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Abstract - Agriculturalists seek general explanations for 

the variations in agricultural yields in response to a 

treatment. An increasingly popular solution is the 

powerful statistical technique one way analysis of variance 

(ANOVA). This technique is intended to analyze the 

variability in data in order to infer the inequality among 

population means. After exploring the concept of the 

technique, the response of the chlorophyll content on the 

leaves of 160 maize seedlings to the treatment of nitrogen 

potassium phosphorous (NPK) at 0g, 5g, 10g and 20g as 

control treatment, treatment1, treatment2 and treatment3 

respectively, it was revealed that, there was a significant 

effect of the amount of NPK on the chlorophyll content of 

maize seedlings at P < 0.05, [F (3, 141) = 51.190, P = 0.000]. 

Post hoc comparison using tukey HSD test indicated that, 

the mean score for treatment1 (M = 18.89, SD = 11.58) was 

significantly different than treatment3 (M =1.61, SD = 

7.01) and the control treatment (M = 4.59, SD = 5.49), also 

the mean score for treatment2 (M =21.57, SD = 9.80) was 

significantly different than treatment3 and the control 

treatment respectively. However, the result indicated a 

non-significant difference between the treatments 1 and 2 

and treatments 3 and the control treatment respectively. 

Altogether the result revealed that the amount of NPK 

really do have effect on the chlorophyll content of maize 

seedlings. The data were analyzed using computer 

program SPSS. 

 

Keywords - one-way ANOVA test, multiple comparison 

tests, NPK, chlorophyll, SPSS. 

 

1. Introduction 

The concept of analysis of variance (ANOVA) was 

established by the British geneticist and statistician sir 

R. A. Fisher in 1918 and formally published in his book 

“statistical methods for workers” in 1925. The technique 

was developed to provide statistical procedures for test 

of significance for several group means. ANOVA can 

be conceptually viewed as an extension of the two 

independent samples t-test to multiple samples t-test, but 

results in less type 1 error and therefore suited a wide 

range of practical problems. Formerly, this idea was 

generally used for agricultural experiments, but is 

presently the most commonly advanced research 

method in business, economic, medical and social 

science disciplines. 

Like many other parametric statistical techniques, 

ANOVA is based on the following statistical 

assumptions: 

a) Homoscedasticity (homogeneity) of variance. 

b) Normality of data. 

c) Independence of observations. 

2. Basic concepts of one way ANOVA test. 

A one-way analysis of variance is used when the data 

are divided into groups according to only one factor. 

Assume that the data 𝑦11, 𝑦12, 𝑦13, . . ., 𝑦1𝑛1
are sample 

from population 1,  𝑦21, 𝑦22, 𝑦23, . . ., 𝑦2𝑛2
 are sample 

from population 2,  , 𝑦𝑘1, 𝑦𝑘2, 𝑦𝑘3, . . ., 𝑦𝑘𝑛𝑘
  are 

sample from population k. Let 𝑦𝑖𝑗 denote the data from 

the ith group (level) and jth observation. 

We have values of independent normal random 

variables 𝑌𝑖𝑗 = 1, 2, 3, … , 𝑘 and J = 1, 2, 3, …, 𝑛𝑖 with 

mean 𝜇𝑖 and constant standard deviation 𝜎, 𝑌𝑖𝑗 ~ N 

(𝜇𝑖 , 𝜎) Alternatively, each 𝑌𝑖𝑗 = 𝜇𝑖 + 𝜀𝑖𝑗 where 𝜀𝑖𝑗 are 

normally distributed independent random errors, 𝜀𝑖𝑗 ~ N 

(0, 𝜎). Let N =  𝑛1 + 𝑛2 + 𝑛3+ . . . +𝑛𝑘 is the total 

number of observations (the total sample size across all 

groups), where 𝑛𝑖 is sample size for the ith group. 

    The parameters of this model are the population 

means 𝜇1, 𝜇2, 𝜇𝑘 and the common standard 

deviation 𝜎. 

    Using many separate two-sample t-tests to compare 

many pairs of means is a bad idea because we don’t get 

a p-value or a confidence level for the complete set of 

comparisons together. 

We will be interested in testing the null hypothesis 

                    𝐻0: 𝜇1 = 𝜇2 = 𝜇𝑘                                  (1) 

against the alternative hypothesis 

                       : ∃1 ≤ 𝑖, 𝑙 ≤ 𝑘: 𝜇𝑖 ≠ 𝜇𝑙                     (2)                                                     

(there is at least one pair with unequal means). 

Let 𝑦
𝑖
 represent the mean sample i (i = 1, 2, 3, …, k):                     

                𝑦
𝑖

=
1

𝑛𝑖
∑ 𝑦𝑖𝑗

𝑛𝑖
𝑗=1  ,                          (3)                                    Copyright held by the author(s).
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𝑦 represent the grand mean, the mean of all the data 

points: 

                       𝑦 =
1

𝑁
∑ ∑ 𝑦𝑖𝑗

𝑛𝑖
𝑗=1

𝑘
𝑖=1 ,                            (4)                                                       

 

𝑆𝑖
2 represent the sample variance: 

                    𝑆𝑖
2 =

1

𝑛𝑖−1
∑ (𝑦𝑖𝑗 − 𝑦

𝑖
)

2𝑛𝑖
𝑗=1 ,                    (5)                                                    

and 𝑆2 = 𝑀𝑆𝐸 is an estimate of the 

variance 𝜎2 common to all k populations, 

                  𝑆2 =
1

𝑁−𝑘
∑ (𝑛𝑖 − 1). 𝑆𝑖

2𝑘
𝑖=1 .                      (6)                                                               

    ANOVA is centered around the idea to compare the 

variation between groups (levels) and the variation 

within samples by analyzing their variances. 

    Define the total sum of squares SST, sum of squares 

for error (or within groups) SSE, and the sum of squares 

for treatments (or between groups) SSC: 

                       SST = ∑ ∑ (𝑦𝑖𝑗 − 𝑦)
2𝑛𝑖

𝑗=1
𝑘
𝑖=1 ,              (7)                                                     

SSE = ∑ ∑ (𝑦𝑖𝑗 − 𝑦
𝑖
)

2𝑛𝑖
𝑗=1

𝑘
𝑖=1 = ∑ (𝑛𝑖 − 1). 𝑆𝑖

2𝑘
𝑖=1 ,     (8)                             

SSC = ∑ ∑ (𝑦
𝑖

− 𝑦)
2

= ∑ 𝑛𝑖(𝑦
𝑖

− 𝑦)
2𝑘

𝑖=1
𝑛𝑖
𝑗=1

𝑘
𝑖=1 ,       (9)                                    

Consider the deviation from an observation to the grand 

mean written in the following way: 

            𝑦𝑖𝑗 − 𝑦 = (𝑦𝑖𝑗 − 𝑦
𝑖
) + (𝑦

𝑖
− 𝑦).                 (10)                                      

Notice that the left side is at the heart of SST, and the 

right side has the analogous pieces of SSE and SSC. It 

actually works out that: 

                           SST = SSE + SSC.                         (11) 

The total mean sum of squares MST, the mean sums of 

squares for error MSE, and the mean sums of squares for 

treatment MSC are: 

                       MST =
𝑆𝑆𝑇

𝑑𝑓(𝑆𝑆𝑇)
=

𝑆𝑆𝑇

𝑁−1
,                        (12)                                                

                       MSE = 
𝑆𝑆𝐸

𝑑𝑓(𝑆𝑆𝐸)
=

𝑆𝑆𝐸

𝑁−𝑘
,                     (13) 

                     MSC = 
𝑆𝑆𝐶

𝑑𝑓(𝑆𝑆𝐶)
=

𝑆𝑆𝐶

𝑘−1
,                        (14) 

The one-way ANOVA, assuming the test conditions are 

satisfied, uses the following test statistic: 

                                  F = 
𝑀𝑆𝐶

𝑀𝑆𝐸
.                                (15) 

Under H0 this statistic has Fisher’s distribution F (k – 1, 

N – k). In case it holds for the test criteria 

                               F > 𝐹1−𝛼,𝑘−1,𝑁−𝑘,                     (16) 

where 𝐹1−𝛼,𝑘−1,𝑁−𝑘 is (1 – 𝛼)quantile of F distribution 

with k - 1 and N - k degrees of freedom, then hypothesis 

H0 is rejected on significance level α  

The results of the computations that lead to the F 

statistic are presented in an ANOVA table, the form of 

which is shown in the table1. 

 

Table1. Basic one way ANOVA table. 

           

Source 

of 

Variation 

Sum Of 

Squares 

SS 

Degrees 

of 

freedom 

df 

Mean 

square 

F - 

Statistic 

Tail 

area 

above 

F 

Between 

group SSC k-1 MSC MSC/MSE 

  P – 

value 

Within SSE N-k MSE   

Total SST N-1    

This p-value says the probability of rejecting the null 

hypothesis in case the null hypothesis holds. In case P < 

𝛼, where α is chosen significance level, the null 

hypothesis is rejected with probability greater than (1- 

𝛼 ) 100 probability. 

 

3. Post hoc comparison procedures. 

One possible approach to the multiple comparison 

problems is to make each comparison independently 

using a suitable statistical procedure. For example, a 

statistical hypothesis test could be used to compare each 

pair of means, 𝜇𝐼 and 𝜇𝐽, I, J = 1, 2, …, k; I ≠ 𝐽, where 

the null and alternative hypotheses are of the form 

                     𝐻0: 𝜇𝐼 = 𝜇𝐽 , 𝜇𝐼 ≠ 𝜇𝐽                         (17) 

    An alternative way to test for a difference 

between 𝜇𝐼 and 𝜇𝐽 is to calculate a confidence interval 

for 𝜇𝐼 − 𝜇𝐽. A confidence interval is formed using a 

point estimate a margin of error, and the formula 

            (Point estimate) ± (Margin of error).          (18)                                 

    The point estimate is the best guess for the value 

of 𝜇𝐼 − 𝜇𝐽 based on the sample data. The margin of error 

reflects the accuracy of the guess based on variability in 

the data. It also depends on a confidence coefficient, 

which is often denoted by 1-𝛼. The interval is calculated 

by subtracting the margin of error from the point 

estimate to get the lower limit and adding the margin of 

error to the point estimate to get the upper limit. 

If the confidence interval for 𝜇𝐼 − 𝜇𝐽 does not contain 

zero (there by ruling out that ( 𝜇𝐼 ≠ 𝜇𝐽), then the null 

hypothesis is rejected and 𝜇𝐼 and 𝜇𝐽 are declared 

different at level of significance α. 

The multiple comparison tests for population means, as 

well as the F-test, have the same  assumptions. 

    There are many different multiple comparison 

procedures that deal with these problems. Some of these 

procedures are as follows: Fisher’s method, Tukey’s 

method, Scheffé’s method, Bonferroni’s adjustment 

method, DunnŠidák method. Some require equal sample 

sizes, while some do not. The choice of a multiple 

comparison procedure used with an ANOVA will 

depend on the type of experimental design used and the 

comparisons of interest to the analyst. 

The Fisher (LSD) method essentially does not correct 

for the type 1 error rate for multiple comparisons and is 

generally not recommended relative to other options. 

    The Tukey (HSD) method controls type 1 error very 

well and is generally considered an acceptable 

technique. There is also a modification of the test for 

situation where the number of subjects is unequal across 

cells called the Tukey-Kramer test. 

    The Scheffé test can be used for the family of all 

pairwise comparisons but will always give longer 

confidence intervals than the other tests. Scheffé’s 

procedure is perhaps the most popular of the post hoc 

procedures, the most flexible, and the most 

conservative. 

There are several different ways to control the 

experiment wise error rate. One of the easiest ways to 
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control experiment wise error rate is use the 

Bonferroni correction. If we plan on 

making m comparisons or conducting m significance 

tests the Bonferroni correction is to simply use 𝛼 𝑚⁄  as 

our significance level rather than α. This simple 

correction guarantees that our experiment wise error rate 

will be no larger than α. Notice that these results are 

more conservative than with no adjustment. The 

Bonferroni is probably the most commonly used post 

hoc test, because it is highly flexible, very simple to 

compute, and can be used with any type of statistical test 

(e.g., correlations), not just post hoc tests with ANOVA. 

    The Šidák method has a bit more power than the 

Bonferroni method. So from a purely conceptual point 

of view, the Šidák method is always preferred. 

    The confidence interval for 𝜇𝐼 − 𝜇𝐽 is calculated 

using the formula: 

𝑌𝐼 − 𝑌𝐽 ± 𝑡1−𝛼/2 , 𝑁 − 𝑘 . √𝑆2 (
1

𝑛𝐼
+

1

𝑛𝐽
)               (19)                                                

where 𝑡1−𝛼/2 , 𝑁 − 𝑘 is the quantile of the Student’s t 

probability distribution, by Fisher method (LSD − Least 

Significant Difference); 

𝑌𝐼 − 𝑌𝐽 ± 𝑞𝛼,𝑘 , 𝑁 − 𝑘 . √
𝑆2

2
(

1

𝑛𝐼
+

1

𝑛𝐽
),                 (20)                                          

where 𝑞𝛼,𝑘, 𝑁 − 𝑘 represents the quantile for the 

Studentized range probability distribution, by Tukey 

Kramer method (HSD − Honestly Significant 

Difference); 

 𝑌𝐼 − 𝑌𝐽 ± √(𝑘 − 1)𝑆2 (
1

𝑛𝐼
+

1

𝑛𝐽
) . 𝐹1−𝛼,𝑘−1,𝑁−𝑘   (21)                                                                                                                  

By Scheffé method; 

   𝑌𝐼 − 𝑌𝐽 ± 𝑡
1− 

𝛼∗

2

, 𝑁 − 𝑘 √𝑆2 (
1

𝑛𝐼
+

1

𝑛𝐽
)              (22)                               

 

 

where 𝛼∗ =
𝛼

2
 , C = (𝐾

2
) is the number of pairwise 

comparisons in the family, by Bonferonni method; 

                           𝑌𝐼 − 𝑌𝐽 ± 𝑡
1− 

𝛼∗

2

, 𝑁 −

𝑘 √𝑆2 (
1

𝑛𝐼
+

1

𝑛𝐽
)          (23)  

where  𝛼∗ = 1 − (1 − 𝛼)1/𝐶and  C = (𝐾
2

), by 

DunnŠidák metho 

Test for homogeneity of variance 

Many statistical procedures, including analysis of 

variance, assume that the different populations have the 

same variance. The test for equality of variances is used 

to determine if the assumption of equal variances is 

valid. 

    We will be interested in testing the null hypothesis 

                    𝐻0: 𝜎1
2 = 𝜎2

2 = ⋯ = 𝜎𝑘
2                      (24) 

        

 

against the alternative hypothesis 

                  𝐻1: ∃1 ≤ 𝑖, 𝑙 ≤ 𝑘: 𝜎𝑖
2 ≠ 𝜎𝑙

2                    (25) 

    There are many tests assumptions of homogeneity of 

variances. Commonly used tests are the Bartlett (1937), 

Hartley (1940, 1950), Cochran (1941), Levene (1960), 

and Brown and Forsythe (1974) tests. The Bartlett, 

Hartley and Cochran are technically test of 

homogeneity. The Levene and Brown and Forsythe 

methods actually transform the data and then tests for 

equality of means. 

Note that Cochran's and Hartley's test assumes that there 

are equal numbers of participants in each group. 

   The tests of Bartlett, Cochran, Hartley and Levene 

may be applied for number of samples k > 2. In such 

situation, the power of these tests turns out to be 

different. When the assumption of the normal 

distribution holds for k > 2 these tests may be ranked by 

power decrease as follows: Cochran Bartlett Hartley 

Levene. This preference order also holds in case when 

the normality assumption is disturbed. An exception 

concerns the situations when samples belong to some 

distributions which have more heavy tails then the 

normal law. For example, in case of belonging samples 

to the Laplace distribution the Levene test turns out to 

be slightly more powerful than three others. 

Bartlett’s test has the following test statistic: 

B = 𝐶−1[(𝑁 − 𝑘). 𝐼𝑛𝑆2 − ∑ (𝑛𝑖 − 1). 𝐼𝑛𝑆𝑖
2𝑘

𝑖=1 ] ,   (26) 

Where constant C = 1 + 
1

3(𝑘−)
. (∑

1

𝑛𝑖−1
−

1

𝑁−𝑘

𝑘
𝑖=1 ) and 

meaning of all other symbols is evident (see section 2). 

The hypothesis H0 is rejected on significance level α, 

when 

                            B > 𝑋2
1−𝛼,𝑘−1                             (27) 

where 𝑋2
1−𝛼,𝑘−1 is the critical value of the chi-

square distribution with k - 1 degrees of freedom. 

Cochran’s test is one of the best methods for detecting 

cases where the variance of one of the groups is much 

larger than that of the other groups. This test uses the 

following test statistic: 

                              C = 
𝑚𝑎𝑥𝑠𝑖

2

∑ 𝑆𝑖
2𝑘

𝑖=1

                                 (28) 

The hypothesis H0 is rejected on significance level α, 

when 

                              C > 𝐶𝛼,𝑘,𝑛−1                               (29) 

where critical value 𝐶𝛼,𝑘,𝑛−1 is in special statistical 

tables. 

Hartley’s test uses the following test statistic: 

                              H = 
𝑚𝑎𝑥𝑆𝑖

2

𝑚𝑖𝑛𝑆𝑖
2 .                                 (30) 

The hypothesis H0 is rejected on significance level α, 

when 

                               H > 𝐻𝛼,𝑘,𝑛−1,                           (31) 

where critical value 𝐻𝛼,𝑘,𝑛−1 is in special statistical 

tables  

Originally Levene’s test was defined as the one-way 

analysis of variance on 𝑍𝑖𝑗 = |𝑦𝑖𝑗 − 𝑦
𝑖
|, the absolute 

residuals 𝑦𝑖𝑗 − 𝑦
𝑖
, I = 1, 2, 3, …, k and j = 1, 2, 3, …, 𝑛𝑖 

where 



52 
 

k is the number of groups and ni the sample size of 

the ith group. The test statistic has Fisher’s distribution 

F(k – 1, N – k )  and is given by: 

                    F = 
(𝑁−𝑘) ∑ 𝑛𝑖.(𝑍𝑖−𝑍)

2𝑘
𝑖=1

(𝑘−1) ∑ ∑ (𝑍𝑖𝑗−𝑍𝑖)
2𝑛𝑖

𝑗=1
𝑘
𝑖=1

.                  (32) 

Where N = ∑ 𝑛𝑖
𝑘
𝑖=1 , 𝑍𝑖 =

1

𝑛𝑖
∑ 𝑍𝑖𝑗

𝑛𝑖
𝑗=1 , 𝑍 =

1

𝑁
∑ ∑ 𝑍𝑖𝑗

𝑛𝑖
𝑗=1

𝑘
𝑖=1  

    To apply the ANOVA test, several assumptions must 

be verified, including normal populations, 

homoscedasticity, and independent observations. The 

absolute residuals do not meet any of these assumptions, 

so Levene’s test is an approximate test of 

homoscedasticity. 

Brown and Forsythe subsequently proposed the absolute 

deviations from the median 𝑦̃𝑖 of the ith group, so is 

𝑍𝑖𝑗 = |𝑦𝑖𝑗 − 𝑦̃𝑖|.  

 

4. Methodology 

The study was undertaken in Kazaure north jigawa 

Nigeria. The population for this study was one hundred 

and sixty (160) maize seedlings grown and studied for 

three weeks period. Information was collected from the 

target population (maize seedlings) with the aid of 

chlorophyll meter (SPAD 502 plus) to measure the 

chlorophyll content of the leaves of each seedling. Data 

analysis was with the aid of inferential statistics (one 

way ANOVA). Independent variable for the study was 

the amount of NKP measured in gram. The significance 

test for the between treatment effect was the researcher’s 

statistical evidence of the effect of the treatment on the 

chlorophyll content of the leaves of the maize seedlings. 

 

4.1. Test for normality and homogeneity of the data. 

To begin ANOVA test, one must verify the validity of 

the normality and homogeneity assumptions of the data 

under study. These tests were based on Kolmongorov – 

Siminov and levene’s statistic respectively. These 

normality and homogeneity tests were conducted and 

found tenable P > 0.05, at 0.05 level for all the four 

treatment levels and P < 0.05, at 0.05 level respectively. 

The results were presented in tables 2 and 3 below. 

 

Table 2. Kolmongorov–Siminov test of normality.  

        

TREATMENT 
Statistic df Sig. 

TREATMENT1 0.117 27 0.200* 

TREATMENT2 0.103 43 0.200* 

TREATMENT3 0.539 39 0.120* 

CONTROL  0.298 36 0.130* 

 *. This is a lower bound of the true significance. 

 

Table 3. Levene’s test for homogeneity of variance. 

        

Levene Statistic df1 df2   Sig 

11.159 3 141 0.000 

 

4.2. Test of significance for the treatment effect. 

After the tests for the assumption of normality and 

equality of variance (Homoscedesticity), the next thing 

is to determine the significant effect of the independent 

variable, in this case amount of nitrogen. The 

significance of the treatment is based on F distribution, 

the test revealed that the probability of the Fisher 

distribution F (3, 141) was 0.000, less than the level of 

significance of 0.05 (i.e, P < 0.05). The null hypothesis 

that there was no significant difference between the 

mean chlorophyll was rejected. As presented in table 2. 

 

Table 4. One way ANOVA table for the experiment data. 

            
Source of 

Variation 

Sum Of Squares 

SS 
 df 

Mean 

square 
F  P - Value 

Between group 11373.06 3 3791.02 
51.

19 
0.000 

Within group 10442.14       141 74.058     

Total 21815.2 144       
 

 

4.3. Post hoc comparison. 

 When the null hypothesis is rejected using the F-test in 

ANOVA, we want to know where the difference among 

the means is. To determine which pairs of means are 

significantly different, and which are not, we can use the 

multiple comparison tests, in this case, tukey HSD. The 

result was presented in table 5. 

 

Table 5. Post hoc comparison. 

        

Pairs I, J 

Mean 

Difference Lower Bound Upper Bound 

C, 1* 
-14.30648 -20.0027 -8.6108 

C, 2* 
-16.98366 -22.0381 -11.9292 

C, 3 
2.97842 -2.1928 8.1497 

1, 2 
-2.67717 -8.1711 2.8167 

1, 3* 
17.2849 11.6834 22.8864 

2, 3* 
19.96208 15.0146 24.9096 

*The mean difference is significant at the 0.05 level. 

 

 7. Conclusion 

In many statistical applications in agriculture, business 

administration, psychology, social science, and the 

natural sciences we need to compare more than two 

groups. For hypothesis testing more than two population 

means, scientists have developed ANOVA method. The 

ANOVA test procedure compares the variation in 

observations between samples (sum of squares for 

groups, SSC) to the variation within samples (sum of 

squares for error, SSE). The ANOVA F test rejects the 

null hypothesis that the mean responses are not equal in 

all groups if SSC is large relative to SSE. The analysis of 

variance assumes that the observations are normally and 

independently distributed with the same variance for 

each treatment or factor level.  
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   However, the ANOVA F test revealed a significant 

effect of the amount of NPK on the chlorophyll content 

of maize seedlings at P < 0.05, [F (3, 141) = 51.190, P = 

0.000], and also  the tukey HSD test result indicated a 

non-significant difference between the treatments 1 and 

2 and treatments 3 and the control treatment 

respectively. Altogether the results revealed that the 

amount of NPK really do have effect on the chlorophyll 

content of maize seedlings.  
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