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Abstract. Pervasive computing is an emerging computing paradigm that pro-
vides new improved services for everyone, everywhere and at all times. In this 
paper* we discuss a system which exploits data streams derived from sensors, 
in order to accurately estimate a key factor for pervasive computing and context 
aware applications: the location of a user. The term “sensors” includes Wi-Fi 
adapters, IR receivers, RFID tag readers, etc. The core of the system is the fu-
sion engine which is based on Dynamic Bayesian Networks (DBNs), a power-
ful mathematical tool for integrating heterogeneous sensor observations. In 
closing, we provide an evaluation of the system as it comes out from the ex-
perimental results. 

1 Introduction 

In pervasive computing environments, location (position) is essential information as it 
is an important part of a user’s context. Applications can exploit this information for 
customizing their functionality. Such applications are termed location-aware applica-
tions and include tracking individuals, locating friends, offer services such as “nearest 
printer”, etc. 

The location of a user is derived by various positioning methods. Triangulation, 
scene analysis, and proximity are the three main techniques for automatic location es-
timation [1]. Especially for indoor positioning, where GPS is not available, different 
approaches have been proposed. The majority of indoor positioning systems relies on 
different technologies (usually of the same kind) e.g., on Wireless LAN (Wi-Fi) sig-
nal strength measurements [3], IR beacons [4], or ultrasonic sounds.  

At this point we will quote the definitions of accuracy and precision, the most im-
portant characteristics of a positioning system.  
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− accuracy denotes the distance within which the system has the ability to locate a 
user, e.g. 1-10 meters 

− precision denotes the percentage of time the system provides a specific accuracy, 
e.g. 80% of the time the system provides accuracy 1-5 meters (or else accuracy less 
than 5 meters). 
The accuracy and precision are tradeable and it is clear that if we need less accu-

racy the precision that the system provides increases. For example, common GPS re-
ceivers can locate a user or object to within 10 meters (accuracy) for approximately 
95% of time (precision). For accuracy less than 20 meters the precision would be 
greater than 95%. 

During the last years several location systems have been proposed that use multi-
ple technologies simultaneously in order to locate a user. The system we describe in 
this paper belongs to this category. It utilizes multiple sensors readings from Wi-Fi 
access points, IR Beacons, RFID tags, etc. to estimate the location of a user and pro-
vide input to location-aware applications. This technique is known better as sensor in-
formation fusion which aims to improve accuracy and precision by integrating het-
erogeneous sensor observations. The proposed location estimation system uses a 
fusion engine that is based on Dynamic Bayesian Networks (DBNs), thus, substan-
tially improving the accuracy and precision in relation to other probabilistic ap-
proaches.  

The paper is organized as follows: Section 2 discusses the related work and the 
differences of the proposed system from other indoor positioning systems. In Section 
3 we present the basic location sensing technologies and the devices related with each 
technology. In Section 4, we present the layered architecture of the system and we 
discuss in detail the structure of each layer. In Section 5 we define the experimental 
setup environment and provide the experimental results from the evaluation of the 
system. Finally, Section 6 concludes the paper and provides some open research is-
sues that we are currently working on. 

2 Related work 

Indoor positioning systems have been an active research area since the Active Badge 
[2] project in 1992. In this system, a badge worn by a person emits a unique IR sig-
nal. Sensors placed at known positions within a building detect the unique identifiers 
and relay these to the location manager software. Since then, several different indoor 
location systems have been proposed. A variety of indoor location systems use 
802.11 (Wi-Fi) access points to estimate location. The RADAR [3] is a radio-
frequency (RF) based system for locating and tracking users inside buildings. It oper-
ates by recording and processing received signal strength (RSS) information at multi-
ple base stations positioned to provide overlapping coverage in the area of interest 
and combines empirical measurements with signal propagation modeling to determine 
user location. The RSS method is used also by the commercial system Ekahau [5]. 
This system uses a calibration-based approach and the location is calculated by means 
of RSS measurements at the client side. Another positioning system based on wireless 
LAN technology is described in [6]. 



The Cricket Location Support System [7] and Active Bat location system [8] are 
two systems that use the ultrasonic technology. Such systems use an ultrasound time-
of-flight measurement technique to provide location information. They provide accu-
rate location information but have also several drawbacks like poor scaling and a high 
installation and maintenance cost. For these reasons they are rather inaccessible to the 
majority of users. 

Another category of location systems use multiple sensor readings (Wi-Fi access 
points, RFIDs) and sensor fusion techniques to estimate the location of a user. Loca-
tion Stack [9] employs such techniques to fuse readings from multiple sensors. It is 
analogous to the OSI networking stack for organizing functionality in location aware 
applications. Another similar approach is described in [10]. The drawback of these 
systems is their inability of supporting mobile devices with limited capabilities (CPU, 
memory) because the location estimation is performed mainly on the client side, 
hence devices incur the cost of complex computations.  

The proposed location estimation system described in this paper, utilizes data from 
sensors of different technologies to determine the location of a user. Our work differs 
from previous approaches in various aspects.  

First, we use Dynamic Bayesian Networks (DBNs) for location inference. By us-
ing DBNs we obtain better location estimation results as along with heterogeneous 
sensor data that are processed in real-time we can also “fuse” past information about 
the user (previous location and historical data) and we can make predictions about the 
user’s future behavior. 

Second, our system can support a variety of mobile devices (PDAs, palmtops) with 
low computational capabilities, as location computation takes place in a server resid-
ing in the fixed network infrastructure. Mobile devices send observations from sen-
sors to this server whenever it is required and not all the time. Thus, the communica-
tion cost is reduced. 

Finally, the system architecture we adopt has the advantage of easy management 
and renders the system more scalable. For example, the installation of a new access 
point is completely transparent to the users. Taking also into consideration that we 
can utilize the already existent wireless LAN infrastructure of a building and use a 
variety of inexpensive sensors, the proposed location estimation system offers a re-
markable solution for indoor positioning. 

3 Positioning Technologies 

In this section we present the principal technologies that are used for indoor position-
ing and describe their characteristics. We also discuss a categorization of the devices 
related with each technology. 

3.1 Wireless LAN (Wi-Fi) 

The most important wireless LAN standard today is the IEEE 802.11, also known as 
“Wi-Fi” that operates in the 2.4 GHz ISM band or 5GHz band and provides data rates 



up to 54 Mbps. There are several specifications in the 802.11 family. The low-cost 
base stations (access points) can be easily installed in a building, providing wireless 
connectivity to those devices that are equipped with a wireless network card. Wireless 
LAN technology is used by several positioning systems which measure the signal 
strength from access points (RSS) to locate a user as described in the Related work 
section.  

3.2 Bluetooth 

Bluetooth is a newer wireless local networking standard that also operates in the 
2.4GHz ISM band. Compared to Wi-Fi, the bit rate is lower (1 Mbps), and the effec-
tive range is shorter. On the other hand, Bluetooth is a “lighter” standard, highly 
ubiquitous (embedded in most phones, PDAs, PC peripherals, etc.) and supports, in 
addition to IP, several other networking protocols. Bluetooth tags are small, pocket-
size transceivers. As any other Bluetooth device, each tag has a unique ID which is 
periodically transmitted. A Bluetooth reader which intercepts the transmitted signals 
can be used to locate the tags. 

3.3 Radio Frequency Identification 

Radio Frequency Identification is the technology used for security tags mainly on 
items in shops, ID cards, etc. Tags are powered by the magnetic field generated by a 
reader. The antenna of the tag exploits the magnetic energy and the tag transmits its 
ID or other information. These tags do not require any battery or maintenance and can 
be deployed in the doors of a building to detect object and person passing or in the 
furniture to detect proximity. The main problem with tags is their limited range. 
However, longer-range systems exist, but are more expensive and have higher power 
requirements. 

3.4 Infrared technology 

Infrared (IR) Beacons are programmable devices that periodically emit their unique 
ID in the in the IR spectrum. Usually the range of these beacons is approximately 10-
20 meters and the infrared receiver should have line of sight with the beacon in order 
to receive its ID, although sometimes this is not necessary due to reflections that oc-
cur in indoor environments. 

3.5 Ultrasonic transmitters 

Ultrasonic signals are vibrations at a frequency above the range of human hearing, 
usually >20 kHz. The devices used to receive and transmit ultrasonic signals are 
called transducers. Most of them are typically operating at frequencies between 40 
kHz and 250 kHz. These devices are commonly used for distance measuring. In gen-



eral, they usually integrate a sensor that can receive or transmit an ultrasonic signal 
and another RF (or IR) transmitter/receiver which is used for synchronization.  

3.6 Categorization  

All the previously mentioned devices (elements) of different technologies (access 
points, beacons, tags, etc) can be found in indoor environments either deployed in the 
building or attached to mobile devices. Some of them emit information and others de-
tect (read) information. According to their position and functionality the elements can 
be categorized as shown in Fig 1.  
− Portable elements are those carried by users or attached to their mobile devices 

(e.g., RFID tags, Wi-Fi adapters, etc).  
− Infrastructure elements are those that are attached to the building (e.g., Wi-Fi ac-

cess points, IR beacons, RFID tag readers, etc).  
− Active elements  (also called also sensors) are those which detect a phenomenon or 

make measurement (e.g., RFID tag readers, Wi-Fi adapters, etc) 
− Passive elements are those that emit information which is detected by active ele-

ments. Wi-Fi access points, IR beacons, Bluetooth tags, etc., are members of this 
category. 

 

 
 

Fig. 1. Categorization of elements that are used for indoor positioning 

4 System architecture 

The architecture of the proposed location estimation system is organized in three lay-
ers: the sensing layer, the collection layer and the fusion layer. Fig. 2 illustrates the 
generic architecture of the proposed system. In the same figure are also depicted loca-
tion-aware applications which exploit the location information and data bases where 
is stored the personal profile of users or historical data about their behavior. The lay-
ered approach aims to facilitate effortless inclusion of new elements in order to im-
prove the accuracy and the precision offered by the system. In the following para-
graphs we provide a more detailed presentation of each layer and we discuss 
analytically their role. 
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Fig. 2. Architecture of the indoor location estimation system 

4.1 Sensing layer 

This is the lowest layer of the system’s architecture and comprises sensors (active 
elements) of different technologies. Sensors (along with the appropriate software 
drivers) are attached either to the user’s mobile device (portable active elements) or 
are attached to the building (infrastructure active elements). Below, we briefly discuss 
these two categories.  

Portable Sensors 

A Wi-Fi adapter, which provides wireless connectivity and is built into most new lap-
tops, can be also used to measure the received signal strength (RSS) from a Wi-Fi ac-
cess point (passive infrastructure element). Similarly, the IR port of a handheld device 
or a laptop is used as reader for infrared transmissions from IR beacons that are at-
tached to the building (wall-mounted). Aside from the “built-in” version of the Wi-Fi 
adapter and IR port, these sensors could be also added to the device via a PC card slot 
or USB.  

Infrastructure Sensors  

RFID tag readers belong to this category. Such readers detect an RFID tag and read 
its ID when the latter is in proximity. Users can carry RFID tags (portable passive 
elements) which have unique IDs. Furthermore, ultrasonic devices, which estimate 
the distance of a user from a known point and Bluetooth readers which can detect 
transmissions from Bluetooth tags (portable passive elements) carried by users, also 
belong to this category. 



4.2 Collection Layer 

This layer consists of software components called collectors. The main role of a col-
lector is to interact with the appropriate sensor (active element) and retrieve (collect) 
the available measurements or events. Sensors may produce raw data in a variety of 
formats according to their type. Hence, the output of a Wi-Fi adapter is a stream con-
sisting of RSS measurements from access points; IR and RFID readers generate a 
stream of proximity events. When these raw data arrive at the collection layer a pre-
processing procedure is performed as described below. 

Preprocessing of raw data  

Assume that a new RSS measurement arrives from a Wi-Fi adapter. Then, the appro-
priate collector (Wi-Fi collector) quantizes this on N discrete levels (values): S1, 
S2…SN. If, for example, the value from the access point with ID AP2 is between -70 
dBm and -60 dBm the value “S1” is assigned to this infrastructure passive element. It 
is important to mention here that the number N of quantization levels depends mainly 
on the thresholds (lower and higher) of the access point’s transmitted power and the 
environmental conditions. According to these conditions (noise, etc.) we can adjust 
the number N as well as the spacing of the quantization levels.  

An IR Beacon collector during this preprocessing procedure operates in a different 
and simpler way. The two possible states of an IR Beacon are: Visible and 
Not_Visible. Assume that an IR receiver (portable active element) is in the range of 
the IR Beacon with ID IRB3 (infrastructure passive element).This situation will cause 
a proximity event which will be detected and thus, the collector sets the IRB3 to the 
value “Visible”. An RFID tag reader collector’s functionality is similar to the IR Bea-
con collector’s, as RFID tag readers detect proximity events, too. 

Tuple formation 

After the preprocessing of raw data from the sensing layer, each collector forms a tu-
ple of the type:  
 

(user_ID, IE_ID, value) 
 
where user_ID is the unique identifier of a user,  IE_ID is the unique identifier of an 
infrastructure element and value is a measurement or an event. 

For example, a Wi-Fi collector may form the following tuple:  
 

(userA, AP1, S1) 
 

which denotes that the Wi-Fi adapter (portable active element) of the mobile device 
of userA measures the RSS from access point AP1 (infrastructure passive element) 
and the (quantized) RSS has value S1. 

A possible tuple generated by a RFID tag reader collector would be  
 

(userB, RFR1, Visible) 



which denotes that an RFID tag (portable passive element) worn by userB (or at-
tached to his/her mobile device ) is in proximity of the RFID tag reader with ID 
RFR1. 

These tuples are then forwarded to the upper layer where a location estimation 
procedure is undertaken for each user.  

An example 

We assume that all available infrastructure elements (and their identifiers) are the fol-
lowing: 
 

Identifier Type  
AP1, AP2 Wi-Fi Access Points 
IRB1 IR Beacon 
US1, US2 Ultrasonic devices 
RFR1, RFR2 RFID tag readers 

 
In Table 1 we present some possible inputs and outputs of collectors (for simplicity 
userID is omitted). 

Table 1. Output of collectors after the raw data preprocessing and tuple formation 

Collector Input  Output 
Wi-Fi (AP1, -65 dBm)  

(AP2, -30 dBm) 
AP1 = S1 
AP2 = S3 

IR Beacon (IRB1, proximity event) IRB1 = Visible 
RFID tag reader (RFR1, proximity event) RFR1=Visible 
Ultrasonic (US1, 8 meters) US1 = D1 

 
Up to this point we know the values of infrastructure elements (active and passive) 
that are associated with a particular user. For the example shown in Table 1 the data 
arriving to the Fusion layer are: 
 

{AP1 = S1, AP2 =S3, IRB1 = Visible, RFR1=Visible, US1 = D1} 
 
In the following section where we describe the Fusion layer we will show how these 
infrastructure element values are exploited toward the location estimation of the user. 

4.3 Fusion layer 

This layer is the core of the system and includes the fusion engine. As mentioned in 
the Introduction section, this engine is based on a Dynamic Bayesian Network (DBN) 
which is used for the location inference. Below, we briefly discuss the basic concepts 
of Bayesian and Dynamic Bayesian Networks and, next, we adapt to our system the 
last ones. We assume that the reader is familiar with the theory of Bayesian and Dy-



namic Bayesian Networks and graphical models. For a more complete introduction 
the author is referred to [11], [12]. 

Bayesian and Dynamic Bayesian Networks  

Bayesian Networks (BNs) present a statistical tool that has become popular in the ar-
eas of machine learning and artificial intelligence [13]. They are well suited for infer-
ence because of their ability to model causal influence (cause - effect) between ran-
dom variables.  

A BN (see Fig. 3a) consists of two parts. The first part is a directed acyclic graph 
(DAG), representing random variables as nodes, and relationships between variables 
as arcs between the nodes. If there is an arc from node A to node B then we say that B 
is directly affected by A or A is the parent of B. Each node is conditionally independ-
ent from any other node given its parents. For example, in the Bayesian Network of 
Fig.3a we have: 

P(D | A ,B, C) = P(D | B, C). (1) 

The second part of a BN is a local probability distribution associated with each 
node of the graph. This describes the probability of all possible outcomes of the vari-
able given all possible values of its parents. The parameters of this probability distri-
bution would be estimated using observed data (Bayesian Network learning) [14]. 
The DAG and probability distributions together define the joint probability distribu-
tion. 

 
 

  
(a) (b) 

Fig. 3. (a) A Bayesian Network (BN) showing four (4) random variables and their dependen-
cies. (b) A Dynamic Bayesian Network (DBN) showing dependencies between variables in dif-
ferent time-slots (A at t-1 affects A and B at t) 

A DBN extends the static BN by modeling changes of stochastic variables over 
time. Random variables in a DBN are also affected by variables from previous time 
slots (see Fig. 3b). For simplicity, it is assumed that the parents of a node are in the 
same or in the previous time slot (First Order Markov Chain).  

DBN integration in the location system 

The DBN that is used in our location estimation system is depicted in Fig. 4. The in-
corporated random variables are: 



− the location L of the user, which may take values from a set of K locations {L1, 
L2,…LK}. This set may comprise symbolic locations e.g. {room1, room2, corri-
dorA, …}. 

− the N infrastructure elements IE1, IE2,…IEN. The value field of those random 
variables depends on the type of element. Hence, an access point may take a value 
from the set {S1, S2,…} and an RFID tag reader from the set {Not_Visible, Visi-
ble}, as described analytically in the Collection layer subsection. 
 

 
 

Fig. 4. The Dynamic Bayesian Network of the location estimation system, representing the de-
pendencies between random variables (location L and infrastructure elements IEi) at different 
time slots 

The random variable L at time t, )(tL , is directly affected by the random variable L 

at time t-1, )( 1tL − , so )( 1tL − is the cause and )(tL  is the effect. This is a reasonable 
assumption as the location of a user is depended on his/her previous location. Also, 

the infrastructure elements at time t are affected by location at time t, )(tL ; the loca-
tion of the user affects the value of an infrastructure element (e.g., the signal strength 
we measure from a Wi-Fi access point depends on our location). Random variable 

)(tL  is, simultaneously, cause and effect.  
The local probability distributions that are associated with each node of the DBN 

are estimated with Bayesian network learning techniques. In particular, for every in-
frastructure element (IE1, IE2,…IEN) we estimate the probability distribution 

)|( LiIEP . This can be achieved by taking into account the fixed positions of infra-
structure elements, the indoor propagation models of RF and IR signals, the time of 
flight and indoor reflections of ultrasonic sounds, etc. A simpler technique of learning 
that we have adopted for our system is the method of sampling (signal, events) at 
every location for determining the values of infrastructure elements and the frequency 
of appearance of these values. According to this frequency we are able to form the 
probability distributions. In Table 2 we present a probability distribution of a passive 
infrastructure element (Wi-Fi access point) with ID AP1.  



Table 2. A possible probability distribution for access point with identifier AP1. We can see 
that the probability P(AP1=S2 | L=L1 ) = 0.3, where random variable L denotes the location of 
the user 

 L1  L2 … 
S1 0.5 0.0 … 
S2 0.3 0.8 … 
S3 0.1 0.2 … 
… … … … 

Furthermore, the probability distributions )|( 1tLtLP −  (see Table 3) for location 
transition can be generated according to the structure of the building, the distance be-
tween two locations and the time required by a mobile user to cover this distance (e.g. 
is impossible for a person to cover a distance of 30 meters in just 2 seconds). It is im-
portant to note here that the determination of probability distributions takes place 
once, at system initialization (training phase). 

Table 3. A possible probability distribution for location transition. The probability of transition 
from L1 to L2 is P(L(t)=L2 | L(t-1)=L1)=0.1 

 L1  L2 … 
L1 0.5 0.0 … 
L2 0.1 0.8 … 
L3 0.1 0.05 … 

… … … … 

Location inference queries 

After having structured the DBN of the fusion engine we can use it for location esti-
mations. A location inference query might be: “Where is user X (which is his/her lo-
cation) given his/her previous location and given the values (observations) of infra-
structure elements that are associated with this user?”. 

To answer this we compute for each of the K locations (L1, L2,…LK ) the following 
conditional probability: 

))(,)(|)(( tO1tLtLP − . (2) 

which is the mathematical representation of the location inference query and denotes 

the probability of being at location )(tL  at time t (the requested location) given the al-

ready known value of the previous location )( 1tL −  and given the values of the N in-

frastructure elements at time t, )(tO . For simplicity reasons we write: 

)(})(,...)(,)({ tOt
NIEt

2IEt
1IE = . (3) 

Equation (2) can be converted to the following equation:  



))(,)((

))(,)(,)((
))(,)(|)((

tO1tLP

tO1tLtLP
tO1tLtLP

−

−

=− . 

(4) 

As the denominator of (4) does not depend upon the random variable )(tL , it can 
be treated as a normalizing constant. Also, by taking into consideration that each node 
of our DBN is conditionally independent from any other node given its parents, we 
can compute the joint probability that appears in the numerator of (4). Hence, the fol-
lowing equation is derived: 

))(|)((*))(|)((*))(,)(|)(( tLtOP1tLtLPatO1tLtLP −=− . (5) 

The normalizing constant α is computed easily as all probabilities (probabilities for 
all the K locations) must sum up to 1.  

Finally, from (5) and (3) we obtain: 

∑
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−
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(6) 

The probability distributions )|( LiIEP  and ))(|)(( 1tLtLP − are known from the 
training phase, so we can now compute the probabilities for each location {L1, 
L2,…LK}. Whenever a probability on the numerator of (6) is equal to zero, it is unnec-
essary to compute the final probability as it is equal to zero, too. Thus, the calcula-
tions are pruned and the overall computation is optimized. The problem of location 
estimation is to find the location iL , that maximizes the probability.  

)})(,)(|)((max{ tO1tLt
iLP − .  

The location with maximum probability is stored in the database and the profile of 
the user is updated. Moreover, the location information is forwarded to location-
aware applications for the provision of LBS services. After that the system proceeds 
to the next location estimation in light of the current observations and the previous es-
timated location of the user.  

5 System evaluation 

5.1 Experimental setup 

The evaluation of our system was performed using two technologies, Wi-Fi access 
points and IR Beacons. The experimental setup was the 2-floor building of the De-



partment of Informatics and Telecommunications (University Of Athens, Greece). 
Each floor has dimensions of 30 X 100 meters.  

In total, we used 4 Wi-Fi access points (exploiting the wireless infrastructure of the 
building) and 5 IR Beacons of Lesswire AG company (http://www.lesswire.com). 
Moreover, we used 35 symbolic locations (room1, room2, corridorA, entrance,…). 
During the DBN training phase, a training sequence (number of samples-
measurements) from all locations and infrastructure elements was compiled and fed to 
the system. This resulted to the formation of probability distributions.  

The whole architecture of the system (collectors, fusion engine, etc.) was imple-
mented using JavaTM technology which comprises an open and widely adopted stan-
dard. The server, where the fusion procedure and location inference is performed, 
was running on a PC powered by an Athlon 1800+ CPU with 512 MB memory. The 
operating system was Windows 2000. At the client (user) side was used an iPAQTM 
Pocket PC equipped with an OrinocoTM wireless adapter and a “built-in” IR port. 

 The experiments were performed for a week and at different hours of a day in or-
der to have a clear image of the system’s performance. The results are provided ex-
plicitly below. 

5.2 Experimental results 

In Fig. 5 is illustrated the precision obtained for accuracy less than 10 meters if we 
use only IR Beacons, only Wi-Fi access points and their combination. The precision 
for the first case (i.e. IR Beacons) is 31%. If we only use Wi-Fi access points preci-
sion climbs to 48%. Finally, our location estimation system that uses the combination 
(fusion) of the two heterogeneous technologies reaches precision 65%. As antici-
pated, the integration of heterogeneous technologies into the system improves its per-
formance. 
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Fig. 5. Precision of different technologies for accuracy less than 10 meters  

Fig. 6 illustrates the precision of the system (Wi-Fi + IR Beacons) for different 
values of accuracy (<10, <20 and <30 meters). As stated in the Introduction the im-
provement of the precision has a negative impact on accuracy. For accuracy less than 



10 meters we obtain precision 65% and for accuracy less than 30 meters we can ob-
tain precision 92%. 
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Fig. 6. Precision of the location system (4 Wi-Fi access points + 5 IR Beacons) for different 
values of accuracy (<10, <20, and <30 meters) 

As discussed in the description of the Fusion layer, the system computes the prob-
abilities for each location and the estimated location of the user is the location with 
the maximum probability. If the estimated location is correct, this maximum probabil-
ity is defined as confidence probability of the system.  

Fig. 7 illustrates the confidence probability (mean value) of the system using a 
static Bayesian Network and a Dynamic Bayesian Network for the location inference 
process. In the first case (static BN) we do not take into consideration the previous 
location of the user for the estimation of the current location. The mean value of con-
fidence probability was 75%. Conversely, through the use of a DBN, the mean value 
of confidence probability increased to 89%. It is obvious that the use of DBNs for lo-
cation inference instead of static BNs increases the certainty on the user position es-
timation, thus improving the performance indicators of the location system. 
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Fig. 7. Mean confidence probability of the system, using static BN and DBN 

 



6 Conclusion and future work  

In this paper we presented a layered fusion system architecture which exploits infor-
mation from sensors of different technologies to estimate the location of a user. A key 
difference from similar systems is the use of Dynamic Bayesian Networks for loca-
tion inference. The use of DBNs improves our estimations. Along with sensor infor-
mation we take into consideration the previous location of the user thus improving the 
system’s performance. Additionally, the system supports a variety of mobile devices 
including those with restricted computational capabilities (PDAs, etc.) as they do not 
incur the burden of complex location calculations. Finally, the evaluation of the sys-
tem in real conditions proved its appropriateness for indoor positioning. 

Currently we are working on two issues which will have a direct impact on sys-
tem’s performance and scalability. The first issue is the use of “dead reckoning” tech-
niques to improve the precision and accuracy that the system provides. In general 
“dead reckoning” is the process of estimating the position of a moving object based 
on speed and direction of travel and time elapsed since the last known position. In our 
case, for example, a user’s mobile device which is equipped with an electronic com-
pass and an accelerometer could provide information about the direction and speed of 
its owner. Taking also into account the last known position of the user and the time 
elapsed since then, we can predict the current position. Of course to estimate more 
accurately this position we have to include the current values of infrastructure ele-
ments. 

The second issue that we are working on is the adoption of a distributed architec-
ture for the system. As mentioned previously the location estimation takes place in a 
remote server. In the proposed distributed architecture the building is divided in re-
gions or cells which their size depends on the dimension of whole building and the 
number of deployed elements. For each region there is one server responsible for lo-
cation estimation. Servers of adjacent regions are interconnected in order to inter-
change information about the users (handovers between regions, etc). The distributed 
approach of the system enhances its performance, improves its scalability and makes 
it more robust in case of server failures. 
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