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Abstract—The Poisson process is used to simulate streams of
many independent real events. The nonstationary (nonhomoge-
neous) Poisson process (NPP) is an enlargement of the basic
approach and the main difference lies in a various intensity of
events at different times. In the article this tool is presented as
a method for modelling and optimization of toll stations on a
highway. The car traffic intensity on highways varies, depending
on the time of the day. Therefore it is reasonable to apply NPP for
its simulation. Results indicate that this approach is promising
and can be helpful in determining the most efficient setting for
the gates.

Index Terms—nonstationary Poisson process, simulation, mod-
elling, toll station, stochastic process

I. INTRODUCTION

Nowadays computers are extremely useful for humans.
They help entrepreneurs in minimizing costs and optimizing
production processes. Moreover, they increase the comfort
of everyday life. There is a lot of mathematical theories
which can be effectively applied in informatics. One of them
is the stochastic processes theory, and more precisely the
Poisson processes. Many independent streams of events may
be approximated with their use which opens the door to their
widespread deployment. In this paper, modelling of the toll
station on the highway is presented. The simulation is created
to help to choose the right number of open toll gates during
specific hours of a day. In the article, basic concepts and def-
initions related to the Poisson processes are presented. These
are followed by detailed information about statistical data, the
way of method implementation, as well as by description of
functions used. Finally, results and conclusions are discussed.

A. Related works

The Poisson process is a subject of many scientific studies.
In [8] an improved version of expectation maximization (EM)
algorithm designed for nonstationary Poisson processes is
presented. In [3] NPP is used for prediction of events like
arrivals of patients at Accident and Emergency departments.
The interesting research about detecting an anomaly in data-
sets is inserted in [7]. Authors describe e.g. study about
detection of epilepsy. Moreover, this approach can be used
in various topics connected with the environment, climate
changes (based on such parameter as sea level pressure)
[1] and earthquakes [5]. Furthermore, Poisson processes can
be very helpful in issues related to wireless networks. For
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instance, [12] presents a model for sensor deployment and
a method based on a division of hexagons in a clustered
Wireless Sensor Network. Additionally, authors in [6] show
a model of Simple Mail Transfer Protocol session with an
application of the Poisson process. An interesting application
of NPP in searching parking spaces is described in [9]. This
solution is cost-effective and can be helpful for car drivers.
Described papers confirm that nonstationary Poisson process
may be widely used. The Poisson processes are also connected
with queue theory. Some studies about positioning finite-
buffer queuing system with an cost-optimization problem are
presented in [13].

II. THE POISSON PROCESS

Let X1, X2, ..., Xn be a sequence of positive independent
random variables about the same distribution. Then Xk is the
time between (k−1)-th and k-th event. Let N(t) be a random
variable for fixed t:

N(t) = max{n ≥ 0 :
n∑
i=1

Xi ≤ t}. (1)

N(t) is called a counting process [11]. In other words, N(t)
gives the number of events appeared until time t. An example
trajectory of a counting process is shown in Fig. 1.

Fig. 1: Chart of a trajectory of a counting process. The horizontal
axis represents time, the vertical axis informs about the number of
events {N(t), t ≥ 0}.

N(t) is, by definition, a non-negative integer number which
fulfils following conditions:
• t1 < t2 −→ N(t1) ≤ N(t2),
• N(t2) − N(t1) is the number of jumps which appeared

in the interval [t1, t2], t1 < t2.
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Increments are called independent if the numbers of jumps
(events) of the process in disjoint intervals of time are inde-
pendent random variables. Stationarity of increments consists
in the fact that the number of jumps of the process in a given
interval is depending only on the length of the interval.

Definition 2.1. A counting process {N(t), t ≥ 0} such that
random variables X1, X2, X3, ... have the same exponential
distributions with the rate parameter λ > 0 is called the
Poisson process, where λ is the rate of the process.

It can be also proved, that for each t ≥ 0, N(t) (i.e. the
number of events of the Poisson process having rate λ until
time t) has the Poisson distribution with the mean λt:

P{N(t) = k} = e−λt
(λt)

k

k!
(2)

Assume that {Ns(t), t ≥ 0} is the superposition of indepen-
dent counting processes {Nsi(t), t ≥ 0}, i ∈ {1, ..., n} which
rarely generate the events:

Ns(t) = Ns1(t) +Ns2(t) + ...+Nsn(t), t ≥ 0. (3)

By Palm-Khintchine Theorem [4], Ns(t) can be approximated
by the Poisson process.

A. Nonstationary Poisson process

Definition 2.2. [11] A counting process {N(t), t ≥ 0}
is called a nonstationary (nonhomogeneous) Poisson process
with intensity function λ(t), if four following criteria are met:
• N(0) = 0; the process in time t (at the beginning) has 0

events.
• The process {N(t), t ≥ 0} has independent increments.
• P{N(t + ∆t) − N(t) = 1} = λ(t) · ∆t + o(∆t),

∆(t)→ 0 (short time interval).
• P{N(t+ ∆t)−N(t) ≥ 2} = o(∆t),∆(t)→ 0.

By definition, o(∆t) is such a function that

lim
∆t→0

o(∆t)

∆t
= 0. (4)

And finally, it is necessary to describe following theorem:

Theorem 2.1. For each m,n ≥ 0

P{N(n+m)−N(n) = l} =

= e−(M(n+m)−M(n)) · (M(n+m)−M(n))l

l!
, (5)

where P{N(n + m) −N(n) = l} means that in the interval
[n, n+m] occurs exactly l events, and M(n) =

∫ n
0
λ(y)dy.

III. MODELLING OF THE TOLL STATION

A. Description of the task

The main goal of this paper was modelling of the toll station
on a highway. During experiments a nonstationary Poisson
process was used because events (entering of a single car)
occur with varying intensity at different time intervals. Many

independent processes which rarely generate events can be
approximated by the Poisson process (by Palm-Khintchine
Theorem). The model is based on real data from Balice
toll station which is located on the highway A4 in Poland
(Kraków-Balice). Let N1(t), N2(t) be two nonstationary Pois-
son processes. N1(t) is to count the cars queuing at toll gates
and N2(t) is responsible for the number of served customers
at the toll station (gates throughput). Let X(t) be a random
variable expressing the number of cars waiting in the queue
at time t:

X(t) = max{N1(t)−N2(t), 0}. (6)

Of course, X(t) could not be smaller than 0, and in addition,
the number of serviced clients could not be greater than the
total number of cars which entered on the highway.

Fig. 2: A bar chart presents traffic in the toll station in Kraków-Balice
during Fridays based on Google data. The horizontal axis represents
following hours (i.e. first hour means 0:00-1:00, second hour: 1:00-
2:00, etc.) and the vertical axis informs about a number of customers
during subsequent hours of the day.

B. Implementation

The Algorithm 1 presents the pseudocode of the nonsta-
tionary Poisson process dedicated to the described problem.
The Exponential Distribution is essential. Its rate parameter
depends on time (traffic on a given hour). Because only one
day is examined, the process could not have events after 24
hours. N1(t) function has the following form:

N1(t) =



0 0 ≤ t < T1

1 T1 ≤ t < T2

2 T2 ≤ t < T3

. . .
n− 1 Tn−1 ≤ t < Tn
n Tn ≤ t <∞

(7)

n is the total number of events and Ti is the time of the i-th
event. N1 is responsible for arrivals of cars in the toll station.
The rate parameter of Exponential Distribution in the intensity
function during the fixed hour is the same as the number of
cars on the highway (Fig. 2). Of course, it is necessary to
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Algorithm 1 Pseudocode of the nonstationary Poisson process
(responsible for entering cars on the toll station)

Input: range of time: time, intensity function: λ(t),
t ∈ [0, time].

1: Generate a pseudorandom value T from the Exponential
Distribution with the rate parameter λ(0).

2: Set k := 1.
3: Create a blank list (called L) intended for the times in

which occur events of the process.
4: while T < time & T < 24 do
5: Append to L the time of the last event.
6: Generate a pseudorandom value Tk from the Exponen-

tial Distribution with the rate parameter λ(T ).
7: Set T := T + Tk.
8: Set k := k + 1.
9: end while

10: Show the time of consecutive events (L), total number of
events (k) and the pattern for the trajectory (N1).

create the second nonstationary Poisson process (N2) in charge
of customer service at the toll gates. Its principle of operation
is almost identical to the first process (N1) but as mentioned
before, the number of served clients cannot be greater than
the number of cars on the highway. It is realized by following
commands:

• Generate k-th event of 2nd process.
• if (N2(t) < N1(t))

then append k−th event to L2.

N1(t), N2(t) are respectively the numbers of events of the
first/second process until time t. L2 is the list of events of N2.
This time the intensity function is connected to the number of
open gates. The remaining part of the pseudocode is identical
as in Algorithm 1. It means, that randomly generated jump
in N2 is accepted only if there is a customer (or customers)
awaiting in the queue at gates. Now it should be obvious that
Eq. 6 notifies about the number of cars in the queue at time t.
It is assumed that the maximum number of gates is equal to 8.
One client is served in about 30 seconds which corresponds
to ≈ 0.008h. Similar value was experimentally achieved as
a mean value of a random sample from the Exponential
Distribution with the rate parameter λ = 120. This means
that the intensity function in N2(t) is following:

λTCt =


120 if 1 toll gate is open at time t
240 if 2 toll gates are open at time t
360 if 3 toll gates are open at time t
. . .
960 if 8 toll gates are open at time t

(8)

IV. RESULTS

A. Case 1

λ1
N2

(t) =



120 0 < t < 9 (1 toll gate),
360 9 ≤ t < 10 (3 toll gates),
480 10 ≤ t < 11 (4 toll gates),
600 11 ≤ t < 12 (5 toll gates),
720 12 ≤ t < 14 (6 toll gates),
960 14 ≤ t < 17 (8 toll gates),
720 17 ≤ t < 19 (6 toll gates),
600 19 ≤ t < 20 (5 toll gates),
480 20 ≤ t < 21 (4 toll gates),
360 21 ≤ t < 22 (3 toll gates),
240 22 ≤ t < 23 (2 toll gates),
120 23 ≤ t < 24 (1 toll gate)

(9)

The first experiment was carried out by using the intensity
function λ1

N2
(Eq. 9). Fig. 3 shows exemplary trajectories for

two nonstationary Poisson processes: N1 and N2. A trajectory
grows rapidly if the number of cars dramatically rises (like
in afternoon hours). The choice of a configuration of active
stands is the better, the more N2 is similar to N1. Fig. 5a
gives information about values of X(t) during subsequent
hours based on difference between N1 and N2 in a given time.
It can be concluded that toll gates opening schedule λ1

N2
is

not efficient and generates a traffic congestion between 8-9
a.m.. A sixty-vehicles-long queue during typical traffic hours
is a situation which should not take place. Statistical data
presented in Fig. 2 shows that the number of cars increases
sharply from 9 a.m. but adopted schedule is not sufficient. In
case of other hours, a situation is better (one should remember
that is necessary to divide the number of cars by the number
of open toll gates) but still not perfect. For instance, about 6.
p.m. five cars waited for payment on each available lane. It is
possible to improve the throughput by increasing the number
of active stands in some hours.

B. Case 2

λ2
N2

(t) =



120 0 < t < 8 (1 toll gate),
240 8 ≤ t < 9 (2 toll gates),
360 9 ≤ t < 10 (3 toll gates),
480 10 ≤ t < 11 (4 toll gates),
600 11 ≤ t < 12 (5 toll gates),
720 12 ≤ t < 13 (6 toll gates),
960 13 ≤ t < 19 (8 toll gates),
600 19 ≤ t < 20 (5 toll gates),
480 20 ≤ t < 21 (4 toll gates),
360 21 ≤ t < 22 (3 toll gates),
240 22 ≤ t < 23 (2 toll gates),
120 23 ≤ t < 24 (1 toll gate)

(10)

The second experiment was connected with the intensity
function λ2

N2
(Eq. 10). Similarly as before, Fig. 4 shows

exemplary trajectories for such setting of intensity function.
A chart presenting values of X(t) calculated for trajectories
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(a) A trajectory of N1(t) (b) A trajectory of N2(t)

Fig. 3: A sample experiment by using road traffic intensity from Fig. 2 and intensity function λ1
N2

(t) (Eq. 9)

(a) A trajectory of N1(t) (b) A trajectory of N2(t)

Fig. 4: A sample experiment by using road traffic intensity from Fig. 2 and intensity function λ2
N2

(t) (Eq. 10)

(a) X(t) based on trajectories from Fig. 3 (b) X(t) based on trajectories from Fig. 4

Fig. 5: Above functions present how many cars waited for payment in the queue.

from Fig. 4 is exposed in Fig. 5b. In this case, results are
satisfactory − the maximum value of X(t) is equal to 26. It

means that at most 26 customers (before 3 p.m.) waited in
the queue. In this time 8 toll gates were open so this state
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corresponds to ≈ 3 cars per one stand. Furthermore, opening
of the ninth gate is not possible (see 8). It can be concluded
that this schedule is right choice for statistical data inserted in
Fig. 2.

V. CONCLUSIONS AND FINAL REMARKS

Application of nonstationary Poisson process can be helpful
in determining the right schedule in toll stations. Obviously,
an opening of each new stand is connected with additional
costs so one should choose the right setting carefully. It is
easier thanks to such branches of mathematics as the theory
of stochastic processes. Moreover, it is necessary to adjust the
number of open gates with the season (e.g. weekends, vaca-
tion). Furthermore, one should consider situations in which
traffic is bigger than usual and adjust the number of open
gates accordingly.

However, it should be stressed that the described model
could be applied in toll stations. It is necessary to collect
statistical data connected with each day of week and carry
out simulations for all cases. Then, after allowing for possible
deviations (season and other factors influence on traffic) one
can determine the optimal numbers of open gates during
subsequent hours/days based on data coming from trajectories
of the Poisson process. It is worth to see that wrong choice of
open stands can bring loss of money. Car drivers which waited
in the queue too long, can find alternative roads in the future.

During further research one can compare the described
method with the other optimization techniques like heuristic
algorithms or neural networks and analyze their efficiency.
Measurements and charts were performed by using Wolfram
Mathematica 11 software.
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