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Abstract—Optimization problems are used in different areas
of our life. Very often the functions that are optimized are so
complex that classic methods can not deal with them. The solution
for it are heuristic techniques that do not guarantee the correct
solution in a finite time. In this work, the classic version of
Cuckoo Search Algorithm and proposed modifications that allow
to increase the precision of obtained solutions are described. The
proposal was presented and tested on nine different test functions,
and the obtained solutions were discussed in terms of advantages
and disadvantages.

I. INTRODUCTION

More and more often, contemporary problems are described
by mathematical equations, which makes it possible to min-
imize variables in such a way that the cost of production is
as low as possible and the highest quality. The large space of
solutions, the number of variables or even the landscape of
functions can be a big challenge for computers. For this type
of tasks, besides the classic methods of finding the best values
of the functions are heuristic algorithms. These techniques are
inspired by a certain action of physics or nature.

Mathematical models describing the action of nature are
created all the time, which is evident in numerous scientific
works. In [14], the grasshopper behavior has been described as
an optimization algorithm. Again in [10], the authors modeled
the way of polar bears survive in arctic condition through the
way they move on ice floes and hunt for seals. are tested not
only by the optimization problem, but also by the graph. In
[2], the authors presented binary monarch butterfly algorithm
and it was used to solve knapsack problem. Again in [4], [8],
nature inspired algorithm were used as a solver in vehicle
routing problem.

In the case of practical applications, such techniques have
been used primarily in decision-making systems [19]. In [9],
[11], it was used in feature extraction process from images
and sound file for the purpose of voice/image recognition. In
[3], the heuristics allowed for the construction of commercial
microgrids depending on the given assumptions. In a similar
way it was used in the assessment of creditworthiness [6] or
economic security [5].

Heuristic approach has also found use in location-based
social networks [7] or finding outlying points in diabetes data
sets [1]. Another important issue is medicine and biomedicine.
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Important features describing different lungs diseases on the
X-RAY images were detected by heuristic [17], and it were
used as support technique for circle detection which allow to
detect phases of bacterial life [16].

II. PROBLEM FORMULATION

The optimization problem is understood as searching for
a point whose function value reaches the global extreme,
more precisely the minimum or maximum. The choice of
maximization or minimization is insignificant because in the
case of a function having a maximum, it is enough to negate
the function. The same applies to the opposite case. To
define the problem formally, let us introduce some signs.
For a continuous function f(x) : R™ — R, the point
x = (21,2, ...,x,) will be a global extreme if the following
condition is satisfied

mxin f(x) or max f(x). (D)
Optimization functions are usually n-dimensional, for which
the extreme is hard to locate. Moreover, classic and numerical
methods mostly will not be able to do this. They are called
artificial landscape because in three dimensions they resemble
familiar shapes from nature or physics. A set of such a
functions is presented in Table I, where are defined the most
known and representing the basic shapes like bowl-shaped,
plate-shaped, valley-shaped, steep ridges and others.

To find the best solution, it is necessary to use heuristic
algorithm. It is a technique inspired by the nature, which
does not guarantee an accurate solution in a finite time (only
approximate).

III. CUCKOO SEARCH ALGORITHM

In this section, the classic model has been described along
with the proposed modifications.

A. Classic version

Cuckoo Search Algorithm (CSA) was presented in [18]
where the author described heuristic technique inspired by
the cuckoos behavior while tossing their eggs to the nests of
other birds. For obvious reasons, the mathematical model had
to be simplified in order to reduce the number of unknown
parameters as well as to minimize the number of calculations.
To this end, several simplifications have been introduced



Table I: Selected test function for described optimization problem.

Name Function Input domain X Global minimum
n n
Ackley —20 (—0.2\j 1 Zﬁ) —exp (; > cos(27rxi)> (—32.8,32.8) (,...,0) 0
i=1 i=1
n IQ n .
Griewank i _ T cos —1) +1 —600, 600 0,...,0 0
> o~ 1eos (2 < ) (0,....0)
n
Rastrigin 10n+ Y [2f — 10cos(2mz;)] (—5.12,5.12) (0,...,0) 0
=1 "
Schwefel 418.9829n — » _ z;sin(y/|z4]) (—500, 500) (0,...,0) 0
=1
n i !
Rotated hyper-ellipsoid Z z? (—65.5,65.5) 0,...,0) 0
=1j=1
n
Sum squares > iaf (—5.12,5.12) (0,...,0) 0
i=1
’L’(l n 2 n 4
Zakharov > oa? < 0.51‘3:1-) + (Z 0.5izi> (-5, 10) (,...,0) 0
i=1 i=1 i=1
n—1
Rosenbrock Z 100(wir1 — 22)2 4 (@, — 1)2 (-5, 10) 0,...,0) 0
i:ln
Styblinski-Tang 3> af — 1627 + ba; (—5,5) (—2.903534, ..., -2.903534)  —39.16599n
1=1

each cuckoo is interpreted as a point x = (g, . .
in n-dimensions,

the nature environment is understood as input domain
x; € {(a,b),

one cuckoo can drop only one single egg in one iteration,
egg is identified with the cuckoo,

number of cuckoos in population is constant,

the host can leave or throw away an egg with a probability
pa € (0,1). In the case of getting rid of the egg, the
cuckoo is forced to find a new place.

. axn—l)

The above-mentioned assumptions cause that these birds has
a specific environment. Each cuckoo moves in each iteration in
search of a better nest for its offspring. The flight is carried out
in accordance with the Levy’s equations (often called Levy’s
flight), which is continuous probability distribution defined as

c
e -
c )m<ﬂx—w>
2m
where g is location coefficient and ¢ is scale parameter.

(x—p)2
Using Levy’s equation, we can move birds on each spatial
coordinates as

L(Xi s 1y C) ) (2)

T =x! +a- L(x, p, ), (3)
where « is the length of Levy’s flight, ¢ is the current iteration.

After the move of cuckoo, the egg is subjected to a certain
test depending on whether it will remain in the nest. In case
the host notices that he has not his egg, he can throw it away.
The probability of discovery is p,, and it’s modeled as

{

B < ps drop the egg

H(x!t!
B> pa

K2

) “4)

leave the egg
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where (3 is a random value in range (0, 1). In most cases, p, =
0.5 what gives the equal likelihood of staying and throwing
the egg out of the nest.

B. Modified version

Proposition is based on modification host decision to prevent
the remove eggs that represents good solutions for a given
problem. Moreover, every move that cuckoo does is corrected
by using a local search method.

1) Gradient method: One of the classic local search tech-
nique is gradient descent. It is based on the analysis direction
of search space by the calculating the negative gradient of
function f. Let assume, that the algorithm starts at position

x = (xo,...,Zn—1). Then, the negative gradient for each
spatial coordinates is calculated as
Of (X0, -+, Xpn—
—Vfy, = _%’ 5)
X

what means the direction of the fastest descent. Then, the value
of x; is recalculated as

X; = X; + M=V fx), (6)

where ) is the length of step and ¢ is the current iteration for
these method. After 7' iterations, if function value in point xT
is better then before local search, it is replaced.

2) Proposed modification: A cuckoo moving in search of a
nest goes to one point and then the host’s decision follows. Let
us assume that the egg-laying cuckoo looks for such a place in
the nest to minimize the discovery of a new egg. In practice,
it can be realized through the local search like method of the
smallest gradient described in Algorithm 1.

The second modification is remodeling the host’s deci-
sion. In the original version depends on the randomness



Algorithm 1 Gradient Descent

Start,
Define f(-), length of the step A, number of iteration 7,
Take point x,
t:=1,
while ¢t < T do
Calculate x{ " using (6),
if f(x!™') < f(x!) then
xt=x!T
end if
t+ +,
end while
Return x},
: Stop.

R A A R ol

— e e
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of parameter . This type solution allows to remove well-
matched egg in the nest. It is possible to delete the best
solution in the whole population, and it leads to a jump in
the convergence. Removing the worse solutions by finding
the opportunity to the location a better one is justified and
therefore remodeling the decision condition is so important
— the best solutions should remain, and only the worse ones
should be removed. Moreover, the decision must depend on
the optimization function. In addition, it would be good if the
decision depended also on the quality of the current point with
respect to the best in whole population. An example of such
a model is presented by the following equation

f (Xpest)
————| < p, drop the egg
f (Xiutrrent)

X
best
———restt | > p,  leave the egg
t - a
f(Xcu'r'rent)
where xéest is the best solution in current iteration in whole
population.

H(x{™) ,

Algorithm 2 Modified Cuckoo Search Algorithm

1: Start,
2: Define p,, ¢, u, number of individuals N and number of
iteration 7',
Define test function f(-),
Generate N cuckoos at random,
t:=0,
while ¢t < T do
Move each cuckoo using Eq. (3),
Find the best position in nest using Algorithm 1,
Hosts decision is made by Eq. (7),
t+ 4+,
end while
Return the best cuckoo in population,
. Stop.

IV. EXPERIMENTS

For all test function are presented in Table 1. Both versions
(classic and modified) were implemented in Mathematica 9.
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Calculation were made using two sets of basic parameters
which are (the size of population, the number of iterations) and
were set as (50, 50) and (100, 100). In addition, the algorithm
parameter setting was as follows p, = 0.7, c = 0.4, p = 0.3
and the step size for gradient descent was 15.

All presented results are the average value from 100 tests
calculated as

T
100 ;f(xz)

The obtained averaged solutions are presented in II. From
these table, it is clearly to see that for each function, the
accuracy is at least slightly better. In the case of function with
many local extremes like Rastrigin or Schwefel, the solution
is better more then 10% which is a good result considering
the possibility of getting stuck. Especially when the algorithm
uses local search and this can increase accuracy, but only by
finding a better point in a given part of the function.

Not only the accuracy was measured, but also average
trajectory in each iteration defined as

99 ‘
=0
where X;qcq; is the exactly solution for a given function and
x]_., is the best point in j-th test, and || - || is an Euclidean

metric defined as the distance between two given points p and
q in n-dimensions

f({Xo, . (8)

. 7ng}) =

1

ﬁ ’ (9)

J
Xideal — Xbest

n

> (p —q,)>

=0

llp—all = (10)

And the last measurement coefficient is rate of convergence
in each iteration from the first to the ¢ — 1 calculated as

|f(Xkt1) — f(Xideat)|
|f(xk) - f(xideal)| ’

where k is the number of the given iteration. All of these
values were measured during tests for a population of 100
individuals and 100 iterations. For each iteration, data was
saved, then averaged and coefficients calculated in accordance
with the above formulas. The illustration of the obtained
results are shown in Fig. 1 (for classic version) and in Fig.
2 (for modified version). At first glance, both sets of charts
look similar. However, the values on the axes are much smaller
in the case of the algorithm with proposed modifications.

In almost all cases, the curves have been slightly smoothed
with the introduction of modifications. One of the most
interesting cases is the Schwafel function, for which the graph
of the average value of the fitness function slowed down to
zero. The reason is primarily the landscape (that is, many
local minimums) and the use of local search technique which
deepened the falling into this minimum. Hence, the function
graph is more bulged compared to the original. In other
functions, there can be seen improvement.

Y



Table II: Obtained results for all test function in 5 dimensions.

Function Population  Classic CSA Modified CSA
iterations f(x) f(x)
Ackley 50/50 8.1115809961431699E-3 1.0173805303914699E-3
100/100 3.1161468790261702E-3 4.25027784882959E-4
Griewank 50/50 1.1104141890427901E-6 1.11533858337188E-9
100/100 9.7064015180947607E-7 1.6771042340344999E-11
Rastrigin 50/50 1.02208808007731E-3 2.0757391077097499E-5
100/100 8.5738084933950599E-4 1.6665285423624399E-5
Schwefel 50/50 2.839832E-3 1.62429252212134E-4
100/100 1.89128E-3 1.4616910059213499E-4
Rotated hyper-ellipsoid | 50/50 3.2147278590055301E-6 8.3496728930287895E-7
100/100 9.774778625110691E-7 1.06247907632132E-7
Sum squares 50/50 3.9473326955707401E-6 3.2406587358828998E-6
100/100 3.0576751975143799E-6 3.67314536996053E-7
Zakharov 50/50 1.1666325957392999E-5 3.7743509867365198E-6
100/100 4.8645321838795998E-6 2.7434504482140701E-7
Rosenbrock 50/50 -5.4930904358968698E-2  -6.6770179875013505E-2
100/100 -8.1294844521185197E-2  -9.8308810919833806E-3
Stybliski-Tang 50/50 -194.11209430931001 -194.2329823892
100/100 -195.2309123 -195.84287387270001

V. CONCLUSIONS

In this paper, two modification were presented to improve
the performance of Cuckoo Search Algorithm. The first one is
the introduction of a local search as finding the best position
in the nest to reduce the probability of being detected by the
host. The second modification is the remodeling of the host’s
decision regarding the egg. This is important because in the
original algorithm, it was possible to remove the best solutions
in a given iteration. And now, the decision depends on the
quality of the position relative to the best individual in whole
population.

Both versions of CSA were tested in terms of accuracy,
quality of adaptation, trajectory, convergence of solution in
each iteration. Comparison of results indicates the advantage
of modification because the accuracy is more than 10% higher
than the original. Moreover, in most cases, convergence was
faster except the cases of functions with many local minima.
The reason is faster move to the minimum through local
search. An important element for future work is to design the
exit mechanism from the minimum and to analyze other local
search techniques.
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Figure 1: Sample benchmark tests results for all test function égbtained by the classic version of CSA. In each row, there are:
3D plot, average trajectory, average fitness function and convergence rate.
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Figure 2: Sample benchmark tests results for all test functioggobtained by the modified version of CSA. In each row, there
are: 3D plot, average trajectory, average fitness function and convergence rate.



