
12

Requirements Engineering, Supported by Ontology

and Enterprise Modelling

Audrius Lopata, Neringa Makrickienė

Vilnius University, Kaunas Faculty, Institute of Applied Informatics

Muitinės g. 8, LT-44280, Kaunas, Lithuania

audrius.lopata@knf.vu.lt, neringa.makrickiene@knf.vu.lt

Abstract – nowadays, as information technology becomes more

and more demanding, system become bigger in the terms of scope,

the need in well established requirements becomes crucial. The

analysis of an information system requirements should result in the

establishment of well-defined functionalities and attributes agreed

by the stakeholders. If the functionalities are defined as incomplete

or incorrect, the software may not meet the expectations of users. In

this article the importance of well prepared requirements is stated

by analyzing and merging such technologies as Enterprise

Modelling and Ontologies in the context of the MOF architecture.

The basic concept of the upgraded MOF architecture is presented,

as well as, the Enterprise Metamodel and Requirements Ontology

are brought together to solve the problems in requirements

engineering area.

Keywords – Enterprise Modelling, EM, MDD, MOF, Ontology,

Requirements Engineering.

I. INTRODUCTION

In a modern world software development and software
applications are becoming more complex and demanding.
Developers, analysts, engineers, researchers are creating and
seeking for new techniques and procedures to streamline
software engineering processes to ensure shorter development
time and reduce costs by re-using different components. Yet, it
is well known that stakeholders requirements are standing at
the root of software development process and it is critical
component. IT professionals have already recognized the
importance of correct requirements for successful results,
because faults in requirements phase influence all phases of
software development.

Requirements Engineering process recently evolved,
because attentively developed requirements became crucial for
successful projects. This process became very collaborative,
including stakeholders from various areas with the aim to
develop business domain into features and attributes of the
software. Yet, stakeholders from different areas of knowledge,
their communication skills and new software features make
information systems development a heavily knowledge-based
process [1, 8].

In a modern day enterprise engineering, it is important that
Enterprise Models are developed in a well-defined Enterprise

Architecture that captures the essentials of the business, IT, and
its ever changing processes. Enterprise architectures typically
contain different point of views (e.g. Information, Business
area, Process, Application, Technical details and etc.) on the
enterprise that is developed by different stakeholders with a
variety background and knowledge about the business. Many
authors think that, consequences of the developed Enterprise
Models that populate these views are hard to integrate. Yet, one
of the options, considered as a possible solution for this
integration problem could be using a shared terminology during
the development of such cases [2]. Shared terminology, often
materialized in the form of ontology – in a business context
called an enterprise-specific ontology – provide many
advantages. Some authors describe ontologies as shared views
of domains. Ontologies provide conceptualizations that are
agreed upon by participants in collaborative action and decision
making. As it is mentioned in [16], the explicit existence of
such shared perspectives makes it possible for both people and
programs to collaborate by ensuring that everybody makes the
same distinctions and uses the same terms with the same
meaning. On an intra-organizational level, they ensure model
re-usability, compatibility and interoperability, and form an
excellent basis for enterprise-supporting IT tools, such as
Enterprise Resource Planning (ERP) systems, business
intelligence (BI) tools or information systems (IS), for which
they serve as common terminology. On an inter-organizational
level, they facilitate interoperability, cooperation and
integration by allowing formal mappings between, and
alignment of separately developed Enterprise Models [9].
Those are the key qualities of ontology and it will be used in
our research together with Enterprise Modelling.

II. THE BACKGROUND OF THE RESEARCH

Requirements Engineering (RE) is part of Systems
engineering and has it’s structure parts. It consists of
requirements elicitation, analysis, evaluation, validation and
management processes. The result of RE process is a
document, software requirements specification (SRS).
According to IEEE, SRS can be stated as a final result if it is:
correct, unambiguous, complete, consistent, traceable,
verifiable, extendable. From a user perspective, software
requirements specification should be easy to read, written in
understandable language for non-technical stakeholder and
technical stakeholder, what means, there should not be any
technological jargon. Also, it should be written in formally
accepted template, have all the necessary parts included, be

Copyright held by the author(s).

13

written in high quality language, with no grammar mistakes or
similar. To sum up, after reading the system requirements
specification, the responsible stakeholder should have a clear
vision what system is developed for, what structural parts it
will have, what workflow and problems it will solve.

The problem of this research is that, even many tools and
methods been already presented in the industry, issues and
difficulties still appear in requirements engineering. One of the
difficulty is - quality of many specified requirements is poor.
This means that far too many ‘requirements’ specified in real
requirements specifications are ambiguous, not cohesive,
incomplete, inconsistent, incorrect, out-of-date, specified using
technical jargon rather than the terminology of the user or
business/application domain, not restricted to externally-visible
behaviour or properties of the system, infeasible to implement
or manufacture, not actually mandatory (i.e., merely nice-to-
haves on someone’s wish list), irrelevant to the system being
built, lacking in necessary metadata such as priority and status,
untraced, in a form that is unusable to the requirements many
stakeholders, unverifiable, and unvalidatable [7]. This problem
most of the time can appear because of the lack of
communication between stakeholders involved into
requirements analysis process. Customer expressed
requirements can be wrongly interpreted by the analyst and
analyst can forward it wrongly to development team. And the
process becomes like a chain of miscommunication. Reaching
a common level of understanding of a problem domain is one
of the key challenges that the software vendors and customers
face during requirements definition. The process of articulating
and clarifying business problems and arriving at a specification
based on a shared understanding requires exchange and transfer
of knowledge [25]. On the other hand, system analyst plays the
key role to ensure the communication between the development
team and the client. In IS engineering all design models are
fulfilled on the basis of the empirical expert experience.
Experts, who participate in the IS development process, do not
gain enough knowledge, and process implementation in
requirements analysis and specification phases can take too
long [23]. The result of successful requirements engineering
process vary on the experience and skills of the analyst. There
should be a knowledge-based tool that overcome the lack of
qualification of the analyst, which is not been presented to the
area lately.

An ontology-based, Enterprise Metamodel supported
requirements specification tool may help to reduce
misunderstanding, missed information, and help to overcome
some of the barriers that make successful acquisition of
requirements so difficult.

III. EXTENDED MOF ARCHITECTURE

The Meta-Object Facility (MOF) is an Object Management
Group (OMG) standard. It is designed as a four-layered
architecture, where the top layer is called the M3 layer. This
M3-model is the language used by MOF to build meta-models,
called M2-models. The most prominent example of a layer 2
MOF model is the UML meta-model, the model that describes
the UML itself. These M2-models describe elements of the
M1-layer, and thus M1-models, for example, models written in

UML. The last layer is the M0-layer or data layer. It is used to
describe real-world objects, instances [19]. See Fig. 1.

Fig 1. MOF architecture with additional Enterprise
metamodel layer and Ontology modelling

Between M3 and M2 layers one more layer was added by
[19], to assure more accurate usage of MOF architecture. This
additional layer consists of Enterprise metamodel (EM).
Enterprise metamodel is a formal structure which ensures more
qualified information system development process and
knowledge base data collection. Enterprise model and
enterprise metamodel makes information system requirements
models generation process more efficient and eligible and
assure reduced number of mistakes in the final information
system development phase [11].

The Ontology Definition Metamodel (ODM) is designed to
include the common concepts of ontologies. In order to make
use of the graphical modelling capabilities of UML, the ODM
should have a corresponding UML profile [Sigel, 2001]. This
profile will enable graphical editing of ontologies using UML
diagrams as well as provide other benefits of using mature
UML CASE tools. There is two-way mappings between: the
ODM and the Ontology UML Profile and from the Ontology
UML Profile to UML [5].

To structure domain knowledge, which is the key factor for
successfully developed requirements specification, the
methodology is needed. Requirements Engineering calls for an
explicit domain knowledge. This domain knowledge generally
resides in different areas, such as experiences, functionality,
non-functional requirements, stakeholders and so on. Thus, it is
necessary to concentrate this knowledge for the most
appropriate application. Knowledge-driven techniques seem
promising for this purpose. Kossmann et. al. in [15] define
Knowledge-driven Requirements Engineering when
Requirements Engineering is guided not only by a process but
as well by knowledge about the process and the problem
domain. In order to use knowledge-driven techniques, it is
necessary to apply knowledge repositories that can be easily
updated and utilised [14].

14

IV. ENTERPRISE MODELLING AND ONTOLOGY RELATION

An Enterprise Model is a computational representation of
the structure, activities, processes, information, resources,
people, behaviour, goals and constraints of a business,
government, or other enterprise. It can be both - descriptive and
definitional - spanning what is and what should be. The role of
an Enterprise Model is to achieve model-driven enterprise
design, analysis and operation [10, 16]. Enterprise Modelling is
an activity where an integrated and commonly shared model of
an enterprise is created [9, 11, 22]. The resulting Enterprise
Model comprises several sub-models, each representing one
specific aspect of the enterprise, and each modelled using an
appropriate modelling language for the task. For example, the
Enterprise Model may contain processes modelled in BPMN,
data modelled in ER and goals modelled in n*. The Enterprise
Model is usually developed by several stakeholders, and
aggregates all information about the enterprise. As a result,
Enterprise Models without homogenized underlying
vocabulary suffer interoperability and integration problems [12,
25]. An Enterprise Model can be developed for single or more
different purposes. Several Enterprise Modelling formal
purposes are presented as follows [3, 17]:

1. To capitalize enterprise knowledge and know how.

2. To illustrate relations and dependencies within the
enterprise and with other enterprises, to achieve better control
and management over all aspects.

3. To provide support to business process re-engineering.

4. To get a common and complete understanding of the
enterprise.

5. To improve information management across
organizational and application system boundaries and provide
a common means for communication throughout the
organization. Rationalize and secure information flows.

6. To provide operative support for daily work at all
levels in the enterprise from top to bottom.

7. To control, co-ordinate and monitor some parts of the
enterprise.

8. To provide support for decision making.

9. To provide support the design of new parts of the
enterprise.

10. To simulate processes.

Enterprise Modelling (EM) aims to capture and represent
organizational design in terms of business goals, processes,
concepts, actors, as well as high level information system (IS)
requirements by using conceptual models. Many EM
techniques have emerged throughout the years, presenting
different views of the enterprise and offering a wide variety of
possibilities for designing, improving, re-structuring, and
automating all or parts of the business in question [12; 22].

Fig. 2. The basic elements of Enterprise Metamodel
(Reference: [4])

The researchers of Vilnius University and Kaunas
University of Technology [4, 10, 22] developed a framework of
Knowledge-based Enterprise model [Fig. 2], which helps to
generate models that could be used for requirements
specification. Knowledge-based CASE systems holding
substantial components, which organize knowledge:
knowledge-based subsystem’s knowledge base, which essential
elements are enterprise meta–model specification and
Enterprise Model for certain problem domain. Enterprise
Model as organization’s knowledge repository enables generate
UML models with the help of transformation algorithms.
Enterprise meta-model holds essential elements of business
modelling methodologies and techniques, which ensures a
proper UML models generation process [4, 22]. In order to
decrease the influence of empirical factors on IS development
process, the decision was made to use knowledge-based IS
engineering approach. The main advantage of this approach is
the possibility to validate specified data stored in EM against
formal criteria, in that way decreasing the possible issues and
ensuring more effective IS development process compared to
classical IS development methods. It could be stated that this
metamodel is part of MDA approach, this is why it is relevant
to this research and it will be used in our framework [4].

Knowledge Based Subsystem, which improves traditional
MDA conception with best practices of problem domain
knowledge and user requirements acquisition methods, is
presented in Fig 2 above. Usage of Enterprise Metamodel
together with MDA improves the consistency of software
artifacts and reduces IT projects dependency on empirical
processes. The EM is intended to be formal structure and set of
business rules aimed to integrate the domain knowledge for the
IS engineering needs. It is used as the “normalized” knowledge
architecture to control the process of construction of an EM
[22].

EM mostly focuses on consistency of UML models
generation. Also it is used as knowledge repository, where
domain knowledge is stored. It’s structure can be easily
adapted to any domain, which means it is easily reusable. That
is a huge advantage for the research. But even though, it has
advantages, it has some drawbacks in a scope of requirements
engineering too:

15

• It does not provide semantic concept of the
requirements;

• It does not provide rules and logic for associations
above requirements;

• It does not provide a shared common understanding of
the structure of information among people or software agents;

• It does not provide rules for completeness,
unambiguity and traceability criteria.

For the problems mentioned above solving, EM and
ontology integration should be used. An ontology-based
requirements specification tool may help to reduce
misunderstanding, missed information, and help to overcome
some of the barriers that make successful acquisition of
requirements.

Ontology is a discipline rooted in philosophy and formal
logic, introduced by the Artificial Intelligence community in
the 1980s to describe real world concepts that are independent
of specific applications. Over the past two decades, knowledge
representation methodologies and technologies have
subsequently been used in other branches of computing where
there is a need to represent and share contextual knowledge
independently of applications [18, 23].

Ontology engineering is a filiation of knowledge
engineering that studies the methods and methodologies for
building ontologies. In the domain of enterprise architecture,
ontology is an outline or a schema used to structure objects,
their attributes and relationships in a consistent manner. As in
Enterprise Modelling, ontology can be composed of other
ontologies. The purpose of ontologies in Enterprise Modelling
is to formalize and establish the shared understanding, reuse,
assimilation and dissemination of information across all
organizations and departments within an enterprise. Also, an
ontology enables integration of the various functions and
processes which take place in an enterprise [6, 23].

Using ontologies in Enterprise Modelling offers several
advantages. Ontologies ensure clarity, consistency, and
structure to a model. They promote efficient model definition
and analysis. Generic enterprise ontologies allow for reusability
and automation of components. A common ontology allows to
ensure shared understanding, clearer communication, and more
effective coordination among the various divisions of an
enterprise. These lead to more efficient production and
flexibility within the enterprise [20, 23].

V. SYSTEM REQUIREMENTS SPECIFICATION GENERATION

PROCESS

All of the system analysts would like to write requirements
specifications meeting the criteria. But it is very connected with
the experience of the system analyst, so human factor is playing
a key role while preparing a specification. It also depends on
the process how system requirements specification is
developed. Unstructured and chaotic process leads to the failure
or the result of the specification in the end will not meet the
previously described criteria. The traditional requirements
analysis process consists from these phases [13]:

• Requirements analysis;

• Functional analysis and allocation;

• System analysis and control;

• Design synthesis.

But this traditional process does not say anything about the
sequence of the analysis, just the points that should be taken
into account while designing requirements specification.

The quality of system requirements specification should be
a repeatable process where competency questions written in
natural language are interpreted. An algorithm by IEEE 830
standard is presented in the Fig. 3 below.

Fig. 3. SRS generation process (Reference: [13])

This process does not cover overall process of the analysis.
For the process to be complete, we added domain node, as well
as the summarized structure, also the rules executing and after
all it goes to generating the final document of system
requirements specification.

In the Figure 4, the upgraded top-level algorithm is
presented. It gives the clarity of the process, also includes
knowledge base and requirements ontology structure, as well as
the rules to be executed for specification to meet the criteria.
The very first step gives the base for exploring domain
knowledge, the data for requirements design, basic statements
of users expressed in natural language. After this analysis, the
information should be summarized in a structural way, a
requirements specification template should be presented.
Requirements should be described in formal unified language
to be easily understandable by development team. Also, it
should be end-user friendly. If the result of the analysis satisfies
the analyst, it can be described as a first system requirements
specification version and then it can be moved to evaluating it
according to criteria. But in a more complex way, after
analysis, first version of the document is compared to the
current system requirements specification. It means, it is
compared to the knowledge already stored in a knowledge base
and it is a process finding missing parts of the first version of
system requirements specification.

16

Gather the requirements

Analyze the gathered
documents

Compare with domain
knowledge

Summarize the requirements
into draft structure

Fill the gaps in the
requirements

Complete?

No

Compare with the current SRS

Yes

Current SRS

Correct?
Traceable?

Unambiguous?

Rules passed?

No

Execute consistency checking

Yes

Rules passed?

No

Modify and extend draft SRS Yes

Meet the features of good SRS?

Generate final SRS version

Yes

No

System requirements specification

Output

Fig. 4. Upgraded requirements analysis process

After comparing, specification is upgraded and completed.
Then it can be evaluated to the criteria and if it meets the
criteria, it can be stated as finished. If it does not meet criteria,
analyst should start the process all over again, to polish the
specification, because it cannot be outputted if it is not
completed and the criteria hasn’t been met. We will stick to this
procedure when developing our method.

VI. THE METAMODEL OF THE SOLUTION

Based on the MDA methodology and Ontology metamodel
our solution was designed. It organizes knowledge among three
contexts: Enterprise metamodel, Requirements Ontology and
Requirements document template. The framework also
incorporate abstractions from various knowledge modelling
paradigms like feature models, business process models, data
models and use case models, to capture and organize
knowledge elements.

Below, there is a simple example showing the relationship
between requirements, domain and the specification. It looks
like domain stands on the root of the successful requirements

specification project, but all of the three parts are essential and
cannot be left behind [Fig. 5].

Fig. 5. The relationship between requirements, domain and
specification (Reference: [24])

As illustrated in Figure 5, the role of requirements (R) in
software engineering is to state relationships that are desired to
hold between elements of a certain real world domain (D).
Conversely, the role of a specification (S) is to provide
instructions for a machine that has an interface to D so that the
properties required in R hold. [24] Formally, this diagram can

be explained as a logical relationship: S ∪ D ⊨ R. This

diagram correlates to our solution, as there is the same three
parts: Domain as Enterprise metamodel (EM), Requirements as
Requirements ontology (RO) and Specification (S) as
Requirements document template [Fig. 6].

Fig. 6. The meta-metamodel of the solution

The complex structure of Enterprise metamodel,
Requirements ontology and Requirements document template
lets us to get overall vision about the requirements design and
specification. It gives us knowledge base for domain and
continuous improvement process for future projects, it also
gives us structure of the requirements, it gives the clarity,
effective analysis with the result of complete, consistent,
unambiguous, extendable, modifiable, traceable and correct
requirements specification. Association between Enterprise
metamodel and Requirements ontology is realized through the
transformation algorithms.

 Enterprise Models have been formed in compliance with
the notations. However, their composition has not been proved
by the characteristics of the specific domain area [22, 23]. By
giving us structure not specified by a concrete domain,
Enteprise Metamodel ensures reusability, modifiability and
flexibility to the method.

17

VII. CONCLUSIONS AND FUTURE WORKS

An ontology with EM-based requirements specification
tool may help to reduce misunderstanding, missed
information, and help to overcome some of the barriers that
make successful acquisition of requirements so difficult. Key
argument why additional solution is needed is that in existing
ones requirement knowledge is not sufficiently covered.
Intentions, risks, obstacles and decisions are not documented
during RE and thus, are not available at later stages during
software development.

For domain knowledge repository, MDA based EM was
chosen as the most relevant approach as it stands out for
classic methodologies. So combined MDA and ODM
methodologies, we can get great results. Using ontologies with
Enterprise Modelling offers several advantages. Ontologies
ensure clarity, consistency, and structure to a model. They
promote efficient model definition and analysis.

In the future works it is planned to continue the research in
the area and present the deeper vision about the proposed
method. To create the full process of upgraded requirements
engineering process with incorporated Enterprise Metamodel
(EM) and Requirements Ontology (RO) in the process. To
create and present mappings between EM and RO notations,
also the transformation rules. Also it is planned to present the
whole structure of the method by adding good requirements
specification criteria by IEEE as a base, to show that the
method stands out for the remaining problems in requirements
engineering.

VIII. REFERENCES

[1] Alonso Julita B. (2006). Ontology-based Software

Engineering, Engineering Sup-port for Autonomous

Systems. ASLab-ICEA-R-2006-016 v 0.1 Draft of

2006-11-15.

[2] Bera, P., Burton-Jones, A., Wand, Y. (2011)

Guidelines for Designing Visual Ontologies to

Support Knowledge Identification. Mis Quarterly 35,

883–908.

[3] Brathaug T. A.&Evjen T.Å. (1996) Enterprise

Modelling. SINTEF, Trondheim.

[4] Butleris, R., Lopata, A., Ambraziunas, M., Veitaitė,

I., Masteika S., SysML and UML models usage in

knowledge based MDA process. Elektronika ir

elektrotechnika. Vol 21, No 2 (2015) pp. 50-57 Print

ISSN: 1392-1215, Online ISSN: 2029-5731.

[5] Dragan Djuric. Dragan Gasevic, Vladan Devedzi

(2006) Model Driven Architecture and Ontology

Development. ISBN-10 3-540-32180-2 Springer

Berlin Heidelberg New York.

[6] Fadel, G., Fox, M., Gruninger, M. (1994). A Generic

Enterprise Resource Ontology. In: Proceedings of the

3rd Workshop on Enabling Technologies:

Infrastructure for Collaborative Enterprises. p. 117-

128.

[7] Firesmith D. G. (2003) Engineering Security

Requirements. in Journal of Object Technology, vol.

2, no. 1, January-February 2003, pages 53-68.

[8] Force, S. E. T. (2001). Ontology driven architectures

and potential uses of the semantic web in systems and

software engineering.

[9] Frederik Gailly, Sven Casteleyn, Ndejda Alkhaldi

(2013) On the Symbiosis be-tween Enterprise

Modelling and Ontology Engineering. Ghent

University, Universi-tat Jaume I, Vrije Universiteit

Brussel, DOI: 10.1007/978-3-642-41924-9_42.

[10] Gudas S. Enterprise knowledge modelling: Domains

and aspects. Technological and economic

development of Economy. Baltic Journal on

Sustainability 281–293, 2009.

[11] Gudas S., Architecture of Knowledge-Based

Enterprise Management Systems: a Control View,

Proceedings of the 13th world multiconference on

systemics, cybernetics and informatics

(WMSCI2009),) July 10 – 13, 2009, Orlando,

Florida, USA, Vol. III, p.161-266 ISBN-10:1-

9934272-61-2 (Volume III).

[12] Iyad Zikra, Janis Stirna, Jelena Zdravkovic (2017)

Bringing Enterprise Modelling Closer to Model-

Driven Development. Oslo, Norway. Springer,

Lecture Notes in Business Information Processing,

LNBIP-092, pp.268-282.

[13] IEEE 830 standard.

[14] Katja Siegemund, Edward J. Thomas, Yuting Zhao,

and Uwe Assmann (2010) Towards Ontology-driven

Requirements Engineering.

[15] M. Kossmann, R. Wong, M. Odeh, and A. Gillies.

Ontology-driven Requirements Engineering: Building

the OntoREM Meta Model. In Information and

Communication Technologies: From Theory to

Applications, 2008. ICTTA 2008. 3rd International

Conference on, pages 1 – 6, 2008.

[16] Mark S. Fox, Mihai Barbuceanu, Michael Gruninger,

and Jinxin Lin (1998), An Organization Ontology for

Enterprise Modelling. MIT Press Cambridge, MA,

USA p. 131-152, ISBN:0-262-66108-X.

[17] Nadeem Ahmed Khan (2011) Transformation of

Enterprise Model to Enterprise Ontology. Master

Thesis, Jonkoping, Sweden.

[18] OMG ODM (2014) OMG Formal Versions of

Ontology Definition Metamod-el//

http://www.omg.org/spec/ODM/1.1

[19] OMG MOF., (2015) OMG Meta Object Facility

(MOF) Core Specification. Version 2.4.2. April 2014,

http://www.omg.org/spec/MOF/2.4.2

[20] Ostie James K. (1996). An Introduction to Enterprise

Modelling and Simulation.

[21] Perjons, E (2011) Model-Driven Process Design.

Aligning Value Networks, Enter-prise Goals,

Services and IT Systems. Department of Computer

and Systems Sci-ences, Stockholm University.

Sweden by US-AB, Stockholm ISBN 978-91-7447-

249-3.

[22] Veitaite I., Ambraziunas M., Lopata A. (2014)

Enterprise Model and ISO Stand-ards Based

http://www.omg.org/spec/ODM/1.1
http://www.omg.org/spec/MOF/2.4.2

18

Informations System’s Development Process. 16th

International Con-ference on Business Information

Systems, BIS2014 International Workshop, Larnaca,

Cyprus, May 22-23, 2014, Series: Lecture Notes in

Business Infor-mation Processing.

[23] Veitaitė I., Lopata A., Žemaitytė N. (2016) Enterprise

Model based UML Interaction Overview Model

Generation Proces. 19th International Conference on

Business Information Systems, BIS2019 International

Workshop, Series: Lecture Notes in Business

Information Processing. ISBN 978-3-319-26762-3.

[24] Zoghwi D., Gervasi V. The three Sc of requirements:

consistency, completeness and correctness.

[25] Ghaisas S., Ajmeri N. (2013) Knowledge-Assisted

Ontology-Based Requirements Evolution. In: Maalej

W., Thurimella A. (eds) Managing Requirements

Knowledge. Springer, Berlin, Heidelberg.

