ELEMENT employee (sin, name, address*, projects?)>
<!ATTLIST employee eid CDATA #REQUIRED>
<!ELEMENT projects (project+)>
<!ELEMENT project (description?)>
<!ELEMENT description (#PCDATA)>
<!ATTLIST description budget CDATA #REQUIRED>

Fig. 2. Nested structure of employee and project elements

2 RELATED WORK

Database equivalence has been of interest for more than thirty-five years. More
recently, XML equivalence is being investigated by the database community.
W3C has provided a starting point to address this problem by defining canonical
forms for XML [3]. Salminen and Tompa [11] suggest that a better approach
should be developed which does not omit any information from the XML source
document.

Our work is based on the XML normal form defined by Arenas and Libkin [1].
They define a generalized BCNF for nested XML structures named XNF (XML
Normal Form). XNF optimizes two very common problems in XML: update
anomalies and redundancy. The algorithm developed to transform any arbitrary
DTD into a well-design DTD in XNF is proven to be lossless [1].

A generic schema matching algorithm is presented [9] that can be applied to
XML, relational, or other schema types. The schema matching is based on au-
tomatic linguistic matching (elements’ name) and structural matching (schema
structure, path matching, constraints, and element data types). Original tech-
niques such as these focus on the leaf nodes and context-dependent matching of
shared complex types.

Lee et al. [8] propose a method for scalable integration of DTDs. The method
is based on two steps (1) finding similar DTDs and (2) generating DTD clusters.
The similarity between two DTDs are evaluated from three perspectives: (1) se-
mantic similarity (similarity between node labels, constraints and path context
(ascendants)), (2) immediate descendant similarity, and (3) leaf context similar-
ity. Ontological similarity OntologySim [8] (a component of semantic similarity)
is based on finding similar labels or synonyms (using WordNet [7]) and the
depth (number of similar subsequent characters) for abbreviations (such as emp
for employee). Constraints such as +, *, ?, or none are given weights of similarity.
The authors have conducted several experiments using more than 150 DTDs to
demonstrate their approach has better performance than others. This work is
similar to ours in that it addresses some DTD transformation rules also adopted
by us. It is different from our work because it evaluates the path context for each
element which makes it unsuitable for trees with significant different structures.

The problem of clustering XML documents based on their structural similar-
ity is also addressed by Nierman and Jagadish [10]. A collection of documents
with DTD’s from the same domain is divided into smaller sets of very similar

DTDs based on the edit distances. The edit distance is calculated using dynamic
programming as the minimum cost to transform a tree A into B through opera-
tions such as relabel node, insert node, delete node, insert tree, and delete tree.
Clusters are formed for DTDs where the edit distance is minimal. This method
works for documents with DTDs having the same tree structure but it cannot
be applied to trees that have a significant different structure even though they
refer to the same domain.

COMA [6] is a system that combines several simple and hybrid matching
algorithms. The simple algorithms refer to one of these aspects in DTD: labels,
data types, or user input. Hybrid matchers focus either at the element level (i.e.
Name and TypeName) or include the structural organization (i.e. NamePath,
Children, and Leaves). One novelty of this approach is reusing the previous
match results which proved to be efficient in some cases but missed some match-
ings in other cases. Our approach extends the structural matchers Children and
Leaves by combining and generalizing them to any type of node (repeated, op-
tional, alternative options, key, reference, etc.)

An evaluation of the most recent approaches in schema matching for rela-
tional or XML models is available [5]. Do et al. [5] present an objective compar-
ison of different approaches that use different effectiveness evaluation measures.
The conclusion of this work is that the effectiveness of these tools is unclear.
This is because there has been no uniform system used to evaluate the effective-
ness of each tool. Do et al. [5] suggest creation of a schema matching benchmark
containing real-length XML schemas to be used to test, evaluate, and compare
future approaches. We consider including this proposed framework in our next
paper that develops a new schema equivalence method based on the Reduction
Algorithm described in this paper.

3 ALGORITHM FRAMEWORK

Before presenting the Reduction Algorithm for preprocessing schemas we first
define a framework.

Definition 1. An XML schema is defined as a tuple S = <root, E, A, T> and
four mappings type, descendent, minOccurences, and maxOccurences, as follows:

– E is a finite set of elements, A a finite set of attributes, and T a finite set
of text contents.

– root is the only element from which all other elements, attributes or text
contents are direct or indirect descendants.

– type is a mapping from E, A, or T to the known simple XML data types
(integer, string, data etc.). Consider e an element in E, a an attribute in A,
and t a text content in T, then the type mappings are defined as follows:

• type(e) =
{

type(t) : if descendent(e) = t
empty : otherwise

• type(t)= integer, string, date, etc.
• type(a)= integer, string, date, etc.

An attribute or text content cannot be empty. However, an empty element
contains subelements and/or attributes but no text content.

– descendent4 is a mapping from E to itself, A and/or T constructing the
hierarchy of an XML schema. Consider ei an element in E. Ei ⊂ E is the
set of direct subelements of ei , Ai ⊂ A the set of ei’s attributes, and t
its text content from T. The descendent mappings are defined as follows:
descendent(ei) =Ei ∪Ai : if ei has sublements and/or attributes

Ai ∪ t : if ei has attributes and/or text content
empty : if ei has no descendants

– minOccurrences and maxOccurences specify how many times an attribute or
a subelement must appear within an element (the number of occurrences for
attributes is 0 or 1, and for elements it varies between 0 and ∞).

Definition 2. A reduced XML schema is defined to be an XML schema S =
<root, E> where for any element e ∈ E, except the root, the following condition
holds: type(e) 6= empty. A reduced XML tree is the XML tree associated to a
reduced XML schema.

Notice that empty elements are mainly used to structure data in a logical
way for the user. The reduced XML schema eliminates empty elements as they
do not store any data. Thus, type(e)= integer, string, date, etc. A reduced XML
schema has two major advantages over the source XML schema: (1) it has one
node type: the element node, and (2) its hierarchical structure is linearized or its
height greatly reduced. Both features allow an optimized comparison of schemas
that considers the type and amount of data that can be stored by each leaf node
and, ultimately, by the XML data files. The XML reduced tree has only the
nodes essential for storing data. Any additional node in a reduced tree means
more data is stored in the corresponding XML data file. Two reduced trees
are equivalent if their leaf contents are equivalent; and two XML schemas are
equivalent if their corresponding reduced tress are equivalent. The equivalence
of leaf contents includes element-based similarity (like Cupid [9]) considering
name and data type similarity. In addition, our leaf content similarity considers
constraints (number of occurrences, AND constraint for sequence, OR constraint
for choice) for each structure the leaves are part of and constraints (number of
occurrences, primary or foreign key) for each leaf.

XML schema has two types of basic structures that can store data: text
contents and attributes. There is no developed standard for XML that specifies
when an attribute or a text content should be used. Thus, there are many vari-
ants of the same schema from this perspective alone. XML elements are classified
[4] in two large categories: simple elements and complex elements. Simple ele-
ments contain only text data and no attributes or subelements. The term “only
text data” refers to any of the simple data types accepted by XML Schema:
integer, string, boolean, date, etc. Type definitions for elements can use occur-
rence indicators to change the number of times it is required to appear (default
4 Mapping descendent refers to direct descendents.

is once). Attributes are considered to be of simple type similar to simple ele-
ments. The same simple data types apply to both attributes and elements in
XML Schemas. Complex elements are classified in four categories [4]: complex
text-only (CTO), complex empty (CE), complex subelement-only (CSO), and
complex mixed (CM).

4 XML SCHEMA REDUCED TREE

4.1 Nested DTD Notation

XML trees are represented using regular DTD expression operators (?, +, *).
“R” denotes required5 structures or nodes where its presence is necessary for
clarity. Nested, sequence grouped or choice alternative elements are represented
using round parenthesis (). Elements in a tree are ordered if they are part of a
sequence or unordered when part of an all structure. Conversely, attributes are
not ordered. To incorporate both aspects in our approach we consider trees to
be unordered. This simplification is appropriate because it is important to find
equivalent data units, though not necessarily defined in the same order. Thus,
sequence and all structures are considered to be equivalent so they are encoded
similarly using commas between elements. Considering all these notations, in-
spired from DTD, our schema representation is called a nested DTD. The nested
DTD notation incorporates the advantages of both XML Schema and DTD: (1)
it uses compact expressions to define a structure (like DTD), (2) the user can
easily identify the tree root so the hierarchy is evident (like XML Schema), and
(3) it includes a variety of data types (string, integer, boolean, etc.), primary
keys, and foreign keys (like XML Schema).

In the XML tree an element with text content is represented by an element
and a text node; and an attribute by an attribute node. The text node borrows
its label from its element and is nested inside the parent element node. For
ease of understanding we append T as a subscript for text nodes and E for
element nodes. Using the example (a) from Table 1, Title is an element with
PCDATA content that is represented by an element node TitleE and a text node
TitleT . Conversely, an attribute is represented by its label with A appended to
it. Example (b) from Table 1, shows Title as an attribute encoded as TitleA.
The element Project in this example has no text content so it is represented by
an element node ProjectE alone.

4.2 A Bottom-Up Approach for XML Schema Reduced Tree
Construction

Comparison of XML schema trees has two main disadvantages: (1) three node
types: element, attribute, and text and (2) different hierarchical organization.
The scope of RA is to simplify the comparison of XML trees by dealing with
5 The term required written in italics refers to mandatory attributes and elements

using the XML schema syntax [4].

Table 1. Element, text, and attribute nodes notations

Data unit DTD and nested DTD representations

(a) Element, text DTD: <!ELEMENT Title (#PCDATA)>
Nested DTD: TitleE(TitleT #PCDATA)

(b) Element DTD: <!ELEMENT Project EMPTY>
Attribute <!ATTLIST Project Title CDATA #IMPLIED>

Nested DTD: ProjectE(TitleA#CDATA)

a single node type and low height trees. RA eliminates the first disadvantage
by transforming all nodes into a single node type. An attribute or a text node
requires a parent element so an XML tree that has attributes or text nodes also
has elements. The only node type whose existence does not depend on other
nodes is the element. Attribute and text nodes are transformed into element
nodes preserving the height of the XML tree. The first three rules of RA are
strongly connected and must be considered to conserve a single node type.

Reduction Rules Our bottom-up algorithm reduces any XML tree to the
minimum number of nodes required to store the same data in the source XML
file. RA is based on seven rules. The first three rules called conversion rules
convert the attribute and text node types of the source structure into an element
node, and the last four rules called elimination rules eliminate intermediate tree
levels.
Rule 1 A text node from a complex text-only element is transformed into an
attribute node by borrowing the label of the parent element node6.

Table 2. Transformations using Rules 1, 2, 3

Rule Type Transformations

Rule 1 (a) CTO ProjectE(ProjectT , T itleA)
R1⇒

ProjectE(ProjectA, T itleA)

Rule 2 (b) CE ProjectE(TitleA)
R2⇒

ProjectE(TitleE(TitleT))

(c) CM ProjectE(TitleA?, DetailE(DetailT))
R2⇒

ProjectE(TitleE?(TitleT), DetailE(DetailT))

Rule 3 (d) Simple TitleE(TitleT)
R3⇒ TitleE

Text nodes share the data type definitions with attributes except they do not
have labels. Since we are interested in the equivalence of data that is stored, a
text node is represented by an attribute. Thus, a text node is transformed into a

6 The same final result is obtained if it is transformed into an element (element node
and text node).

required attribute node. Table 2 exemplifies Rule 1 applied to the complex text-
only element (CTO). The text node ProjectT is transformed into the attribute
node ProjectA. Note that for clarity, data types are not specified. By following
Rule 1, complex text-only elements become complex-empty elements.
Rule 2 An attribute node is transformed into an element node and a text node.

Rule 2 applies to complex empty and mixed element types. A required at-
tribute node is transformed into a required element formed by an element and a
text node. An optional attribute node becomes an optional element. In example
(b) from Table 2 the attribute node TitleA becomes the structure formed by an
element and a text node TitleE(TitleT). In example (c) the optional attribute
TitleA? transfers its operator to the node element TitleE?.

By following Rules 1 and 2, the complex text-only, empty, or mixed elements
become subelement-only elements. Rule 2 may not appear to serve our purpose
of reducing the height of the XML tree. However, this facilitates comparison
between two schema structures as there are only two node types: element and
text nodes. The attribute node is no longer a node type in the reduced tree.
Rule 3 All text nodes are eliminated.

Before Rule 3 is applied text nodes are attached to leaf (simple element)
nodes. A leaf node is the only element with a text node. The elimination of text
nodes at this point does not create any confusion between an empty (no text
content) or non-empty (with text content) element. The concept of leaf element
nodes is extended to include the data type of the text node. After Rules 1 and 2
are applied, the XML tree has only two types of nodes: element and text. After
Rule 3 is applied there are no more text nodes in the structure and only one
node type is used in the tree: the element node (see Table 2 (d)).

Table 3 details how Rules 1, 2, and 3 are applied for each type of element.
When a rule does not apply for an element type it is represented using a dash
”-”. The table shows the reduced tree is formed by simple and subelement-only
element nodes. The names of the nodes are X, Y , and Z and the appended letter
(A, E, or T) specifies if they are attribute, element, or text nodes.

Table 3. Rules 1, 2, and 3 applied to different element types

Type Initial representation Rule 1 Rule 2 Rule 3

Simple XE(XT) - - XE

CTO XE(XT , YA) XE(XA, YA) XE(XE(XT), YE(YT)) XE(XE , YE)

CE XE(YA, ZA) - XE(YE(YT), ZE(ZT)) XE(YE , ZE)

CSO XE(YE(YT), ZE(ZT)) - - XE(YE , ZE)

CM XE(YA, ZE(ZT)) - XE(YE(YT), ZE(ZT)) XE(YE , ZE)

Rule 4 The reduction7 of a non-repeated element node with non-repeated subn-
odes requires its optional operator (if any) be transferred (Rule 4.1) individually

7 Node reduction means node elimination.

to child nodes if all subnodes are optional, or (Rule 4.2) to the structure that
gathers all its child nodes if at least one subnode is required.

Table 4. Rule 4: Reduction of a non-repeated element with non-repeated subelements

Parent node Child nodes Reduction

R R/? XE(YE(ZE?, VE))
R4.1⇒ XE(ZE?, VE)

? R,? XE(YE?(ZE?, VE))
R4.2⇒ XE(ZE?, VE)?

? ? XE(YE?(ZE?, VE?))
R4.1⇒ XE(ZE?, VE?)

This rule eliminates non-essential nodes that cannot store data in the XML
file. It transfers the parent node’s constraint to its children by maintaining the
connections between subnodes such that the reduced structure has no infor-
mation loss (see Table 4). We next analyze two situations when the parent’s
constraint is allowed to pass and combine directly with its children. Consider
Figure 3 that presents two different initial structures that are reduced to the
same structure. In the first situation (see Figure 3(a)) both child nodes ZE and
VE are optional. Eliminating their parent YE and transferring its optional con-
straint to them results in structure XE(ZE?, VE?) with no loss of information.
Conversely, in the second situation (see Figure 3(b)), after reduction loses the
restriction that VE can never be present without ZE . Rule 4 ensures that no
such loss of information is allowed.

(a) XE(YE?(ZE?, VE?)) ⇒ XE(ZE?, VE?)
(b) XE(YE?(ZE , VE?)) ⇒ XE(ZE?, VE?)

Fig. 3. Loss of information not allowed by Rule 4

Rule 5 The reduction of a non-repeated element with repeated subelements
requires its optional operator (if any) be transferred (Rule 5.1) individually to
child nodes if all subnodes are optional, or (Rule 5.2) to the structure that
gathers all its child nodes if at least one subnode is required.

Table 5. Rule 5: Reduction of a non-repeated element with repeated subelements

Parent node Child nodes Reduction

R +/* XE(YE(ZE+, VE∗))
R5.1⇒ XE(ZE+, VE∗)

? +,* XE(YE?(ZE+, VE∗))
R5.2⇒ XE(ZE+, VE∗)?

? * XE(YE?(ZE∗, VE∗))
R5.1⇒ XE(ZE∗, VE∗)

Rule 5 works similarly to Rule 4 and has no information loss (see Table 5).

Table 6. Rule 6: Reduction of a repeated element with non-repeated subelements

Parent node Child nodes Reduction

+ R,? XE(YE + (ZE , VE?))
R6.2⇒ XE(ZE , VE?)+

+ ? XE(YE + (ZE?, VE?))
R6.1⇒ XE(ZE∗, VE∗)

* R,? XE(YE ∗ (ZE , VE?))
R6.2⇒ XE(ZE , VE?)∗

* ? XE(YE ∗ (ZE?, VE?))
R6.1⇒ XE(ZE∗, VE∗)

Rule 6 The reduction of a repeated element with non-repeated subelements
requires its cardinality be transferred (Rule 6.1) individually to child nodes if
all subnodes are optional, or (Rule 6.2) to the structure that gathers all its
child nodes if at least one subnode is required (see Table 6).

A reduction in the case of a repeated parent element with non-repeated
subelements must be done more carefully so there is no loss of information (see
Table 6). For example, consider the nested structure described by Company(Em−
ployee + (Name,Address)). Reducing this structure to Company(Name+,
Address+) is not the best solution as the constraint of exactly one address for
each name is lost; it also accepts interpretations such as “many employees live
at the same address” or “many addresses for one employee”. Thus, a suitable re-
duction is to use a repeated sequence such as Company(Name,Address)+ that
preserves this restriction. Conversely, if all subnodes are optional then the oper-
ator * or + is transferred as * to each subelement. For example, the structure
Company(Employee+(Name?, Address?)) allows independent values for names
and addresses without requiring a strong connection between them and is re-
duced to Company(Name∗, Address∗). However, if at least one subelement is re-
quired and the rest are optional, e.g. Company(Employee+(Name,Address?)),
then for each address there must exist a name. The reduction in this case trans-
fers the operators + or * to the entire sequence as detailed in Table 6.
Rule 7 The reduction of a repeated element with repeated subelements requires
its cardinality be transferred (Rule 7.1) individually to child nodes if all of
them are optional, or (Rule 7.2) to the sequence that gathers all its subnodes
if at least one subnode is required (see Table 7).

Table 7. Rule 7: Reduction of a repeated element with repeated subelements

Parent node Child nodes Reduction

+ +,* XE(YE + (ZE+, VE∗))
R7.2⇒ XE(ZE+, VE∗)+

* +,* XE(YE ∗ (ZE+, VE∗))
R7.2⇒ XE(ZE+, VE∗)∗

+ * XE(YE + (ZE∗, VE∗))
R7.1⇒ XE(ZE∗, VE∗)

* * XE(YE ∗ (ZE∗, VE∗))
R7.1⇒ XE(ZE∗, VE∗)

Rule 7 works similarly to Rule 6. To preserve the correlation between required
subelements, they are kept inside repeated sequences (see Table 7).

Rules 4-7 apply to situations when either all subelements or none are re-
peated. If a combination of repeated and non-repeated subelements are nested
inside a parent element then we must ensure that a lossless reduction is applied.
There are situations when two rules that contradict each other must be applied
to reduce the outer element. They contradict because a rule allows expression
operators to be transferred to subnodes while the other requires operators to be
transferred to the sequence. The scope of the Reduction Algorithm is to reduce
levels in the XML tree without losing any data node. In these situations if we
allow the operators to be transferred to some subnodes, then some connections
between them are lost. Thus, the expression operator of the outer element must
be transferred to the entire sequence. Figure 4 details two situations. In (a) Rule
6.1 is applied to reduce YE for subnode ZE and suggests the operator + be
passed to ZE and combine with its operator ?. However, Rule 7.2 applied to
YE and VE suggests the operator + be attached to the sequence grouping ZE

and VE . The lossless reduction of this structure reduces YE by transferring its
cardinality to the sequence. A similar situation is presented in Figure 4(b).

(a) XE(YE + (ZE?, VE+))
R6.1,R7.2⇒ XE(ZE?, VE+)+

(b) XE(YE + (ZE , VE∗))
R6.2,R7.1⇒ XE(ZE , VE∗)+

Fig. 4. Combining two rules

All rules detailed in this section were exemplified using sequences. They are
applied similarly to the choice structures by considering that each alternative
within this structure has the operator required if no operator is specified.

The Reduction Algorithm (RA) The bottom-up Reduction Algorithm con-
tains two parts (see Figure 5). The first part prepares the XML schema for reduc-
tion by normalizing and modifying it to use only one node type: elements. The
normalization process is based on the algorithm developed by Arenas and Libkin
[1] that obtains an XNF normal form for XML Schema following the “standard
treatment” of BCNF. The concept of normal form transferred to XML context
XNF refers to a well-designed schema with non-redundant information that pre-
vents update anomalies in the XML data file. Further, the XML Schema in XNF
is a minimal form as redundant element and attribute definitions are removed.
Finally, the Reduction Algorithm eliminates the text and attribute nodes from
the structure by transforming them into element nodes through Rules 1, 2, and
3.

The second part of our algorithm reduces nodes by using Rules 4, 5, 6, and
7 depending on the type of parent and child nodes (repeated, optional, etc.).
These steps generate a reduced structure that preserves the initial constraints of
the XML schema. Transformation rules inspired from Lee et al. [8] and detailed
in Table 8 are used to combine expression operators in Rules 4, 5, 6, and 7.

The result of RA is a reduced XML tree formed by leaf element nodes (ele-
ment with data type). Rule 3 has a deeper meaning after Rules 4-7 are applied
and intermediate element nodes are eliminated. Rule 3 creates the key nodes
that will be compared to determine equivalent schemas.

1. Part 1: Prepare the XML schema for reduction

(a) Convert the XML schema into an XNF using Arenas and Libkin’s

algorithm [1] (normalization).

(b) Represent the XML schema using the DTD nested notation.

(c) Apply Rule 1 to transform text nodes from text-only elements into

attribute nodes.

(d) Apply Rule 2 to transform attribute nodes into element and text

nodes. (It eliminates the attribute nodes.)

(e) Apply Rule 3 to eliminate text nodes.

2. Part 2: Reduce the XML tree starting from the leaf nodes going up

to the tree root by applying Rules 4, 5, 6, and 7 according to each

situation.

Fig. 5. The Reduction Algorithm

Table 8. Combination of Operators

Operator 1 Operator 2 Result

R R R

? R/? ?

? +/* *

+ R/+ +

+ * *

* R/ * *

4.3 Example Using RA

This section presents an example that illustrates our approach. Consider the
example from Figure 2. The first part of the Reduction Algorithm prepares the
source XML schema by checking that it is in XNF normal form. The structure
must then be transformed from a DTD into our notation. Recall that we append
T as subscript for text nodes, A for attribute nodes, and E for element nodes.

company2E(employeeE + (eidA#integer, sinE(sinT #integer), nameE

(nameT #string), addressE ∗ (addressT #string), dateOfBirthE?
(dateOfBirthT #date), projectsE?(projectE + (pidA?#integer,
descriptionE?(descriptionT #string),managerE(managerT #string)
|locationE(locationT #string), taskE + (taskT #string, dateA#date)))))

Rule 1 is applied to transform the text node taskT from the text-only ele-
ment taskE into an attribute node. Data types are not included in the following
explanations for clarity reasons.

R1⇒ company2E(employeeE+(eidA, sinE(sinT), nameE(nameT), addressE∗
(addressT), dateOfBirthE?(dateOfBirthT), projectsE?(projectE+(pidA?,
descriptionE?(descriptionT),managerE(managerT)|locationE

(locationT), taskE + (taskA, dateA)))))
Rule 2 transforms attribute nodes into element and text nodes. Thus, the

structure does not contain any attribute nodes anymore.
R2⇒ company2E(employeeE + (eidE(eidT), sinE(sinT), nameEnameT),
addressE ∗ (addressT), dateOfBirthE?(dateOfBirthT), projectsE?
(projectE+(pidE?(pidT), descriptionE?(descriptionT),managerE(managerT)
|locationE(locationT), taskE + (taskE(taskT), dateE(dateT))))))

Rule 3 next eliminates all text nodes.
R3⇒ company2E(employeeE+(eidE , sinE , nameE , addressE∗, dateOfBirthE?,
projectsE?(projectE + (pidE , descriptionE?,managerE |locationE ,
taskE + (taskE , dateE)))))

Since they are all element nodes at this point, we drop the suffix E from the
element nodes and we apply Rule 6.2 twice from bottom-up to reduce the nodes
task+ and project+, respectively.

R6.2⇒ company2(employee + (eid, sin, name, address∗, dateOfBirth?,
projects?(project+(pid, description?,manager|location, (task, date)+))))
R6.2⇒ company2(employee + (eid, sin, name, address∗, dateOfBirth?,
projects?(pid, description?,manager|location, (task, date)+)+))

Rules 4.2 and 5.2 reduce the node projects?. The ? operator is transferred
to the sequence of the projects’ subnodes. The ? operator next combines with +
and it results ∗.

R4.2,R5.2⇒ company2(employee+(eid, sin, name, address∗, dateOfBirth?,
(pid, description?,manger|location, (task, date)+)∗))

Rules 6.2 and 7.2 are applied to reduce the node employee+.
R6,R7⇒ company2(eid, sin, name, address∗, dateOfBirth?, (pid,
description?,manger|location, (task, date)+)∗)+

No further reduction is done within Part 2 of the Reduction Algorithm. The
resulted structure is reduced in Part 3 by moving the expression operators inside
the sequences.

⇒ company2(eid, sin, name, address∗, dateOfBirth?, (pid, description?,
manger|location, task+, date+)∗)+
⇒ company2(eid, sin, name, address∗, dateOfBirth?, pid∗, description∗,
manger ∗ |location∗, task∗, date∗)+
⇒ company2(eid+, sin+, name+, address∗, dateOfBirth∗, pid∗,
description∗,manger ∗ |location∗, task∗, date∗)

5 ALGORITHM EVALUATION

5.1 Real World Example

We searched for XML Schemas used in other approaches dealing with XML
schema equivalence and found only DTDs. Thus, we decided to select a DTD
and transform it into XML Schema. To exemplify RA on a real world example
we use the schema found in pise.dtd8 from the molecular biology area. We trans-
form this DTD schema into an XML Schema9 by creating a tree structure and
including additional data types (i.e. boolean) as suggested by its authors. The
pise structure has a total of 85 nodes containing 63 leaves, 12 levels from which 7
are determined by arbitrary organizational nodes and 5 by repeatable sequences
and choice structures. The schema at the end of Part 3 of RA contains one level
with 63 nodes; at the end of Part 2 it contains 6 levels (the leaves’ level and 5
additional levels to preserve the structural organization created by repeatable
sequences and choices). The total number of nodes in Part 2 is 63. This example
demonstrates that RA decreases significantly the height of XML trees.

Part 3 of RA simplifies the comparison of two schemas even more. To identify
if another schema called test.xsd is from the same domain as pise.xsd 63 leaves
from the latter are compared with the former’s leaves. This is a linear comparison
that does not consider the number of levels in the hierarchies. Suppose the
initial non-reduced schema of test.xsd has 10 levels, 7 determined by arbitrary
organizational nodes and 3 by repeatable structures, with 70 nodes containing 50
leaves. If the source schemas were compared using any algorithm from Related
work then 85 nodes from pise.xsd split into 12 levels must be compared with
70 nodes from test.xsd split into 10 levels. This implies that 85 paths from one
pise.xsd some as long as 12 levels must be compared with 70 paths 10 levels
long from the test.xsd schema. Using RA we compare 63 nodes that are part
of at most 5 nested structures with cardinalities with 50 nodes that are part of
at most 3 nested repeatable or optional structures. Through this perspective we
consider that RA simplifies significantly the complexity of structural equivalence
algorithms.

5.2 Algorithm Complexity

The transformation of the source XML Schema into a nested DTD schema is
performed in Max(O(m), O(pn)) time and includes three parts: (1) reading the
total number m of nodes in O(m) time, (2) associating primary keys p with
corresponding leaves n done in O(pn), and (3) associating foreign keys f with
corresponding nodes and primary keys done in O(fn).

The nested DTD schema is then transformed using Conversion Rules in
O(n) time. Reductions according to Elimination Rules are performed in O(kn),
8 Created by Catherine Letondal from Institut Pasteur and available at

www.visualgenomics.ca/gordonp/xsd.
9 Schema pise.xsd is available at

www.cpsc.ucalgary.ca/∼duta/SchemaEquiv/pise.xsd.

where k is the number of levels determined by repeatable structures (choice
and sequence). Reduction of schemas creates the framework for a new struc-
tural schema equivalence algorithm which we anticipate is executed in less than
quadratic time. The new schema equivalence algorithm applies to schema trees
of similar or different structural organization as those exemplified by Figures 1
and 2.

5.3 Discussion

RA is based on the flexibility of XML Schema to express cardinalities (+, *
or ?) in different ways. Consider the definition of employee from Figure 1. The
structure employee+ includes the cardinality in the element definition written in
XML Schema < element name = ”employee” maxOccurs = ”unbounded” >.
The same structure can be expressed attaching the cardinality to the sequence
that defines the element employee: < sequence maxOccurs = ”unbounded” >.
The latter expression is translated in nested DTD as
employee(eid | sin, name, pid∗)+.

Note that XML schema allows nested sequences and/or choice structures
to be defined without requiring a parent element for each sequence or choice.
The transfer of parent element cardinality to its inner sequence (or choice) to-
gether with parent elimination simplifies the initial schema without changing
its hierarchy. 10 We are currently working on a formal proof of our algorithm
correctness to demonstrate (1) the final reduced tree is the minimum hight tree
that preserves cardinality constraints and (2) our set of seven reduction rules is
minimum and the omission of any rule determines a non-optimum reduced tree.

6 CONCLUSION AND FUTURE WORK

Our approach transforms XML schemas into minimum structures capable of
storing the same information. The Reduction Algorithm is an important step in
preparing schemas for an optimum comparison with no loss of information. RA
preserves the cardinality of different parts of schema’s initial hierarchy; however,
it eliminates intermediate nodes whose only scope is to make the structure more
readable. RA defines the framework for a flexible comparison of XML Schemas
that do not share the same hierarchical organization. We are conducting further
research to address structural equivalence for XML schemas using reduced trees.

References

1. M. Arenas and L. Libkin. A normal form for xml documents. ACM Transactions
on Database Systems (TODS), 29(1):195 – 232, March 2004.

2. E. Bertino, G. Guerrini, and M. Mesiti. A matching algorithm for measuring the
structural similarity between an xml document and a dtd and its applications.
Journal of Information Systems, 29(1):23–46, 2004.

10 For more details on this aspect please refer to [4].

3. J. Boyer. Canonical xml version 1.0, w3c recommendation. March 2001.
4. W. W. W. Consortium. Xml schema part 0, 1, and 2. October 2004.
5. H. H. Do, S. Melnik, and E. Rahm. Comparison of schema matching evaluations.

In Proceedings of the 2nd Int. Workshop on Web Databases, 2002.
6. H. H. Do and E. Rahm. Coma - a system for flexible combination of schema

matching approaches. In Proceedings of the 28th VLDB Conference, pages 610–
621, August 2002.

7. P. U. C. S. Laboratory. WordNet. An Electronic Lexical Database. MIT Press,
Reading, 1998.

8. M. L. Lee, L. H. Yang, W. Hsu, and X. Yang. Xclust: Clustering xml schemas for
effective integration. In Proceedings of the 11th ACM International Conference on
Information and Knowledge Management, pages 292–299, November 2002.

9. J. Madhavan, P. Bernstein, and E. Rahm. Generic schema matching with cupid.
In Proceedings of the 27th VLDB Conference, pages 49–58, 2001.

10. A. Nierman and H. Jagadish. Evaluating structural similarity in xml documents.
In Proceedings of the Fifth International Workshop on the Web and Databases
(WebDB 2002), June 2002.

11. A. Salminen and F. W. Tompa. Requirements for xml document database systems.
In Proceedings of the 2001 ACM Symposium on Document Engineering, pages 85–
94, 2001.

