
Puzzle Form Images: How Does It Works?
Arkadiusz Drogoń

Faculty of Applied Mathematics
Silesian Univeristy of Technology

Gliwice, Poland
Kaszubska 23

arkadiusz.drogon@interia.pl

Karol Duda
Faculty of Applied Mathematics
Silesian Univeristy of Technology

Gliwice, Poland
Kaszubska 23

kmj.duda@gmail.com

Barbara Smoleń
Faculty of Applied Mathematics
Silesian Univeristy of Technology

Gliwice, Poland
Kaszubska 23

smolen94@gmail.com

Abstract—Image processing techniques are important algo-
rithm both in applied mathematics and various aspects of
computer science. The aim of this paper is to present the
algorithm composing an image from the parts. We consider two
cases. First, when the image is divided only vertically, and second,
when the image is divided vertically and horizontally. We discuss
our algorithm and also present appropriate statistics associated
with the program’s running time.

Index Terms—image processing, Mathematica, images, com-
posing algorithm

I. INTRODUCTION

In today’s world, computers play a very important role.
They are used in every area of life and science. Today,
artificial intelligence (AI) is one of the major directions of
science. These methods combined with developing computer
technology create enormous opportunities for science.

Nowadays, image processing is among rapidly growing
technologies. It forms core research area within engineering
and computer science disciplines too. Digital image processing
techniques help in manipulation of the digital images by
using computers. These techniques have many advantages over
analog image processing because computer allows a much
wider range of algorithms to be applied to the input data. For
example, pattern recognition uses algorithms such as neural
networks, which are based on machine learning.

A very wide introduction to various image processing
techniques was presented in [9]. Similarly in [10] was pre-
sented a discussion on positive aspects of algorithms, their
complexity and implementations. In this book we can find
many interesting algorithms for vision processing by the use
of computer programming. In [7] were presented fundamental
of image processing, while in [1] was given a discussion on
possible applications. In [3] were presented geometric aspects
of image processing, which are important for contour matching
and therefore composition of images. A review on application
of neural networks and their efficiency in image processing
was presented in [5]. In [17] was discussed how to compose a
detection algorithm which classifies shapes of bacterias from
input images. In [16] was proposed a composition of tech-
niques for detection of peel defects from images. While in [12]
various models of computational intelligence were composed

Copyright held by the author(s).

to detect obstacles on the way from camera images, and
therefore advise users of the system about potential dangers
on the road. In [14] was discussed an application of kernel
tracking methodology for reconstruction of objects from input
images. Recent advances in multi objective image processing
were presented in [11]. Texture modeling for differences in
pattern were discussed in [15], where a model of oscillations
was used for matching objects details from input images. In
[2] was presented how to use fuzzy systems to for recognition
from images, and in [6] a discussion on nonlocal operators
was presented for image processing.

Techniques of image processing use mathematical opera-
tions on matrices of images (because as we will see in section
II, every digital image can be represented as a matrix). For
example in application of filters in image processing, the
values of points from its environment are taken into account
in calculating the new value of the point. In this paper we
present a proposal of the algorithm composing an image from
the parts. The paper presents a simulation on composing
puzzles from various images by the use of our method, where
we compare significant pixels that match object shapes. We
compare some features that describe complexity of this method
and discuss its potential benefits.

II. BASICS

The images we see on internet pages and the photos we
take with our mobile phones are examples of digital images.
It is possible to represent this kind of images using matrices.
Mathematically the image can be seen as the matrix

F =


f11 f12 . . . f1M
f21 f22 . . . f2M

...
...

. . .
...

fN1 fN2 . . . fNM

 ,

where fij , i = 1, . . . , N, j = 1, . . . ,M represent colors
of the pixels, N and M are sizes of image (respectively
vertical and horizontal) given in pixels. Generally fij can be
the vectors describing color in certain system (for example
RGB). But in this paper we assume that for all images every
fij is a number, which describe color in a greyscale, where
set {0, 1, . . . , 255} is transformed into {0, . . . , 1}. By this
representation it is obvious, that we can operate on image
using mathematical operations on its matrix.

1

III. COMPOSITION ALGORITHM

Our algorithm is based on comparison of border pixels
of components of image. As an input we take table of
components of image in any order. In this paper M denotes
table of transformations of those components into their matrix
representations.

First we will present an algorithm for the case when the
image is divided only vertically, so all components are strips
with the same height as the image.

In the first step we create a matrix E of errors, where eij is
an error between right side of Mi and left side of Mj , in the
following way. For a diagonal of E we take a maximal value
1, because we do not want to link component of image with
itself. For other elements mean value of difference between
corresponding border pixels is computed.

In the second step we find coordinates i, j in the matrix E
with minimal value of E, it means the images with "the best
fit". We join the matrices of these images, it is Mi with Mj ,
which corresponds to the merging of these images. The new
component replace Mi and Mj is deleted from M . Additional
change to matrix E occurs: column i is replaced by column j
and column j and line j are deleted, then diagonal elements
of this matrix are changed to 1 again. We could compute
the matrix E after every merge of components of images
but transformation described above give us the same result
and decreases amount of necessary computations. In package
Mathematica this step can be realized in the following way

E1=E;
Do[

If[E1[[i, j]] == Min[E],
joinl = M[[i]];
joinr = M[[j]];
M[[i]] = Join[joinl, joinr, 2];
M = Delete[M, j];
E[[i]] = E[[j]];
E = Drop[E, {j}, {j}];

Break];
, {j, 1, Length[M]}]

, {i, 1, Length[M]}];
Do[E[[i, i]] = 1, {i, 1, Length[E]}];

Next second step is repeated with table M and matrix
E adjusted in previous iteration. The implementation of the
described technique is presented in following algorithm
Input: Table M of images

1: r := lenght of M
2: mv := vertical dimension of all Mi

3: Creating the matrix E
4: for i = 0, i ≤ r do
5: for j = 0, j ≤ r do
6: if i 6= j then

7: eij :=
1

r

mv∑
k=1

|Mi(k,−1)−Mj(k, 1)|

8: else
9: eij := 1

10: end if
11: end for
12: end for
13: for k = 1, k < r do
14: n := length of M
15: min := Minimum value of E
16: for i = 0, i ≤ n do
17: for j = 0, j ≤ n do
18: if eij = min then
19: replace Mi by joined Mi with Mj

20: delete Mj from M
21: replace in E column i by column j
22: delete column j and line j from E
23: break the loop
24: else
25: do nothing
26: end if
27: end for
28: end for
29: for i = 1, i ≤ lenght of E do
30: eii := 1
31: end for
32: end for
Output: M

In the second case, when the image is divided vertically and
horizontally into rectangles of the same dimensions, we use
modified algorithm.

As an input we take table M of components of image in
any order and number of rows (the number of parts into which
the image was divided horizontally). First we compute width
of image. To obtain this we sum width of all components and
divide it by number of rows. Now we create the matrix E of
errors in the same way as in the algorithm for strips. Next we
execute Algorithm 1, with one modification, until the same
number of components as number of rows remains. At the
end of the second step of the Algorithm 1 we check width
of component Mi which is result of this step. If it is less
than width of image then we proceed the next step. Otherwise
all values in both the column i and the line i in matrix E are
replaced by 1. Those modification ensures that when algorithm
stops, remaining components have the same dimensions.

Finally, we transpose matrices of all remaining components
and use Algorithm 1 again. As a result we obtain image
reflected with respect to the diagonal.

The implementation of the described technique is presented
in following algorithm
Input: Table M of images, number m of rows

1: mh := horizontal dimension of all Mi

2: r := lenght of M
3: mv := vertical dimension of all Mi

4: width :=
rmh

m
5: Creating the matrix E by executing of steps from 4 to 12

of the Algorithm 1.
6: while Length of M > m do
7: Executing of steps from 14 to 22 of the Algorithm

2

1.
8: if (horizontal dimension of joined Mi with Mj) =

width then
9: for t = 1, t ≤ length of E do

10: eit = 1
11: eti = 1
12: end for
13: else
14: do nothing
15: end if
16: end while
17: M := Table of transposed matrices from M .
18: Executing of Algorithm 1 with M as an input.
Output: M

IV. EXAMPLE

First example1 is basic. We have three strips. In first
iteration the minimal error was found for M1 and M3, so
we join first and third part. Now we have only 2 parts and we
need to check in which way we should join them, so we need
to check which erros is smaller, e21 or e12. e12 is smaller so
we join the component M1 with M2.

The next example shows how the algorithm works to divide
an image into rectangles. We have 12 rectangles: 200 × 100
px. Below we have the program start.

In first iteration the minimal error was found for M12 and
M10, so we join 12th and 10th. As a result we have 11

1To test the algorithm were used random images from Google Images.

parts. Next steps are similar. In each steps (I-VIII) we find
the minimal error between all parts of the image and then we
check the minimal error and join the corresponding parts of
the the image.

II step (joining part 12 and 10)

II step (joining part 3 and 8)

III step (joining part 2 and 6)

3

IV step (joining part 4 and 8)

V step (joining part 1 and 7)

VI step (joining part 4 and 7)

VII step (joining part 1 and 3)

VIII step (joining part 2 and 4)

The IXth step is another than earlier steps. We have to
transpose the matrix to continue the procedure. Next, we
will continue the previously described procedure, i.e. we will
compare all parts and join those for which the error eij will
be the smallest.

4

X step (joining part 4 and 3)

XI step (joining part 3 and 2)

XII step (joining part 2 and 1)

5

XIII step (joining part 2 and 1)

V. TIME OF WORKING

The basic problem of algorithms is their working time. We
can compare the operation of the program for division the
image only veritcally or veritcally and horizontally. The time
of the program does not depend on the degree of differentiation
of the image, because each time we compare the same number
of pixels (for a fixed image size and its division). The duration
of the program depends on the number of compared pixels and
kind of divising. Of course if the size of the image (number of
pixels) is greater, then the working time is greater. The graph
below shows the approximate running time of the program for
diffrent divisions.

We see that the relationship between image size and time is
linear for each division: for only vertically and for vertically
and horizontally division.

VI. CONCLUSION

The "Puzzles" algorithm can be extended to cases when the
divisions are irregular, i.e. the sizes of vertical and horizontal
divisions are different. Currently, such a situation is impossi-
ble, because the algorithm requires equal divisions. In addition,
it can be seen that combining images may be incorrect for
situations where the images are very similar or specific. Since

our algorithm finds first components with minimal error, join
them and proceed to the next step, we might obtain wrong
result if there were more components with the same error. For
example when the majority of the image is one color.

Another problem is time of working. For large images
divided in many components, it might take relativily a lot
of time for algorithm to stop. It is caused by amount pixels
needed for algorithm to compare.

Algorithms described above may have applications in deci-
sion support systems that search for objects with characteristic
attributes. Our algorithms may be used for finding elements
of images that fits the fixed pattern.

REFERENCES

[1] G. A. Baxes. Digital image processing: principles and applications.
Wiley New York, 1994.

[2] J. C. Bezdek, J. Keller, R. Krisnapuram, and N. Pal. Fuzzy models
and algorithms for pattern recognition and image processing, volume 4.
Springer Science & Business Media, 2006.

[3] V. Caselles, F. Catté, T. Coll, and F. Dibos. A geometric model for
active contours in image processing. Numerische mathematik, 66(1):1–
31, 1993.

[4] R. Damaševičius, C. Napoli, T. Sidekerskienė, and M. Woźniak. Imf
mode demixing in emd for jitter analysis. Journal of Computational
Science, 22:240–252, 2017.

[5] M. Egmont-Petersen, D. de Ridder, and H. Handels. Image processing
with neural networksâĂŤa review. Pattern recognition, 35(10):2279–
2301, 2002.

[6] G. Gilboa and S. Osher. Nonlocal operators with applications to image
processing. Multiscale Modeling & Simulation, 7(3):1005–1028, 2008.

[7] A. K. Jain. Fundamentals of digital image processing. Prentice-Hall,
Inc., 1989.

[8] T. Kapuściński, R. K. Nowicki, and C. Napoli. Comparison of effective-
ness of multi-objective genetic algorithms in optimization of invertible
s-boxes. In International Conference on Artificial Intelligence and Soft
Computing, pages 466–476. Springer, 2017.

[9] J. R. Parker. Algorithms for image processing and computer vision. John
Wiley & Sons, 2010.

[10] T. Pavlidis. Algorithms for graphics and image processing. Springer
Science & Business Media, 2012.

[11] A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone,
G. Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri,
et al. Recent advances in techniques for hyperspectral image processing.
Remote sensing of environment, 113:S110–S122, 2009.

[12] D. Połap, K. Kęsik, K. Książek, and M. Woźniak. Obstacle detection as
a safety alert in augmented reality models by the use of deep learning
techniques. Sensors, 17(12):2803, 2017.

[13] D. Połap, M. Wozniak, C. Napoli, and E. Tramontana. Is swarm
intelligence able to create mazes? International Journal of Electronics
and Telecommunications, 61(4):305–310, 2015.

[14] H. Takeda, S. Farsiu, and P. Milanfar. Kernel regression for image
processing and reconstruction. IEEE Transactions on image processing,
16(2):349–366, 2007.

[15] L. A. Vese and S. J. Osher. Modeling textures with total variation
minimization and oscillating patterns in image processing. Journal of
scientific computing, 19(1-3):553–572, 2003.

[16] M. Woźniak and D. Połap. Adaptive neuro-heuristic hybrid model for
fruit peel defects detection. Neural Networks, 98:16–33, 2018.

[17] M. Woźniak, D. Połap, L. Kośmider, and T. Cłapa. Automated
fluorescence microscopy image analysis of pseudomonas aeruginosa
bacteria in alive and dead stadium. Engineering Applications of Artificial
Intelligence, 67:100–110, 2018.

[18] M. Woźniak, D. Połap, C. Napoli, and E. Tramontana. Application
of bio-inspired methods in distributed gaming systems. Information
Technology And Control, 46(1):150–164.

6

