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Abstract. A key difference between individual tutoring and team tutoring is the 

degree of control that the individual has on the trajectory and outcome of the 

problem or process of interest.  In the individual case, the tutee does not have to 

share control of the problem solving process with others, while in the team case 

each tutee has only partial control of the overall response to the problem being 

solved. This creates problems of indeterminacy for assessment and tutoring, as 

the prior actions (and the effects of those actions) become a context for the as-

sessment of any given team member’s decisions and actions at any point in the 

problem’s evolution.  Indeterminacy makes individual and whole-team assess-

ment more difficult and creates new context-tracking requirements for team tu-

toring systems.  Pedagogical and technological solutions from prior team trainers 

are reviewed, and outlines for general solutions are suggested for future team 

tutors. 
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1 Introduction 

The modern period of computation research into instruction began with Bloom’s [1] 

seminal 1984 paper on human instruction, that showed a two-sigma increase in learning 

performance for individually-tutored students over those with traditional class-room 

based instruction. Bloom’s result was associated with the insight that human tutors im-

plicitly used experiential learning by basing tutoring on student’s work in applying 

knowledge and skills in actual problems and tasks. Since then, the field has largely 

focused on understanding how individual tutors achieve that effect and how it could be 

replicated in Intelligent Tutoring Systems (ITSs).  Over the last thirty years, ITS re-

search has been applied to many domains [2-5] in an empirical process of using learning 

science to create new tutoring methods, and effectiveness assessments to identify and 

refine tutoring models that work best.  This has resulted in a general theory of intelligent 

tutoring [6-10] that focuses on individualized assessment and individualized-assess-

ment-driven scaffolding for learning.   

At the heart of the ITS endeavor has been the dual problems of behavioral assessment 

and cognitively diagnostic assessment [11] given the behavioral assessment. The latter 
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refers to the highly inferential process of assessing the cognitive processes and specifi-

cally the knowledge state of the learner in a way that diagnoses the state of the learner’s 

expertise or mastery of the knowledge and cognitive skill involved.  These two levels 

of assessment vary in their complexity based, to a large degree, on the characteristics 

of the underlying problem domain and skill being learned.  In very well-structured tasks 

and domains involving a single person working alone, such as solving algebra prob-

lems, a given decision or action can always be immediately determined as either correct 

or incorrect from the problem state at the time of the action.  Cognitive assessment can 

similarly be more easily done in such domains because the required knowledge and 

canonical problem-solving process can be precisely and unambiguously defined as a 

deductive process. This allows the problem-solving process to be diagnostically as-

sessed in terms of its conformance with the deductive application of the declarative and 

procedural knowledge involved. Assessment of correct behaviors then leads to an in-

creased belief that the learner has internalized and mastered the knowledge required for 

that particular problem step, and assessment of incorrect behaviors analogously leads 

to a decreased belief that the learner has internalized and mastered the underlying 

knowledge.1  

 There are of course many domains where the problem-solving processes are not so 

well structured.  Many of these are discovery-based, or involve stochastic relationships 

between actions and outcomes.  These are domains for which assessment of a behavior 

or action can be complex and/or can yield an indeterminate result. If behavior assess-

ment is problematic, then cognitive assessment will be similarly problematic. The dif-

ficulties grow significantly greater when an ITS is trying to train individuals for prob-

lems in which the learner: 

 is participating in an interaction with another person (who may be cooperating, co-

ordinating, or even competing with the learner), or  

 is part of a team of learners, either working alone or in collaboration, or in competi-

tion or conflict with each other. 

In such interactive and team-based problem domains, the task of automated behavioral 

assessment quickly becomes very complex and problematic. As it does, the challenge 

of automated cognitively diagnostic assessment also becomes that much more difficult.  

The remainder of this paper focuses on issues that underlie that difficulty – the issues 

of context-dependence and the problem of indeterminacy.  These concepts, and the 

problems they create for team ITS, are discussed below within a detailed, though ab-

stracted, example.   

                                                           
1 This discussion is deliberately avoiding the mathematical and computational aspects of repre-

senting, increasing, and decreasing the belief that the learner has acquired specific elements 

of knowledge.  An excellent presentation of those issues is provided in Nichols, Chipman, and 

Brennan [11]. 
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2 Indeterminacy and Context-Dependence in Team Assessment 

In a classical ITS, the learner is immersed into a practice environment in which, at each 

action or decision point, the: 

 learner is in full control, and  

 behavioral and cognitive assessment are done from direct observations of the state 

of the environment in plus the observed decision made or action taken.   

This individual ITS model is a direct analog of one-on-one tutoring, as discussed by 

Bloom [1].  When this constraint is relaxed by adding other persons to the problem-

solving process, it becomes more difficult to assess the actions of any one learner, and 

arguably impossible to do so using only direct observation of each actor in isolation.  

Consider a team-training ITS for the simple case of two persons in a simulated vehicle 

-- a pilot or driver and a navigator-communicator (navcom). Assume that the role of the 

navcom is to:  

 a) plot a route to destination for the vehicle and communicate to the pilot the starting 

and ending point of the next segment;  

 b) communicate with any external sources about problems or issues in the space to 

be crossed (e.g., locally bad weather); and  

 c) revise the route and communicate changes to the pilot accordingly.  

Assume further that the role of the pilot is then to direct the vehicle at all times, taking 

into account local conditions and other events or objects that may be relevant to safe 

operation of the vehicle.   

In the physical world, it would not possible to assess the behavior of the pilot without 

considering the behavior of the navcom. If the navcom, for example, ignores infor-

mation about an upcoming obstacle, and the pilot collides with it, then it is uncertain 

whether the pilot’s behavior was correct or incorrect, making it generally impossible to 

assess that behavior or the knowledge state or cognitive process behind the pilot’s ac-

tion.  The outcome was clearly negative (a crashed vehicle), but one could reasonably 

note that the pilot was just following the route provided by the navcom (Case 1).  Or, 

one could determine that the pilot should have avoided the obstacle even without the 

navcom’s inputs, as part of competent piloting skills (Case 2).  Or, one could find that 

the pilot was deficient in being too dependent on the navcom’s inputs, and not exercis-

ing normal caution that would be appropriate if the pilot were in the vehicle alone, per-

forming both roles (Case 3).  To add to this confusing picture, it should be noted that 

this assessment process is largely dependent, not on the prior standard of what the pilot 

or the navcom should do, but rather anchored on the way in which the coordination 

between the two roles was defined – that is, on how the team interactions and coordi-

nation processes are defined.   

The above example points out why a team ITS cannot simply be viewed as an ag-

gregate of individual ITSs for each member of the team.  Examining this from the ITS 

architecture perspective, the behavioral and cognitive assessment of the ITS for Case 1 

can only be accomplished by adding an independent (data) pipeline from the pilot’s 
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actions to the assessment module.  However, it would be insufficient for Case 2, be-

cause a behavioral input alone would not allow the value of the missing communication 

from the navcom to be expressed and used in the behavioral and cognitive assessment 

of the pilot.  Moreover, the addition of a pipeline from the behavior (and behavior as-

sessment) of the navcom would still leave the assessment module for the pilot without 

enough information to consider and assess Case 3 above.  That is because the infor-

mation on the navcom’s role in the team, vis-a-vis the pilot’s role, would still be miss-

ing.   

The point here is that knowing that the pilot drove into an obstacle leaves the behav-

ioral (and cognitive assessment) in an indeterminate state with regard to diagnosis and 

assessment. In abstract terms, the arrival of the team-directed system at a specific prob-

lem-state can be the result of a (potentially large) set of unique sequences of actions/de-

cisions by the members of the team.  Different sequences in this set can be the basis for 

different diagnoses and assessments of some or all of team members at that same point 

in the problem state.  In cases like this, we can say the there is an indeterminacy of the 

problem state with regard to diagnosis and assessment because a single diagnosis and 

assessment cannot be determined without additional information.   

In the example immediately above, the additional information needed is historical -

- the sequence of prior actions and interactions of and among the team members. How-

ever, other kinds of information may also be needed to undertake a definitive assess-

ment and diagnosis.  The individual action/decision sequences also involve the different 

relationships that the team members have to the set of roles and responsibilities that are 

defined within the team as a whole. The actions taken by individuals acting as a specific 

role can also have a situational meaning in terms of the changing state of the environ-

ment or situation that is the focus of the team.  Together, the historical decision/action 

sequence of the different team members, and the relationship of actions/decisions to the 

team members to design, and the external problem state constitute a broader context for 

the assessment processes of the individuals in each role and of the team as a whole.   

The added importance of context can be understood by adding one additional factor 

to the thought exercise above.  Assume that the navcom had received multiple warnings 

of expected obstacles and had communicated each one to the pilot, though each ex-

pected obstacle communication proved to be a false alarm.  The presence of multiple 

prior warnings, all false, is relevant context for the collision with the obstacle that was 

struck without a navcom warning.  The prior false alarms could be interpreted as nega-

tively affecting the vigilance of the pilot, and perhaps that of the navcom as well, lead-

ing to a slowed reaction time to the actual obstacle (Case 4).  This case requires a con-

text-based assessment and diagnostic process which involve both past events and ex-

ternal parties (i.e., whoever was issuing the warnings) as well as all of the factors re-

quired to assess Cases 1 through 3.    
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3 Dealing With Indeterminacy and Context-dependence in 

Team Training ITSs 

The issues of indeterminacy and context-dependence as related to behavioral assess-

ment and cognitive diagnosis in team ITSs were first addressed in one of the first team 

ITSs, the Advanced Embedded Training System (AETS) [12].  That system, and its 

initial solution to those challenges, are described in the following subsection. While 

AETS’s approach created a foundation that continues to be relevant to today, it left 

other problems in team ITS design and development open.  Some of those issues are 

also discussed in this section.  

3.1  AETS and Recognition-Activated Model Assessment  

The Air Defense team in the combat-information center (CIC) team aboard a US Naval 

destroyer focuses on the problem of commanding and controlling multiple assets to 

provide continuous defense of ownship and the whole surface combatant group from 

hostile attack from the air.  The team can vary in size from six to eight members (within 

the CIC), with roles varying to some degree according to the mission and organizational 

decisions by the ship commander. The broad aid defense function is to detect, identify, 

monitor and, if necessary, engage air vehicles that could pose a threat to ownship and/or 

defended assets, particularly an aircraft carrier. The AETS was an advanced develop-

ment research project that was undertaken to explore how adaptive intelligent training 

could be provided while at sea for whole shipboard teams, such as the Air Defense 

team.  

(The initial motivation for AETS arose out of a specific incident that occurred in the 

late 1980s, in which a US Naval destroyer shot down an Iranian airliner with great loss 

of life.  The Air Defense team believed, based on the aircraft’s unusual behavior and 

the high level of geopolitical tensions in the area, that the aircraft was in fact a hostile 

military aircraft preparing to launch a missile at the destroyer.  This incident was widely 

analyzed in a landmark study on decision-making under stress [13], which essentially 

concluded that all the actions of the team were appropriate, although contextual factors 

led to the clearly undesirable outcome, making it an interesting empirical example of 

the issues addressed in this paper.) 

AETS initially focused on applying conventional ITS concepts, seeking to assess 

each team member’s performance from bottom-up analysis of that person’s low-level 

actions -- specific keystrokes, eye movements, and speech utterances made by the op-

erator2 on the voice networks.  It quickly became clear that there were very many se-

quences of low-level actions that could be used to create a functional event in the prob-

lem solving process, e.g., tagging an air track as presumed hostile. Cognitive front-end 

analyses [14] also showed that those abstracted functional events were the basis on 

which operators, particularly those in more senior roles, reasoned about the problem.  

The cognitive analyses also showed that each operator maintained a detailed mental 

model of the mission context from the perspective of that operator’s specific role in the 

                                                           
2 The term ‘operator’ is used henceforth to refer to a person filling a specific role in the team.   
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team, and used that mental context model to stimulate opportunistic reasoning about 

what to do next.  This reasoning strategy stood in stark contrast to the top-down deduc-

tive reasoning described earlier as the canonical individual ITS case.  One seeming 

basis for this use of the opportunistic context-driven reasoning approach was that it was 

an implicit response to the indeterminacy in the team process.  As each team member 

could independently move the problem in an unexpected direction (i.e., could create 

indeterminacy), the experienced operators developed a strategy that explicitly main-

tained a context representation, and that at any point in time reacted to the situation at 

hand, in the context of the current mission.   

The AETS behavioral and cognitive diagnosis approach mimicked the strategy un-

covered in the cognitive analysis.  It consisted of four parts: 

1) low-level action data were processed using intelligent algorithms to auto-

matically combine them into abstracted high-level actions, which marked 

the key steps and transitions in the problem-solving process; 

2) cognitive models were constructed to emulate the processes by which each 

operator role built and maintained a mental model of the mission context, 

and the processes by which the operator chose (and contextualized) high-

level actions to take; 

3) performance analysis algorithms, on recognition of a high-level action from 

an operator, queried the cognitive model to determine if its type, timing, 

and contextual customization matched the high-level action, if any, that 

were indicated by that operator’s cognitive model; 

4) cognitive analysis algorithms were then invoked, given an at-least partial 

match with the model indications, to identify the specific parts of the cog-

nitive model that were successfully or unsuccessfully instantiated in the op-

erator’s actions; and 

5) adaptive feedback algorithms then used the results of the cognitive assess-

ment to provide feedback reinforcing the knowledge used correctly or at-

tempting to remediate inferred errors in underlying knowledge.   

 

This process was termed Recognition Activated Model Assessment (RAMA), since 

it was activated by recognition of an abstract functional action from an operator, and 

conducted through comparison of the action with underlying cognitive model predic-

tions.  The performance assessment subsystem also used temporal windowing to control 

for small variations in timing of actions by operators, and to allow missed actions to be 

recognized by their absence. This RAMA approach has been used in various forms by 

multiple other team training ITSs [15]. Among other novel features of RAMA was its 

use of explicit context models (though for each individual operator rather than one 

team-wide), and its use of abstract levels of action to drive the assessment process rather 

than unitary or low-level actions typical of conventional ITSs.   

3.2 The Inverse Indeterminacy Problem – Creating an Assessable Moment 

AETS and the RAMA method still left several indeterminacy problems unaddressed.  

Among the most interesting was a way of meeting a training need that can be considered 
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the inverse of the indeterminacy problem.  That was the problem of creating an assess-

able moment: a specific situation that required one or more operators to demonstrate 

their possession and ability to apply a specific body of knowledge.  In an individual ITS 

this is relatively easy; a problem or state can be created directly by the ITS designer or 

engineered so that the learner must encounter it.  In a team environment, however, it is 

much more difficult to do this for the very reason underlying indeterminacy, which is 

that each and any operator could move the problem in some unanticipated direction.  

Thus, creating a specific situation requires that each operator behave in such a way as 

make that situation arise, or at least require that no operator behave in a way that would 

prevent the situation from occurring.  

A successor to AETS called SCOTT (Synthetic Cognition for Operational Team 

Training) did explicitly address the problem of creating assessable moments from 

within a RAMA architecture [16].  It did this explicitly by creating a team training ITS 

in which any role in a team can be trained, but in which only one role is played by a 

live human trainee at a time, with the other roles being filed by cognitive models inter-

acting directly with the simulation.  Thus, a SCOTT cognitive model served dual pur-

poses: as the basis for RAMA assessment when its role was being played by a live 

trainee, and as a synthetic operator otherwise.  In doing this, SCOTT was designed so 

that the model-based operators could be directed to secretly collaborate to create an 

assessable moment for the live trainee.   

4 Summary and Future Directions 

This paper has discussed several challenges to the task of constructing intelligent train-

ing systems for teams, as follows: 

 In moving from the classical paradigm of one-learner/one-ITS to the team-training 

paradigm of many-leaners/one-team-ITS, some or all of the teammates become part 

of the problem environment for assessing the behavior and knowledge state for any 

individual in the team. 

 Because the design and standard procedures for the team roles affect how any indi-

vidual action is assessed, the team and its design also become part of the problem 

environment for assessing the behavior and knowledge state of any team member.  

The team level also creates a separate level of assessment for the team as a whole.   

 The history of team members’ actions and the effect of those actions on the external 

problem environment create a persistent context that also provides needed infor-

mation to the individual and team level performance assessment process.  Within the 

team, different members may have differential access to this larger team context in-

formation. 

Creating explicit representations of these additional second and third order influences 

on individual team-member assessment and diagnosis will be required in future team 

ITSs to provide tutoring for team interactions and cooperation and coordination within 

a team.  The paragraphs below speculate on how this might be accomplished.   
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The prior generations of intelligent team trainers (see Freeman and Zachary [15]) 

relied to various degrees on human instructors, role-players and/or observers as adjust 

of the otherwise automated team trainers.  In AETS, for example, the human instructors 

were responsible for tracking team communications and collecting specific examples 

of those communications to use in live after actions reviews with the (human) team.  

While the embedded cognitive models in AETS did build and maintain cognitive rep-

resentations (termed mental models) of the team and problem context, each such model 

only considered it from the perspective of one specific role/person in the team.  Those 

computational context representations provided the information needed by the position-

specific RAMA algorithms. There were two main limitations of this approach.  The 

first is that there was no model of the overall ‘team’ context, so problems and failures 

that resulted in divergent context representations within the team could never be de-

tected or diagnosed.  Second, individual context view is insufficient to represent coor-

dinated or cooperative aspects of teamwork, again preventing such aspects from being 

assessed or diagnosed.  These limitations require explicit models of context and/or of 

team communications to be developed and integrated into the (simulated) practice en-

vironment.   

One emerging technology that could be used to accomplish this is computational 

context modeling3, a family of technologies that seek to build and maintain dynamic 

declarative computational models of context.  Particularly relevant for team ITSs are 

context-modeling approaches that seek to construct a representation that is compatible 

with the mental models of context models that people construct [18].  A drawback of 

this approach is that it can require intensive knowledge-engineering, especially for 

larger teams.  An attractive aspect, on the other hand, is that a representation of the 

‘core’ context that is shared across the team can be constructed, and more specialized 

role-specific context models (analogous to those that were used in AETS and SCOTT) 

can be generated easily using a publish-subscribe mechanism augmented with more 

detailed context information maintained separately.   This context mechanism can also 

be used to maintain a context-based history of communications and dialogs among team 

members. Zachary, Carpenter, and Santarelli [19] detail an example of this from a hu-

man-robot communication domain. 

The complexity of such a thorough context representation technology could make it 

prohibitively expensive if it had to be (re-)built from scratch for each new team ITS.  

However, a substantial economy of scale could be achieved by integrating it as common 

infrastructure in re-usable team ITS framework. A team-focused GIFT [20] could thus 

provide a logical insertion point for this key component of future team ITSs.   
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