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Abstract. This paper describes the system we developed for IberEval
2018 on Aggressive detection track of Authorship and Aggressiveness
Analysis on Twitter (MEX-A3T)!. The task focuses on the detection of
aggressive comments in tweets that come from Mexican users. Systems
must be able to determine whether a tweet is aggressive or not. Our
approach is an Attention-based Long Short-Term Memory Network Re-
current Neural Network where the attention layer helps to calculate the
contribution of each word towards targeted aggressive classes. In par-
ticular, we build a Bidireccional LSTM to extract information from the
word embeddings over the sentence, then apply attention over the hid-
den states to estimate the importance of each word and finally feed this
context vector to another LSTM model to estimate whether the tweet is
aggressive or not. The experimental results show that our model achieves
outstanding results.
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1 Introduction

Recurrent Neural Networks (RNNs) is a type of deep neural network designed
for sequence modeling. These kinds of models are greatly studied due to their
flexibility in capturing nonlinear relationships. However, traditional RNNs suffer
from problems known as exploding or vanishing gradients and, therefore, have
difficulty in capturing long-term dependencies. Long Short-Term Memory net-
works (LSTM) [1] are one of the most used in Natural Language Processing
(NLP) to overcome this limitation. They are able to learn the dependencies in
lengths of considerably large chains.

Moreover, attention models have become an effective mechanism to obtain
better results [2—6]. In [7], the authors use a hierarchical attention network for
document classification. The model has two levels of attention mechanisms ap-
plied at the word and sentence-level, enabling it to attend differentially to more
and less important content when constructing the document representation. The
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experiments show that the architecture outperforms previous methods by a sub-
stantial margin.

In this paper, we propose a similar Attention-based LSTM for the IberEval
2018 track on Authorship and aggressiveness analysis in Twitter (MEX-A3T)
[8]. The attention layer is applied on the top of a Bidirectional LSTM to generate
a context vector for each word embedding which is then fed to another LSTM
network to detect whether the tweet is aggressive or not. To the best of our
knowledge, there has been no other work exploring the use of attention-based
architectures for the task.

The task focuses on the detection of aggressive comments. This is a topic
that has not been widely studied in the community. The aim is to determine
whether a tweet, which comes from Mexican users, is aggressive or not.

The paper is organized as follows. Section 2 describes our system. Experimen-
tal results are then discussed in Section 3. Finally, we present our conclusions
with a summary of our findings in Section 4.

2 System

2.1 Preprocessing

In the preprocessing step, the tweets are cleaned. Firstly, the emoticons are
recognized and replaced by corresponding words that express the sentiment they
convey. Also, we remove all links and urls. Afterwards, tweets are morphologically
analyzed by FreeLing [9]. In this way, for each resulting token, its lemma is
assigned. Then, the tweets are represented as vectors with a word embedding
model. This model was generated by using the word2vec algorithm [10] from the
Wikipedia collection in Spanish.

2.2 Method

We propose a model that consists of a Bidirectional LSTM neural network (Bi-
LSTM) at the word level. At each time step ¢ the Bi-LSTM gets as input a word
vector wy; with syntactic and semantic information, known as word embedding
[10]. Afterward, an attention layer is applied over each hidden state h;. The at-
tention weights are learned using the concatenation of the current hidden state
h; of the Bi-LSTM and the past hidden state s;_; of a Post-Attention LSTM
(Pos-Att-LSTM). Finally, the target aggressiveness of the tweet is predicted by
this final Pos-Att-LSTM network.

2.3 Bidireccional LSTM Recurrent Neural Network

In NLP problems, standard LSTM receives sequentially (left to right order) at
each time step a word embedding w; and produces a hidden state h;. Each
hidden state h; is calculated as follow:
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=Wz, + UDhy_y +b@) (input gate)
= oWz + UDhy_y + ) (forget gate)
= oW+ UDh,_; + ) (output gate)
up = o(WWay + UWh,_y 4+ 5W) (new memory cell)
ct =1 Qu+ [t @ cr1 (final memory cell)

ht = 0y ® tanh(cy)

Where all W,,U, and b, are parameters to be learned during training. The
function o is the sigmoid function and ® stands for element-wise multiplication.

The bidirectional LSTM, on the other hand, makes the same operations as
standard LSTM but, processes the incoming text in a left-to-right and a right-
to left order in parallel. Thus, the output is a two hidden state at each time step
h’t and

The proposed method uses a Bidirectional LSTM network Wthh considers
each new hidden state as the concatenation of these two h; = [ht, E] The idea
of this Bi-LSTM is to capture long-range and backwards dependencies.

2.4 Attention Layer

With an attention mechanism we allow the Bi-LSTM to decide which part of the
sentence should “attend”. Importantly, we let the model learn what to attend
on the basis of the input sentence and what it has produced so far.

Let H € R2*N»XTe the matrix of hidden states [hy, ha, ..., hp,] produced by
the Bi-LSTM, where N}, is the size of the hidden state and T} is the length of
the given sentence. The goal is then to derive a context vector ¢; that captures
relevant information and feed it as input to the next level (Pos-Att-LSTM). Each
¢; is calculate as follow:

z . B .

ct = Z a gy Ot = 2T, ‘ B = tanh(Wy * [he, $t—1] + ba)

=1 Zj:l 5t7]

Where W, and b, are the trainable attention parameters, s;—1 is the past
hidden state of the Pos-Att-LSTM and h; is the current hidden state. The idea
of the concatenation layer is to take into account not only the input sentence
but also the past hidden state to produce the attention weights.

2.5 Post-Attention LSTM

The goal of the Post-Att-LSTM is to predict whether the tweet is aggressive or
not. This network at each time step receives the context vector ¢; which is prop-
agated until the final hidden state sr,. This vector is a high level representation
of the tweet and is used in the final softmax layer as follow:
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9 = softmax(Wy * sp, + by)

Where W, and b, are the parameters for the softmax layer. Finally, cross
entropy is used as the loss function, which is defined as:

L==) yi+log(si) (1)

Where y; is the true classification of the tweet.

3 Results

Table 1 shows the results obtained by the proposed method on the aggressive
class for two different runs (runl and run2). A variation in the model was realized
for run2, where a linguistic characteristic is added to tweets. This characteristic
is based on the study carried out in the work [11], where the authors propose a
methodology for the detection of obscene and vulgar phrases in Mexican tweets.
In this way, the characteristic defines the presence or not of obscene or vulgar
words in the tweets according to the resource generated by the cited work. These
results reveal that the linguistic characteristic incorporated in the second run
marked performance improvement based on F-measure aggressive class, reaching
the second position of the ranking among all the participants in the task.

Table 1. Performance on the testing set

Run  F-measure Precision Recall

run 1 0.3091 0.5724  0.2117
run 2 0.45 0.3815  0.5485

4 Conclusion

We propose an Attention-based Long Short-Term Memory Network Recurrent
Neural Network for the IberEval 2018 track on aggressive detection in Twitter.
The model consists of a bidirectional LSTM neural network with an attention
mechanism that allows to estimate the importance of each word and then, this
context vector is used with another LSTM model to estimate whether the tweet
is aggressive or not. The results showed that the use of a linguistic characteristic
based on the occurrence of obscene or vulgar phrases in the tweets allows to
improve the F.measure of the aggressive class.
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