LORD: Lay-Out Relationship and Domain
Definition Language*

Andras Benczir, Zsolt Hernath, and Zoltan Porkolab

Eo6tvos Lorand University, Faculty of Informatics
Pazmény Péter sétany 1/C H-1117 Budapest, Hungary
abenczur@ludens.elte.hu, hernath@ullman.inf.elte.hu, gsd@elte.hu

Abstract. Autonomous applications have a central role in modern data-
base architectures. Already existing standalone autonomous applications
could be woven into complex systems in a highly automated way. How-
ever, integration of independent applications originated from different
domains raises the question of syntactical considerations when a common
host language is used to express intentions from arbitrary domains. In
this article we introduce LORD - a domain-independent high-level lan-
guage. LORD has been designed for natural embedding into arbitrary
host languages. Using generative programming techniques, like meta-
macro definitions and context-dependent macro expansions, LORD is
able to encapsulate domain specialities and present a heterogenous syn-
tax for application programmers of integration platforms.

1 Introduction

The notion of applications’ autonomy was first introduced in [5], and were mo-
tivated by a real industrial need of integrating two legacy CAD application
systems and their application domains. The idea behind applications’ autonomy
concerned there was set around two issues:

e just as relational data model and relational database management sys-
tems makes their applications or application systems independent of the
physical representations and organizations of their data, application sys-
tems or stand-alone applications have to be made independent of a higher
level abstraction and representation of their data environment;

o instead of defining unified data views for application areas, using a low-
level proper data model, data themselves can carry all non-application
specific knowledge about themselves.

In our earlier paper [6] we presented a formal model, of applications’ autonomy
by introducing abstract domains schema, medium and abstract access environ-
ment, and gave formal semantics to application autonomy via defining abstract
access method as an instance of abstract access environment that controlled
data access between particular instances of schema and medium. To achieve real

* Supported by the Hungarian Ministry of Education under Grant FKFP0018/2002

domain and data access semantics, a GDDM principled bind mechanism, and a
language support to generate GDDM representation of data was proposed also
in [5]. Recall, that GDDM is a DDM, where all data are generalized, and in ad-
dition, there is a G schema interpreter which governs data, always with adequate
structuring, through all processing phase including retrieval and storage.

Integration of independent applications originated from different domains raises,
however, the question of syntactical considerations. It is obvious, that the inte-
gration requires a common domain definition language, which is used to express
arbitrary intentions from all the domains to be referred. On the other hand, ap-
plication programmers, who are strong professionals in their favorite language,
have frequently difficulties when they are forced to use some domain-specific lan-
guage. For instance well-trained, experienced C++ programmers are not neces-
sarily experts e.g. in all the details of the syntax and the semantics of embedded
SQL - a typical domain-specific language. It is more convenient for them to
present domain-specific information embedded into the host language also not
strange against the host language. Suppose, we have an autonomous application
with a certain domain (called Domain), and entity (called Entity). In the inte-
grating application we should refer this entity, e.g. we should write and retrieve
it. In the Java host language, it is common to use getter and setter functions
to access and modify data entities. Such methods have usually trivial semantics
and most cases they can be automatically generated.

/* Retrieve Entity in Java host environment */
Entity x = Domain.getEntity(xoid);

In the COBOL language, the application programmer should declare the corre-
sponding ENVIRONMENT DIVISION and DATA DIVISION entries. Embedded LORD
invocations can detect and use this information to generate code.

* Retrieve Entity in COBOL host environment
ENVIRONMENT DIVISION.

INPUT-0UTPUT SECTION.

FILE-CONTROL.

ASSIGN IN-FILE TO ’DOMAIN’
ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.

FILE SECTION.

FD IN-FILE.
01 ENTITY-DETAILS.
03 ENT-NAME PIC X(20).
03 ENT-NUM PIC 9(6).

READ IN-FILE

In C++ one can apply the iostream-like syntax to retrieve data from a certain
Domain. Here Entity, as a selector from the domain was defined as a manipulator
[7], and overloaded extractor operators are used to read into x.

// Retrieve Entity in C++ host environment
Domain >> Entity(xoid) >> x

Hence application programmers can express domain-related intentions in the
syntax of the host language. As domain-specific details are encapsulated, the
host code is more maintainable, and in the case of autonomous applications the
integration level become independent from the components data structure and
mapping details.

This paper introduces LORD — a domain-independent high-level language, as
domain definition and bind mechanism. LORD has been designed for natural
embedding into arbitrary host languages. Using LORD and its context-sensitive
macro replacement facilities, host language application programmers are able to
use their familiar syntax to express references to arbitrary domain.

2 Autonomy and Binding Environments

LORD is used to define and describe abstract application domains (including
mappings between domains, e.g. abstract access environment in [6]) and to
give their real representations via macro definitions in particular applications’
host environments. LORD is designed to provide a macro definition, context-
dependent macro invocation and expansion mechanism. Utilizing LORD to de-
fine and describe application domains and their data carrier means, offer basi-
cally two kinds of making applications autonomous.

2.1 Static or Early-bind Autonomy Environment

Using static or early-bind autonomy presumes that LORD’s bind definitions are
macro definitions that expand pure host language text. Such bind environment
the source program containing LORD embeddings looks autonomous, but the
generated host language programs contain real embedded SQL or call interface
e.g. in case of using relational databases, i.e. the generated target executive is
statically bound to a particular data environment. Porting the application to
another environment or reorganizing application data environment may need
reimplement LORD domain definition of the program. An early-bind environ-
ment components and architecture is shown by figure 1.

2.2 Dynamic or Late-bind Autonomy Environment

Using a late-bind environment the host language program has to link to an LDLL
(LORD DLL) passing over access demands with specifying the abstract domains

LORD

MACRO
EMBEDDED LIBRARY
LORD

SOURCE \

LORD (PURE) HOST
PREPROCESSOR LANGUAGE HOST TARGET
COMPILER EXECUTABLE

SOURCE

< R i
DATA
ENVIRONMENT

Fig. 1. Static or early-bind environment.

of the application, using document (DDM) or rather generalized document data
model (GDDM) [5,6]. Using GDDM, knowledge about data processing is car-
ried by data themselves, and the knowledge is interpreted by the G schema
interpreter. To get and interpret such knowledge, data instances are represented
by their schema components rather than as ordered pairs, and in a GDDM
principled data environment autonomous applications control data access via
knowledge carrier, labelled as Domains and Mappinstags Repository on figure 2.

LORD
MACRO
EMBEDDED LIBRARY
LORD
SOURCE

LORD
PREPROCESSOR

(PURE) HOST]
HOST
LANGUAGE COMPILER TARGET
SOURCE EXECUTABLE

MAPPING
LIBRARY

DOMAINS AND MAPPINGS
(IN XML)

DOMAIN | > o> T >

N
DATA AND
ENVIRONMENT | horeines

Fig. 2. Dynamic or late-bind environment.

3 A LORD overview

Without detailing the full syntax of the language we focus on, and try to give
a picture about LORD’s approach of describing abstract domains, and LORD’s
macro facilities. To describe or to define domains at the present stage LORD
provides for only a few constrainted type construction machanism, just as com-
posing sets, sequences, relations, and references to to defined abstract types.
LORD presumes a set of not predefined abstract atomic types or sub-domains
the composite types can be constructed from. To describe particular host repre-
sentations of defined abstract types and domains LORD provides an embedded
magcro language that tries to consolidate the features of traditional macro lan-
guages’ macro statement and macro function. In traditional macro languages
a macro statement typically generates one or more host language statements,
while macro functions expand usually a piece of host language text inside a host
language statement. In traditional macro languages an invocation of a macro
statement typically stands by itself in the embedding text, an invocation of a
macro function stands as a part of a host language statement. LORD’s macro
engine combines this two kinds of invocation forms into one. In LORD embed-
dings, each statement may obtain an arbitrary number of macro invocations. In
LORD, one can easily define a macro that partly expands as statements, and also
as functions at the same time. In LORD, just as in traditional macro languages,
any host language statement that embeds macro invocations may generate sin-
gle or more pure or embedding host language statements, depending only on the
corresponding macro definitions. The recursive process of such text generations
is called the expansion of the embedding statement, and controlled by LORD’s
expansion method — called CEM!.

LORD’s macro language is pattern controlled, and LORD’s macro engine offers
context-dependent expansion of macro invocations with generating embedded
or pure host language statements, and even LORD’s macro definitions as well.
LORD’s approach, instead of newly defined abstract operations on data, rather
types and instances of types i.e. data themselves appear as macro invocations.
LORD macro definitions may obtain complete, and also incomplete (embed-
ding or pure host language) statements; the latter can be composed by applying
completion indicators. Expanding a macro invocation, complete statements are
expanded in the usual way: after parameters’ value setting, the invocation is
substituted by the corresponding macro definition. Expanding a complete em-
bedding statement, all of its invocations, in the order of invocations from left to
right, are recursively expanded. The left to right rule is necessary, since LORD’s
magcro invocations have free syntax, more exactly, the syntax of a particular
magcro call within a particular embedding context is defined by the macro defini-
tion itself. Incomplete statements shall, however, not be expanded in the usual
way. They have to be completed first and the completion is then to be expanded
in the usual way.

! Complementary Expansion Method

3.1 Domain definition and representation

Domain definition and representation in LORD serves the purpose of host language-
independent description of arbitrary data and their mappings. LORD macros are
used for mapping domain definitions into certain host languages, creating type
definitions and auxiliary methods.

Concerning formal autonomy, a LORD description of applications’ data envi-
ronments typically obtain three abstract domains: schema definition, medium
definition and schema-medium mapping. To describe either schemata or media
layouts a finite set of atomic domains as elementary types is given. The mapped
representation of atomic domains are very much system dependent.

A set is a non-ordered collection of values from a certain type called base type.
A set can hold zero or more values. No duplicated value occurs in a set.

set work_days
{

days d;
};

A sequence is an ordered collection of a certain component type. A sequence may
be empty. The main difference between a set and a sequence is that a sequence
allows repetition of the same value, and the order of the values is important.

sequence missing
employee missing;

};

A tuple type is a model of Cartesian product of component types. The order of
component types is important. Two entities are equivalent if the types of their
components (in the same order) are the same.

tuple employee
{
string name;
int id;

};

Inheritance is a special kind of tuple construction. There is no semantic meaning
of inheritance defined, especially not the one like in object-oriented languages.
The only valid use of inheritance is code factoring: i.e. this is the means to avoid
code duplication at tuple definitions.

tuple manager : employee
{
string role;

};

There are modifiers in type constructions.

tuple manager : employee

{
string position;
ref department dept;
opt ref manager boss;
b

A ref is a reference to an instance of some type above. The semantic of the
reference is not defined. Representation of a reference could be e.g. a pointer.
Referred instances are typically not stored inside the objects on the medium.
Any recursion including self-reference is allowed. Opt defines optional attributes
of a certain component type in a type composition. The meaning of opt is that
the mapped image of this component type may not be stored in medium. Stor-
ing or loading optional components may have any mapping-defined semantics.
Optional types sometimes refer to computed values.

Mapping is a non-intrusive way to describe relationships between two or more
domains, i.e. the relations are defined outside of the domain definitions. In fact,
a mapping description is also a domain definition.

tuple mappingl2

source domainl;
target domain2;

};

LORD is being abstract domain definition language and not a language extender,
i.e. developers and programmers apply host language constructions of their own
referencing to instances of LORD-defined abstract types and data-exchange, as
if those types would have defined only by host language construction. Utilizing
LORD bind-mechanism, may extend the host language in a comfortable way.

3.2 Contexts and Patterns

To achieve context-dependent text-generation, LORD provides mechanisms for
matching particular contexts of macro invocations — called local invocation con-
text. An embedding statement always defines a particular context for macro in-
vocations embedded by that statement. Considering a macro invocation within
a host language program, what may and shall be considered as the left- and the
right-hand sided contexts of that invocation? More clearly, how far back and
ahead it is possible to match a particular piece of text. For the simplicity, one
physical line (i.e. piece of text between two newline characters) is considered
by default as one statement, and there are tokens to identify the beginning and
the end of an embedding statement. Local invocation contexts are statically de-
fined, and they can therefore be referred and identified by context patterns —

an extended mixture of UNIX- and XML-like regular expressions — inside macro
definitions. A context pattern refers to a particular sub-context of a local invo-
cation context. If more then one such sub-contexts exist, the closest one to the
macro invocation is considered. A context pattern is given in one of the three
forms

\(\(pattern\)...\)
\(...\(pattern\)\)
\(\(patterni\)...\(pattern2\)\)

referencing a left-hand sided, a right-hand sided and full invocation context, re-
spectively.

LORD does not define a unified syntax for macro invocations. Instead, it provides
invocation patterns — that describes the syntax according to which a macro is
intended to and shall be invoked. An invocation pattern declares formal param-
eters (variables) for a macro invocation, and describes what their actual values
look like, and where they can be found within the invocation context for a partic-
ular macro invocation. Expanding macro invocations, formal parameters’ actual
values are taken from the invocation context, described by the matched invoca-
tion pattern. The only rule of assigning a piece of text to a formal parameter is
that formal parameters cannot share the same piece of text as values of their own.

There is another context notion in LORD embeddings, called conjunctive invo-
cation context. Conjunctive invocation contexts are not necessarily static, but
always computable. They can be computed from some part of a local invo-
cation context, invocation pattern and neighbouring macro invocation, if any.
Conjunctive invocation contexts play an important role in the completion pro-
cess i.e. when an incomplete statement within a macro definition is to be made
complete. The completion process — with the exception of the leftmost macro in-
vocation — needs always computing the right-hand sided conjunctive invocation
contexts. The computation of a right-hand sided invocation context is a recursive
process that ends if in a computation step the resulted character string does not
obtain a trailing completion indicator. The computation of the left-hand sided
conjunctive invocation context takes not recursively place only for the leftmost
macro invocation, and once computed, the result remains static.

3.3 Variables, Indicators and Directives

LORD is a declarative language, it does not support variable declarations, their
value settings, or other operations on them in general, but supports declarations
of patterns and macro definitions’ formal parameters.

A declared variable is either a predefined pattern, called term, or a formal param-
eter of a macro definition. Formal parameter variables can hold single structured

or unstructured values — such variables are called atoms —, and lists of values,
where any value is of the same structure or unstructured — such variables are
called aggregates. Both structuring and aggregating can be declared by apply-
ing patterns. The following example shows an invocation pattern with predefined
patterns:

#term s\ (\w\)

#term 1\([a-zA-Z].[a-zA-Z0-9]*\)

#term 2\ ([a-zA-Z]1+\)

#term 3\ (Q@1%,0s*Q1\)

LL:

entity @s+ name\(@1\) @sx*

{@sx*

body [1\ (members [J\ (\ (@1@s*,\) *@s*@1\) @s*: @s*
type\ (@2\)@s*;@s*\)+ Q@s*

};
:11]

The pattern above describes an invocation syntax of the macro named entity
and defines an unstructured variable atom named name, a structured aggregate
named body with its members — an unstructured aggregate named members and
an unstructured atom named type. Elements of body are separated by semicolon
and the very last element is terminated by semicolon. The aggregate member
stands for a comma-separated unstructured value list, where the last element of
that list is terminated by a colon. A macro invocation that matches the above
pattern is

{:

entity intbool;

a, b, c, d : integer;
e, £ : boolean;
end_entity;

13}

References to variables cause that variable references are substituted with their
values. Any variable may be referred as an unstructured atom. Such references
independently of the declaration pattern are to be substituted with an unstruc-
tured value including the structuring separator or terminator symbols and white
spaces between (pieces of texts). Considering the above example, variable body
can be referenced as %body and the substituted text is

a, b, c, d : integer;
e, f : boolean;

Aggregate variables may be referenced as vectors; in the case of a structured
variable, members of the structure can also be referenced. The following exam-
ples show some variable references and also the substituted values in the case of

the variable body declared above:

Reference Substituted value
%body[*] a, b, c, d : integer e, f : boolean
%body|[@] a, b, c, d : integer
e, f : boolean

%body[*]-type integer boolean
%body|[@].members[*] abced
ef

With invocation patterns optional parameters or optional members of structur-
ing can also be described. Parameters declared as optional are to hold optionally
matched values. If no value is specified, optional parameters are valueless; a ref-
erence to an optional parameter is, however, always valid. If the parameter is
valueless, a reference to it as atom represents the empty string. A reference to a
valueless aggregate expands to the empty string.

LORD has a number of indicators. Indicators are similar to programming lan-
guages’ operators and control structures, such as while loop or switch in e.g. C.
Indicators are interpreted during macro expansion. There are indicators that are
interpreted differently within different context: e.g. variable references %body[*|
and %body[Q], refer to the value list of aggregate variable body as row and
coloumn vector, respectively, while @body refers the pattern labelled by body.
The statement indicator {{::}} that indicates the beginning and the end of in-
vocation contexts of particular macro calls, the scope indicator {::}, or the link
indicator [::] are context-independent indicators.

LORD defines join on vectors called linking. Linking two vectors of the same
size is the concatenation of the corresponding elements of the vectors. Linking
two vectors of different size can be traced back to the above by repeating the
last element of the shorter vector. Linking a vector to a single piece of text can
be considered as linking a vector to a vector of size of one element. The result of
linking is a column-vector if one of the operands is a column-vector. Considering
the formal parameter declaration in our first example, the following example
presents a use of the link indicator:

[:< member name=’\}body[@].members[@]’ type=’\’)body[e].type’ />:].

Notice that two column-vectors %body[@].members[@] and %body[@].type with
single pieces of text between and around are to be linked, but the member vari-
able mempbers is also referenced as a column-vector. LORD processor interprets
the variable reference %body[@].members[@] as nested loops: the external loop
runs over the element of body, and the inner loop over the element of members,
and since %body[@].type is controlled by the external loop, the expanded text
is:

member name=’a’ type=’integer’ />
member name=’b’ type=’integer’ />
member name=’c’ type=’integer’ />
member name=’e’ type=’boolean’ />
member name=’f’ type=’boolean’ />

AN AN AN ANEAY

LORD provides completion indicator to compose incomplete statements. The
completion indicator is three periods following each other. Completion indicator
are interpreted only inside macro definitions. Its main role is to indicate that a
statement is not complete. One of its simplest use is to implement traditional
macro functions. The following example shows the LORD definition of the C
macro

#define MAX(x, y) (((x) > () ? x) : (y»
without detailing the proper invocation pattern.

#macro MAX

H:

CL:

here stands the invocation pattern
defining formal parameters x and y

:]

{:

(@ > () T X s ().

3

further invocation pattermns, if any
3}

int a, b, c;
--- some computation ---

a = MAX(b,c) * c;

After LORD preprocessing the following C code is generated:

int a, b, c;
--- some computation ---

a= ((() > () 7 (b) : (c)) * c;

exactly the same as if it were generated by the C preprocessor, i.e. the LORD
preprocessor interprets a completion indicator that the statement from the cor-
responding side has to be completed with its conjunctive invocation context of

the side in question. In our case above, using UNIX regular expressions, the con-
junctive context of macro invocation MAX(b,c) from the left- and the right-hand
side are

\("\ta = \) and \(* c;\n$\),

respectively.

A context indicator is similar to the control structure switch in C, and is used to
match the all-time invocation context of a macro call specifying a set of context
patterns. To each specified context pattern a piece of text to be generated for
the matched context may be enclosed. A host language indicator is (:’ *:), and is
used to indicate that the piece of text inside that would otherwise be interpreted
as LORD indicator or directive, is a term of the host language. Host language
indicators may be used nested.

Directives are instructions to the LORD parser. Directives helps the LORD
parser to create work areas, to temporarily extend or build macro libraries, sym-
bol tables and index tables. LORD has few directives, such as #macro, #import,
#term, and #onto, to declare or define the beginning of a macro definition, to
load a library, to define locally or commonly used patterns, and to specify the
file the generated text is to be written to.

3.4 Complementary Expansion Method — CEM

CEM is a natural extension of the usual macro expansion for the case where
incomplete statements (statements with leading or trailing completion indica-
tors) occur in macro bodies. Expanding complete embedded statements using
CEM means recursively substituting macro invocations with their definitions.
Having only complete embedding statements and more than one macro invoca-
tion within the embedding statement, the invocations shall be expanded strictly
from left to right. To expand an incomplete embedding statement, the statement
has to be completed first. Completion of right-hand sided incomplete statements
is the substitution of the trailing completion indicator with the right-hand sided
conjunctive invocation context of the incomplete statement. CEM recursively
maintains a cursor expanding an embedding statement. The cursor administers
for each already detected macro invocation the first not-yet-processed embedding
statement of the associated macro definition. The cursor is a dynamic vector with
non-descendant size: whenever during expansion of an embedding statement a
new macro invocation is detected, the cursor is appended with an additional
element. At the beginning the cursor is empty. If during the expansion a macro
invocation completely expanded, the corresponding element within the cursor is
denoted by M?%, and is called inactive. Cursor elements different from of form
M$, are called active. CEM is carried out by the recursive algorithm below:

(i) Starting the expansion of a complete embedding statement s with its leftmost
embedded macro invocation My, the statement — after a successful match
and interpretation of an invocation pattern — may be considered as of form

S Comocl,

where ¢ is the left-hand sided conjunctive invocation context of all left-hand
sided incomplete statements within macro definition My, and c! is a not yet
parsed pure host language or embedding text. Whenever an invocation pat-
tern of a macro definition is successfully matched and interpreted, all visible
variable references, if any, within the matched macro body are substituted
with their values defined by the matched invocation pattern. Any value sub-
stitution above may result in more than one line.

(ii) Later, during the expansion, due to some completion process of an incomplete
statement, statement s may be of form

n
mopCi1mi...Cn—1Mnp—-1C ",

where ¢; and m; (0 < i <n — 1) are pure host language pieces of text and
macro invocations, respectively, and ¢” is a not yet processed pure host lan-

guage or embedding text. Suppose, the cursor actual state is [S{°, S', ..., Sf{"_’f]

i.e. the first not yet processed statements in macro definition A is s;’ for
each (0 < j < n —1). In such an intermediate state, the next statement

scanned by CEM is 330, and one of the following may happen:

° 560 is complete, or only from the left-hand side incomplete;

° 560 is incomplete from both or, at least, from the right-hand side.
For the first case, the expansion of s{ or cos{ (the left-hand sided completion
of sy’) starts according to (i). For the second case, the right-hand sided
conjunctive context of si° or cosy is to be computed according to (iii).

(iii) If s or its left-hand sided completion is incomplete from the right-hand
side, suppose, the first not yet processed left-hand sided incomplete state-
ment in M; is sf\fl — if no such statement is present in M7, the completion

process fails —, not necessarily different from ', All statements between
s1* (inclusive) and sﬁh (exclusive) are expanded according to (i)-(vi). The
right-hand sided conjunctive invocation context for s{ or cys(’ is clsﬁh, if

slM1 is complete from the right-hand side. If so, the expansion of sf)“clslMl
1 1

(or cosi 1 sﬁh) starts according to (i). If not, the completion process goes on
with looking for and positioning the first not yet processed left-hand sided
incomplete statement in macro definition M5, and so on. In general, having
a right-hand sided incomplete string as a leading substring of the right-hand

sided conjunctive invocation context to be computed, the completion of that

will continue with concatenating the pure host language piece of text that
terminates the currently processed macro invocation and finding and con-
catenating the first not yet processed left-hand sided incomplete statement
of the right-hand sided neighboring macro definition, if any.

(iv) If during the expansion of the statement

S CoMQ...CpMmc™ 1,
the cursor’s actual state is [Sé““, v M j$, ..., SFm] and unless the expansion of
s fails, no incomplete statement from the right-hand side, and no incomplete
statement from the left-hand side shall occur in macro definitions M;_; and
M1, respectively.

(v) If during expansion of s, the sequence of active cursor elements in the order of

., 87" "and only complete statements

. . J]
their ascendant indexes are S;°, S;"* i

ig 2% 0t

are scanned reading from Sf;’“ till its end, the next statement to be read is
pointed to by 57.

(vi) The expansion of the statement

s: comg...cympc Tt
ends, if the cursor’s actual state is [M¢, ..., M?], and no further macro invo-
cation has been detected in ¢"+!.

4 Limitations

Some of the modern 4GL environments such as Uniface [12], Magic [13] capture
domain description in a higher abstraction level. Their internal domain descrip-
tion is typically not open for third party tools. Unless the 4GL engine gives
opportunity to call externally defined functions LORD domain definition can
not be utilized.

Another issue is the relationship with other preprocessor languages, like the
standard C/C++ preprocessor. LORD parser invocations preceed the C/C++
preprocessor phase, which makes LORD control over standard preprocessor di-
rectives, like #include and #define. However, this narrows the LORD invo-
cation context to a single compilation unit, since #includes are effective after
LORD parsing.

LORD’s macro language is pattern controlled, and LORD’s macro engine offers
context-dependent expansion of macro invocations with generating embedded
or pure host language statements, and even LORD’s macro definitions as well.
What is a useful behaviour in valid execution context, might cause a serious
problem when the system needs to be debugged.

5 Related works

There have been many other approaches to make programming languages either
syntactically extendible or integrating domain specific concepts into the host
language.

Extendible Syntaz [9] was introduced for incremental syntax definition by ex-
tending the core language. Syntax extensions were placed into the host language
between special syntactical delimiters. The implementation is based on LL pars-
ing. Since the class of LL languages is not closed under union and concatenation,
the syntax definition sometime uncomfortable.

Syntaxz macros [10] define syntactical abstractions over code fragments. Syntax
macros usually operate on abstract syntax tree representations as a rewriting
transformation. The macro accepting abstract syntax tree(s) as argument(s)
and producing another abstract syntax tree replacing the macro invocation.

The Java Syntactic Extender (JSE) [11] is a macro system. The expressiveness
of the syntax that can be introduced is limited. As in most macro systems, a
macro identifier is required in invocations and the JSE parser is not extensible.
Opposite to the above, LORD does not restricts the syntax of macro names.

Bravenboer and Visser gives a detailed discussion in [8] on syntactical exten-
sion of host languages respect to domain specific extensions, advertising the
METABORG method. The METABORG is a method providing concrete syn-
tax mainly for domain abstractions to application programmers. In contrast, our
goal, concerning LORD, is not to extent the host language rather than integrate
and assimilate domain-specific concerns that otherwise could be formulated in
the language. This way our approach is more make map a certain domain into
many host languages.

6 Conclusions

Application integration needs to design and implement a common data model
and the corresponding data access layer. Information and software industry
hoped finding real solutions by establishing data standards for particular groups
of application fields, like IFC, CIS/2 [1-3]. Such standards mostly concern data
exchange format and are highly domain specific. Another approach is e.g. a data
warehouse, that implements a common data access layer over heterogeneously
structured data sources for applications.

Integration of applications of possibly different domains and/or following differ-
ent standards is not generally solved and still costs a large amount of human
and computer resources.

Autonomous applications using Document Data Model can easily follow struc-
tural differences of data, and in addition, structural information of data is carried
by themselves. This integration model is also capable of express collaboration
protocols between applications processing data of possibly different domains or
using different standards.

References

w

10.

11.

12.
13.

. Industrial automation systems and integration - Product data representation and

exchange - Part 11: Description methods: The EXPRESS language reference man-
ual Reference Number ISO 10303-11:1994, ISO Switzerland 1994.

Industrial automation systems and integration - Product data representation and
exchange - Part 22: Implementation methods: Standard Data Access Interface spec-
ification, Reference Number ISO/DIS 10303-22. ISO, Switzerland 1993.

CIMsteel Integration Standards Release 2 (Second Edition) http://www.cis2.org/
Extensible Markup Language (XML) 1.0 (Third Edition)
http://www.w3.org/TR /2003 /PER-xml-20031030

Zsolt Hernath, Zoltan Vinceller: Generalized Document Data Model for Integrating
Autonomous Applications In Proceedings of International Conference of Applied
Informatics (ICAI’6), Eger, Hungary, January 2003.

Andras Benczir, Zsolt Hernath, Zoltan Porkolab: Autonomous Applications — To-
wards a Better Data Integration Model ADBIS 2005 Tallinn, 2005.

Bjarne Stroustrup: The C++ Programming Language Special Edition. Addison-
Wesley (2000)

Martin Bravenboer, Elco Visser: Concrete Syntax for Abstract Objects: Domain-
Specific Language Embedding In Proceedings of Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’04), pp.365-383. Vancouver,
Canada, October 2004.

Luca Cardelli, Florian Matthes, and Martin Abadi: Extensible Syntax with Lexical
Scoping SRS Research Report 121, DEC Systems Research Center, February 1994.
Daniel Weise, Roger Crew: Programmable Syntax Macros In Proceedings of ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI'93), pp.156-165. Albuquerque, New Mexico, June 1993.

Jonathan Bachrach, Keith Playford: The Java Syntactic Extender. In Proceedings
of Object-Oriented Programming, Languages, Systems, and Applications (OOP-
SLA’01), pp.31-42. Tampa, Florida. October 2001.

The Uniface homepage: http://www.compuware.com/products/uniface/

The Magic homepage: http://www.magicsoftware.com/

