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Abstract. The Web is a typical example of a social network. One of
the most intriguing features of the Web is its self-organization behavior,
which is usually faced through the existence of communities. The dis-
covery of the communities in a Web-graph can be used to improve the
effectiveness of search engines, for purposes of prefetching, bibliographic
citation ranking, spam detection, creation of road-maps and site graphs,
etc. Correspondingly, a citation graph is also a social network which con-
sists of communities. The identification of communities in citation graphs
can enhance the bibliography search as well as the data-mining. In this
paper we will present a fast algorithm which can identify the communi-
ties over a given unweighted/undirected graph. This graph may represent
a Web-graph or a citation graph.

1 Introduction

During the past decade the World Wide Web became the most popular network
in the World. WWW grows with a very fast speed, thus the information that can
be found through it is huge. Two are the main problems for the Web. How to find
information and how to get it fast. For the former, several solutions have been
presented over last years. From the ordering by the keyword frequency we have
moved to the Link Analysis Ranking Algorithms (LAR). LAR Algorithms gave
an admissible solution for the problem of searching. For the latter, the proxy
servers and the Content Distribution Networks gave a breath to the problem of
speed. However, the Web is still growing fast, the web-sites are huge and usually
semi-automatically generated. So the above areas of research need to enhance
their propositions.

On the other hand, the Web is a characteristic example of a social network
Socials networks are usually abstracted as graphs, comprised by vertices, edges
(directed or not) and in some cases, with weights on these edges. Social networks
have been studied long before the conception of the Web. Pioneering works for
the characterization of the Web as a social network and for the study of its basic
properties are due to the work of Barabasi and its colleagues [1]. Later, several
studies investigated other aspects, like its scale-free nature [2], its growth [22, 3],
etc.



One of the most intriguing features of the Web, and of other social networks
as well, is its self-organization behavior, which is usually faced through the exis-
tence of communities. Groups of vertices that have high density of edges within
them and lower density of edges between groups is a frequent informal definition
of a community. The notion of a community is very useful from a practical per-
spective, because it can be used to improve the effectiveness of search engines
[9], for purposes of prefetching [20], bibliographic citation ranking [19], spam
detection, creation of road-maps and site graphs, etc.

In addition, the discovery of communities in citation graphs will also help to
facilitate and enhance the bibliography search. For example, it could be possible
to find relevant documents even if there are no common keywords and no direct
citation between them. Also it will be possible to find authors with the same
interests as well as communities of authors working on the same scientific domain.

2 Related Work

The notion of a Web community is not very strict; it is generally described as
a substructure (subset of vertices) of a graph with dense linkage between the
members of the community and sparse density outside the community. The exis-
tence of communities in the Web was first reported in [13]. The aforementioned
qualitative definition though is not adequate when trying to devise algorithms
for the determination of communities in Web graphs. Thus, we need sharper,
quantitative definitions for the communities.

In order to provide such a quantitative definition, we need to introduce some
“quantities” The basic quantity to consider is di, the degree of a generic node i of
the considered undirected graph G (representing the examined network), which,
in terms of its adjacency matrix A[i, j], is di =

∑
j A[i, j]. If we consider a sub-

graph V ⊂ G, that node i belongs to it, we can split the total degree d in two
quantities: di(V ) = din

i (V ) + dout
i (V ). The first term of the summation denotes

the number of edges that connect node i to other nodes which belong to V , i.e.,
din

i =
∑

j∈V A[i, j]. The second term of the summation formula denotes the num-

ber of connections toward nodes in the rest of the graph, i.e., dout
i =

∑
j /∈V A[i, j].

The first definition of communities is due to Flake [9, 10], who defined a com-
munity as the set of nodes C(C ⊂ G) such that din

i (C) > dout
i (C)∀i ∈ C.

In general, we may give many different quantitative definitions of a commu-
nity, which depend on the context of the application where it is developed. The
structure of a community can be encountered at various scales in the Web. The
most thoroughly investigated are the inter-site communities, which span several
Web sites, and usually define broad thematic areas determined by a set of key-
words, e.g., the 9/11 community [11]. The notions of compound documents [8, 7]
and logical information units [21, 17] are closely related to the Web communities,
but at a much smaller scale, being comprised by a handful of Web objects in a
single site and thus they are intra-site communities.

We extend the notion of intra-site communities and propose communities
whose topic is much more generic than the topic of logical documents and their
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Fig. 1. Visualization of intra-site communities.

existence is determined by the density of the linkage among the pages that they
are comprised of.

To support this claim, we examined several Web sites with a crawl avail-
able on the Web. As an intuitive step, we confirmed the existence of such com-
munities using graph visualization1. As a sample, we present the drawing of
the http://www.hollins.edu Web site (Figure 1(a), whose January 2004 webbot
crawl was available on the Web. We can easily see the co-existence of compound
documents (at the lower right corner), with compact node clusters (at the up-
per center), and less apparent clusters (at the upper right of the image). Also,
the resulting image of the http://noc.auth.gr/ (as of Feb 2006) is illustrated at
Figure 1(b).

In an analogous way, different type of communities do exist in an author ci-
tation (or collaboration) graph. An author may have worked in two institutions
(working groups) so he should belong to two communities defined by the work-
ing groups. One working group may collaborate with another, so both working
groups belong to a higher level group (hierarchical clustering). At the same time,
only one person of a working group may collaborate with another one, so this
person should belong to the cluster defined by his working group and in a higher
level to the cluster defined by the second working group plus himself. So, in
citation graphs different types of communities do exist at the same time.

In order to cover most of the above community cases, we give a weaker
definition for communities than Flake et al. did. We define a community C(C ⊂
G) such that [20]:

dout(C)

din(C)
< s (1)

where din(C) is the number of links within the community and dout(C) is the
number of links from members to non-members. We set the factor s to 1, so we
have a basic ’community’ but we can also set s to any number less than 1 in
order to find stronger communities.

1 The visualization of all these networks was performed with the visualization package
Pajek [6].



The identification of communities is essentially a graph clustering procedure,
that its goal is to identify mutually disjoint subsets of vertices, the communities.
The discovery of optimal Web communities as well as any graph clustering is
an NP-hard problem. Thus all the methods proposed rely on some properties of
the graphs. Some methods evaluate only the local neighborhood of a vertex in
order to decide whether it belongs to a specific community, whereas some other
methods demand examination of the whole Web graph in order to discover such
communities. No matter what method is selected to identify the communities,
there always exists a trade-off associated with this task. This trade-off relates
the ‘quality’ of the discovered communities, i.e., the density of linkage inside
them, with the computational (time and/or resources) cost. In the rest of this
section, we outline the most important methods for community discovery, namely
bibliometric, spectral, maximum-flow and graph-theoretic techniques. The first
family of methods exploits only local information, the second family is based on
information from the whole graph, whereas the other two families can be tailored
to use either local or global information or a combination of them.

Bibliometric Methods The bibliographic methods attempt to identify com-
munities by searching for similarity between pairs of vertices. Thus, they have
to answer the question ‘Are these two pages similar’. To answer this question
they need to define a similarity metric for the vertices. There are two two such
metrics that are widely used. The first is the co-citation coupling and the sec-
ond is the bibliographic coupling. Bibliographic techniques are relatively old and
well-established techniques for the discovery of communities. More information
on their application can be found in [5, 12].

Spectral Methods The most popular spectral methods for community iden-
tification is HITS [16]. The HITS algorithm takes a subset of the Web graph
based on a keyword match. Then it extents this set by adding nodes that are 2
links away from any node already in the subset. If A is the adjacency matrix of
the subgraph, the matrix products AT A and AAT are symmetric and definitely
positive. Each of them will have the property of being identical the left and the
right eigenvectors (because of symmetry) and that the first eigenvector will have
all positive components (with positive eigenvalue). These subsequent eigenvec-
tors can be used to distinguish pages into different communities in a manner
related to the spectral graph partitioning. using a method such that, it was
found that the non-maximal eigenvectors can be used to split pages from a base
set into multiple communities that contain similar text but they are dissimilar
in meaning.

Maximum-Flow Methods Flake et al. in a series of papers used the concept
of max-flow/min-cut in order to discover communities in Web graphs. The algo-
rithm proposed [9, 11] works as following. Its input is a graph G, a set of ’seed’
Web pages S, and a single (user-defined) parameter α. The procedure creates a



new graph, Gα, that has one artificial vertex t. The sink vertex, t, is connected to
all original vertices with a small capacity specified by α. After constructing Gα,
the procedure calls min-cut for randomly selected source vertex s to t and uses
the resulting residual graph to return the portion of R that remains connected
to s. This connected component is guaranteed to be a community.

Graph-Theoretic Methods We saw earlier that the bibliometric methods try
to identify the “strongest” edges in order to insert the adjacent vertices into a
community. Girvan and Newman ([14]) took the opposite approach, following a
graph-theoretic way. Instead of trying to construct a measure that tells us which
edges are the most central to the communities, instead they focused on those
edges that are least central, the edges that are most “between” the communi-
ties. Rather than constructing communities by adding the strongest edges to an
initially empty vertex set, they construct them by progressively removing edges
from the original graph. They exploited the vertex betweenness, which had been
studied in the past as a measure of the centrality and influence of nodes in net-
works. The betweenness centrality of a vertex i is defined as the number of the
shortest paths between pairs of other vertices that run through i. They proposed
a simple algorithm and its steps are the following: 1. Calculate the betweenness
for all edges in the network. 2. Remove the edge with the highest betweenness. 3.
Recalculate betweenness for all edges that are affected by the removal. 4. Repeat
from step 2 until no edges remain. With this process the graph is gradually being
disconnected revealing any communities.

3 Motivation & Contribution

The above described techniques have some strong as well as some weak points.
Starting with the bibliographic methods we can say that they can only be applied
to a citation graph and not to a Web-graph because they usually need specific
information about vertex relationship, i.e. co-authors.

The Spectral methods can only be used when keyword information is available
over the graph. Also, they are not capable of finding the communities of the graph
but only a community related to a keyword search. This means that it cannot
be applied when “keyword” info is not available or we do not a-priori know the
“keyword” related communities.

The maximum-flow methods have some major disadvantages. The first dis-
advantage is that they are based on a very “strict” definition for communities. If
our graph has not such strict communities the method is unable to find any. The
second one is that they are mainly used in order to find inter-site communities
by removing the intra-site links. The existence of intra-site links practically in-
validates the results. On the other hand the commutation time is large, and it is
based on several decisions that must be made during the implementation of the
algorithm. So a lot of variations exist. As the variations get better performance,
the computation time increases dramatically. The most important disadvantage
of these methods, is the existence of the factor α which must be set manually



and there is no rule for setting it relatively to the graph characteristics. The only
method is to perform a binary search for a good value of α which practically
means several failed tries in order to get a clustering.

Finally the Graph-theoretic methods, as we will describe later, require high
memory usage as well as long computation time.

In addition to the above, in the real world, a web-page may not belong
strictly to one community, but to more than one. Likewise, a web page may
not belong to any community. Thus the set of communities C1, C2, ..., Ck may⋃

i Ci ⊂ G and not always
⋃

i Ci = G. There also may exist intersections between
the communities. So it may exist i, j(i 6= j) such that Ci ∩ Cj 6= ∅. This is our
main theoretical difference with all the rest methods.

So, our method searches for a set of clusters C = {C1, C2, ...} such that

∀Ci ∈ C : dout(Ci)
din(Ci)

< s, where s could be user defined but normally is set to 1.

There may exist infinite clusterings with this property. We focus to a clustering
that minimizes the expression:

QC =
1

|C|
∑

∀Ci∈C

dout(Ci)

din(Ci)
(2)

4 Proposed Method

Our target is to find clusters such that Equation 1 is true. We can build these
clusters by starting from some representative nodes for each one if we could find
them. We refer to them as kernel nodes. Our first care should be to find some
kernel nodes. On the other hand, Betweenness Centrality is a way of showing
how central is every node of a graph G. Many algorithms have been presented in
the bibliography for the calculation of the Betweenness Centrality. The smartest
of them is [4] with computational complexity O(nm) and memory requirement
of O(m + n), where n is the number of nodes and m is the number of edges. So,
we can use the nodes with low CB as kernel nodes.

4.1 Clustering Using Betweenness Centrality

The notion of CB is used in paper [18] for the clustering of a graph. In this
paper, the CB is calculated for each edge of the graph. At each step, the edge
e with the highest CB is removed from the graph and the CB is recalculated
for some of the edges. In other words, all the shortest paths that contained
the erased edges e are recalculated and the CB is recomputed for all edges.
This procedure is repeated until we get groups that are not connected to each
other (connected components). The complexity of this algorithm is high in time
O(n3), since the CB is recalculated in every step of the algorithm. Moreover, it
has expensive memory requirement O(n2), since we have to store all the shortest
paths for all the node pairs. This forbids the use of this algorithm for large graphs
and specially for dense ones, because the memory requirement becomes huge.



The authors of [18] mention that using our age computers (2003) the described
method can be applied in graphs of about 10000 nodes.

The conclusion of the above paper is that vertices with high CB are near to
the borders of the clusters as well as edges with high CB are inter-cluster edges.
On the other hand vertices and edges with low CB reside at the center of the
clusters or simply are not connected to other clusters.

The above claim is not true when a part of our graph has a tree-like structure.
A tree-like part of the graph means that in this sub-graph there are no cycles
and the number of edges is equal to the number of vertices. These parts look
like graph tails. The existence of such parts in our graph inflect the previous
statement. All the nodes in such a sub-graph have high CB but they clearly
consist a cluster. We assume that in a Web-graph these parts do not cover a big
ratio of the graph. We refer to these tree-like parts of the graph as graph tails.

Practically, tree-like tails in a web graph represent virtual documents which
do not have links pointing out of the document. So, they may consist of inde-
pendent clusters of our graph or they may be members of other clusters.

4.2 Clustering Method CBC

The algorithm CBC (Clustering with Betweenness Centrality) begins with the
knowledge that the nodes with the lower CB are members of clusters and they
are not connected directly to other clusters. Initially we remove the graph tails
from graph G as described before, resulting to a new graph G′. We compute the
centrality based on the G′. The rest of the procedure is depicted in Figure 2,
where C is initially an empty set of clusters.

Clique Formation The nodes with the lower CB are the cluster kernels. So,
we can build some initial small clusters around them. This is depicted as pseudo
code in Figure 3. These small clusters are the graph Cliques. Note here that our
term Cliques is different from the one used in the bibliography where usually
means a fully connected sub-graph. The Cliques for us are the areas around the
it kernel nodes. The clique size may vary and this is a function of how dense or
sparse the graph is. For a dense graph the cliques consist of all the nodes that
are directly connected to the kernel node. For sparse graphs the cliques may be
larger. The optimal clique size, can not be known apriori, since the graph may be

function InitClustering(graph G,G’, clustering C, int max_clique_size) {

InitiateCliques(G’,C,max_clique_size);
ExtentTailedClusters(G,C); // Add the tails of size 1

// to the cliques that they are connected
MakeTailedClusters(G,C); // Make the tree-like tails independent Cliques

MergeTailedClusters(G,C); // Merge tail-clusters until reach the max-cluster-size
}

Fig. 2. Init Clustering



function InitiateCliques(graph G,clustering C) {
static max_clique_size=sqrt(G.n_nodes);

for all nodes n in G ordered by CB desc {
cluster c;
if(n belongs to any c in C) {

next;
}

c = {n};
for all p neighbors of n {

if(not p belongs to any c in C) {
c.add(p);

}

}
C.add(c)

while(ExtentClique(G,c,C,max_clique_size)) {;}
}
max_clique_size=next value;

}

function ExtentClique(graph G,
cluster c, clustering C,

int max_size) {
if(c.n_nodes>max_size) {

return false
}
Extent c using BFS until the

size of 2*max_size
return true

}

Fig. 3. Initiate Cliques

dense in some areas, but sparse in other ones. The first time that InitiateCliques
is called, the Maximum Clique Size parameter is set to zero. Thus, the Cliques
that will be built during the first iteration of the algorithm have a diameter of
two. Note here that if an Initial Clique has a size of only one or two nodes, it is
being erased and ignored. This means that after the first step we may have some
orphan nodes. These will be nodes with high CB and usually located between
the clusters. The computation cost of this step is a linear function of the size of
the graph: O(n).

Clique Merging Having a set of cliques the next step is to merge them in
order to construct correlated clusters. The cliques may not be correlated. The
pseudo-code is presented in Figure 4. Assuming that in the previous step we
found l number of clusters (cliques), in function Merge we build a l × l matrix
B. Each element B[i, j] corresponds to the number of edges from cluster Ci to
cluster Cj . The diagonal elements B[i, i] correspond to the number of internal
edges of the clique. The matrix B is obviously symmetric. Note here that if a
node x belongs to clusters Ci and Cj , and there is an edge x → y(y ∈ Ci), then
this edge counts once for B[i, i] since it is an internal edge, but it also counts for
B[i, j], since y belongs also to Cj . So, the sum of a row of matrix B is not equal
to the total number of edges.

This merging step of the algorithm consists of several iterations. In each
iteration one merge is performed. The iterations stop when there is not any
other mergable pair. The pair that will be merged is the pair with the maximum
B[i, j]/B[i, i]. The conditions for a merge may vary and they depend on the
user parameters if there are any. A parameter may be the factor s, which is
mentioned in the definition of a community. So, in this step we check every
pair of the clusters (cliques) and we select the best one for merging. A merge
cannot be done if the two clusters are already correlated or their union is greater
than the maximum cluster size that the user may have set. A merge of clusters



function ClusterMerge(graph G,clustering C...) {
while(! ok) {

MakeCliquesStronger(C,G);
Merge(G,C);
if(c->best_quality==0) {manage_subsets(c);}

delete_the_worst(C); // Delete a cluster if does not fulfil parameters
add_orphans_to_cliques(G,C);

ok=check(C);
if(!ok) InitClustering(G,C);

}
}

Fig. 4. Cluster Merge

Ci, Cj can be done if B[i, j] >
∑

k B[i, k]/2 or if at least one of the Ci, Cj is not
correlated or if B[i, j]/B[i, i] >= s and we cannot find any better pair.

If the initial number of cliques is l, then the maximum number of iterations
that will be executed is l. Each iteration checks every pair of cliques, so the time
that is needed is l2 + (l − 1)2 + ... which means that the complexity is O(l3).
The value of l depends on the graph characteristics, but it is a function of

√
n,

where n is the number of nodes in our graph2. So the time complexity, with
respect to the number of nodes is O(n

√
n) in the worst case. The memory space

requirements is a matrix l × l which means O(l2), that is near to O(n).
In Figure 4 there are various steps in order to improve quality and/or speed

depending on our needs. For example, the procedure named MakeCliquesStronger
can be used for moving nodes between clusters. Its default behavior is to check
for all the nodes (in O(n) time) the number of the links that they have to each
cluster. So, a node may change cluster if there exists another cluster to which the
node has more links. The function ManageSubsets is used to remove any clusters
that are subsets of other clusters. It will be called only for speed optimization.
Finally we may add orphan nodes to clusters, even if the resulting clustering is
not better than the current one. This will lead the algorithm to minimize the
number of orphan nodes but the resulting quality factor of Equation 2 QC will
be worst.

Finally the clustering is checked if it fulfils our constraints. In not, we re-
initialize into cliques the nodes that remained as orphans. Each time that the
InitClustering is called, we use a new value for the factor max clique size. In
our implementation the sequence of values is:

√
n,

√
n/2, 2

√
n,

√
n/3, 3

√
n, .... In

most cases that we faced during experimentation, the clustering is computed in
two repetitions of function InitClustering and in a few cases in four. Of course
if the cluster sizes vary, we expect that more repetitions will be needed.

5 Method Evaluation

As mentioned in the previous section, an analogous idea is the one described
in [18]. The major disadvantage of that algorithm is the huge complexity, since
every step of the algorithm it requires recomputation of the centrality. Although

2 Given that we have initially set the parameter max clique size to
√

n.



the computation is incremental, the time and space complexity is very high. In
this work we will not compare against this algorithm, since the difference in the
complexity and the memory requirements is obvious.

On the other hand, a comparison with Flake’s algorithm could not be done
for three reasons. The first one is that we have different definitions of what is
a cluster, so Flake’s methods gives different types of clusters. The second one
is that Flake searches for hierarchical clustering. In our case we do not search
for hierachies in the clusters. We search for a set of clusters that fulfils our
contraints, no matter in which hierarchy depths these clusters reside. Finally, as
it is stated in [11] their method is applied for finding intra-site communities (by
removing the inter-site links). In our case we search for inter-site communities.

5.1 Evaluation Dataset and Method

The evaluation Dataset consists of real and synthetic Web-graphs. The real
Dataset includes the web sites of: noc.auth.gr (as of Feb 2006), www.hollings.edu
(as of Jan 2004) and www.unicef.org (as of Jan 2006).

The synthetic Web-graphs were generated with the FWgen tool [15]. The
parameters that must be given to FWgen are five: (a) number of nodes, (b)
number of edges or density related to the respective fully connected graph, (c)
number of clusters to generate, (d) skew, which reflects the relative sizes of
the generated clusters, and finally (e) the assortativity factor, which gives the
percentage of the edges that will be intra-community edges. The values that are
meaningful for assortativity are greater than 50%. The higher the assortativity is,
the stronger clusters are produced. If the assortativity is 100% then the generated
clusters will be disconnected to each other.

The generator creates two files. The first one is the graph and the second
one records the produced clusters so that we can compare the clustering of
the CBC to the “generated optimal”. Since the generation of the edges follows
random decisions, the “generated optimal” clustering may not be identical to
the “absolutely optimal”. With the term “absolutely optimal” we mean the
clustering that minimizes the factor QC . This will be shown later in this section.

The method is evaluated for two dimensions: quality and speed. The eval-
uation for quality could be done only with the synthetic graphs, for which we
know apriori the clusters that are constructed. So, we count the distance of our
method from the optimal clustering by using a distance metric explained in Ap-
pendix A. We also count the value QC of Equation 2. The smaller this value
is, the better clustering is produced. On the other hand the evaluation of the
clustering speed is trivial. We count the real-time of the algorithm execution
(CPU time occupied by the process). For the real dataset we present statistical
results of the clustering.

5.2 Experiments

In Figures 5(a,b) we present the speed performance of our algorithm. The pre-
sented “CPU Time” is reported by the unix kernel by using the system call
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Fig. 5. Graphs attributes: Nodes: n, Edges: 15 ∗ n, clusters: 5 (n < 1000), 10 (1000 ≤
n < 10000), 100 (10000 ≤ n), assortativity: 0.85, skew:0.1

times() and represents the time that the process remained in CPU. The line
with diagonal crosses represents the time needed to compute the centrality. The
line with cross points represents the time needed by our algorithm to compute
the clustering. Finally the line with star points represents the summation of all
the previous. As we can see, our algorithm needs much less time than the central-
ity betweenness, which is proved to have O(mn) complexity. In Figures 5(c,d),
we verify that the CB computation is linear to n ∗m, so our time measurements
are correct. Thus, if we use a centrality approximation algorithm, we will be able
to cluster really huge graphs consisting of a lot more than 200000 nodes.

In Figure 6 we present the results of the clustering that are related to the
assortativity parameter. Figure 6(a) shows the distance of our clustering from the
“generated optimal”. The distance is computed by using the method presented
in Appendix A. The line with the cross points stands for our CBC algorithm,
while the line with the diagonal cross points stands for our algorithm that uses
the option minimize orphan nodes set. As we can see, the minimize orphan
nodes version gives a clustering closer to the “generated optimal”. This happens
because in the “generated optimal” clustering there are no orphan nodes. The
distance from the “optimal” is 1% in the worst case, and it converges to zero
as the clusters become stronger. On the other hand, in Figure 6(b) we present
the quality of the clustering. It is expressed with the factor QC that is defined
in Equation 2. It is obvious that when the clusters are strong the quality of the
clustering is better. Hereby we must note that both our CBC versions keep the
quality very close to the “generated optimal” clustering and they are always
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Fig. 6. Graphs attributes: Nodes: 4000, Edges: 30000, clusters: 10, skew:0.10
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Fig. 8. Attributes: Nodes: 5000, edges:
37500-39000, assortativity: 0.90, skew:0.10

better than it. This is due to the fact that the generator does not produces
optimal clusters, but if they do exist in the graph, our algorithm is able to find
them. This explains the fact that in Figure 6(a) the distance from the “generated
optimal” clustering is not zero.

In Figure 7, we keep the graph characteristics stable and we change the
number of edges. As we can see the time that is needed for the clustering remains
small. Finally, in Figure 8, in x-axes the number of clusters is varied. It is shown
that when the clusters are few, the required time is higher from the one that is
needed than more clusters. This is due to the fact that more merge operations
must be performed.

In Table 1, we present summarization of the results for the real Web-graphs.
The first 3 columns define the graph. Columns MC and MS stand for the user
parameters maximum cluster size and minimum cluster size. Next column (Clus-
ters) contains the number of clusters that have been found during each run. QC

is the resulting Quality (Equation 2) of the clustering. Column “Or” denotes
the number of the orphan nodes that remained in the graph. Finally, the Drate
column shows the percentage of the nodes that belong to more than one cluster.
It is computed as:

Drate =

∑
∀i∈G N(i)

NC

where N(i) is the number of clusters that node i belongs to, and NC is the
number of nodes that belong to at least one cluster. A value of 1 for Drate
means that all nodes belong to exactly one cluster.



Site Nodes Edges MC MS Clusters QC Drate Or

noc.auth 955 5620 50% 5 3 0.994 1.00 486
noc.auth 955 5620 80% 5 10 0.332 1.04 3
hollins 4487 16373 50% 10 64 0.204 1.05 170
unicef 56852 749666 30% 10 142 0.544 1.14 67
unicef 56852 749666 30% 1000 12 0.206 1.12 91

Table 1. Results over real web-graphs.

Nodes Cin Cout Cout/Cin

496 4846 143 0.0295089
272 322 154 0.478261
62 61 2 0.0327869
46 83 46 0.554217
44 47 33 0.702128
19 59 1 0.0169492
16 15 2 0.133333
16 15 2 0.133333
13 11 6 0.545455
12 10 7 0.7

Table 2. Cl. Results of
http://noc.auth.gr.

Since the possible clusters that may have dout/din < s may be infinite, we
must somehow focus in some of them. For this reason, our implementation takes
two parameters. The first one is the minimum cluster size (MS in Table 1)
and the second one is the maximum cluster size relatively to the graph size
(MC in Table 1). It is obvious that these two parameters affect the results.
For example the first try to cluster the site noc.auth.gr used the default value
50% as MC. This caused the algorithm to leave a lot of orphaned nodes. The
second run was executed by using MC=80%. This produced a big cluster of 496
nodes (Table 2), which is greater than the half of the graph and as we saw it
could not be splited into smaller clusters. The results of this clustering are also
visualized in Figure 1(b) where each cluster is presented with different color.
Unfortunately, it is impossible to visualize the nodes which belong to more than
one cluster since one node can have only one color. These nodes get the color
from a randomly selected cluster among the ones they belong. Full results for all
these experiments are available at http://delab.csd.auth.gr/˜asidirop/clustering.

Finally, we can conclude that the CBC requires time O(nm), which is actually
the time needed to compute the Betweenness Centrality. The memory space
requirements are O(n) for the merging procedure plus about O(n) in order to
store foreach cluster the nodes that contains. Over the synthetic graphs, the
measured clustering quality is always better than the quality of the ‘generated
optimal’ clustering. The distance between these two clustering is at most 1% and
it depends on what we are looking for. Over the real Web-graphs it is obvious
that the quality of the clusters depends on the Web-graph itself. When we are
searching for large clusters it is obvious that the quality factor QC will be better.
The sizes of the clusters may vary depending on the application that the results
will be used. Our algorithm is able of finding clusters of any desirable size if they
do exist in the Web-graph.

6 Conclusions & Future Work

In this paper, we made an overview of clustering methods. We also presented
our method called CBC which requires time O(mn) and memory O(n), as well
as experiments over both synthetic and real datasets. The experiments show, as
expected, that this method is very fast and can be used in order to cluster huge
Web-graphs. As it is shown, the slow part of the method is the computation of



the betweenness centrality. As a future work, we plan to use a centrality approx-
imation algorithm to test the clustering speed and the quality performance. This
method is also being tested for prefetching methods over a content distribution
network[20].
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Appendix A. Clustering Comparison

In this section we will give a definition for a distance function for 2 clusterings.
We define the function N (n, c) to be 1, if node n belongs to cluster c and 0

otherwise. Also, function K(n, C) gives the set of clusters that node n belongs
to. The number of clusters that a node belongs to may be zero, one or any other
number in the range of [0..|C|] when the node belongs to more than one clusters.

The similarity S of a node n1 to node n2, given a set of clusters C, is set to
be the percent of the occurrences of node n2 in K(n1, C).

S(n1, n2, C) =

∑
∀c∈K(n1,C)

N (n2, c)

|K(n1, C)|
In the case where a node can belong only to one cluster, then the function S

will get the value of 1 if the two nodes are members of the same cluster, and 0
otherwise. In the general case that a node can belong to more than one cluster,
then when two nodes always resize in the same clusters, S will be 1. If two nodes
never resize in the same clusters, S will be 0. S will be 0.5, if the first node
belongs to 2 clusters and the second node belongs to only one of them, etc. Note
here that it could be S(n1, n2, C) 6= S(n2, n1, C), in the case that the nodes are
able to belong to different number of clusters. Iff a node can belong to only one
cluster, then S(n1, n2, C) = S(n2, n1, C)

D(CA, CB,G) =

∑
∀n1∈V

∑
∀n2∈V

|S(n1, n2, CA) − S(n1, n2, CB)|

|V |(|V | − 1|) (3)



In order to be able to compare 2 clusterings, we will give the definition of
the equation D(CA, CB ,G) (3), where CA is the set of clusters created by method
A and CB is the set of clusters created by method B over the graph G = (V, E).
D is calculated as the average value of the similarity differences in these two
clusterings for every nodes pair. D is normalized in the scale of [0..1]. Iff the two
clusterings CA and CB are equal, then D will be 0. The worst and only case that
D may be 1, is the following: CA has only one cluster and all the nodes of graph
G belong to that cluster. CB has as many clusters as the number of nodes and
every cluster consists of only one node.


