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Abstract

Trust and reputation systems are designed to mitigate risks associated
with decisions to rely upon systems over which there is no direct con-
trol. The effectiveness of trust models are typically evaluated against
relatively shallow metrics regarding the sophistication of potential at-
tacks. In reality, such systems may be open to strategic attacks, which
need to be investigated in-depth if trust model resilience is to be more
fully understood. Here, we devise an orchestrated attack strategy for a
specific state-of-the-art statistical trust model (HABIT). We evaluate
how these intelligent attack strategies can influence predictions of tar-
get trustworthiness by this model. Our conjecture is that this approach
represents a stronger benchmark for the assessment of trust models in
general.

1 Introduction
Interactions among autonomous agents inherently involve the risk of encountering behaviour that is unexpected
and, potentially, damaging to the goals of the principal. To this end, models of trust are devised to support
agents in making decisions regarding with whom to interact. This decision process may, however, be vulnerable to
orchestrated attack from adversaries. Existing trust models are, to a substantial extent, not rigorously evaluated
with respect to adversarial attack. The typical argument used with respect to attacks on a trust model is: our
model is robust to, say, whitewashing attacks; during evaluation, we introduce a number of agents that perform
poorly and then return with a new identity; we then demonstrate that our model is, by some metric, robust to
this attack [BNS10]. The assumption is that we have a relatively small number (with respect to the population)
of agents that have a pretty dumb attack strategy. What is more of a concern for computational trust models
is an intelligent, strategic attacker with a specific aim in mind, potentially generating a high pay-off. To our
knowledge, there is very little research that has explored this kind of attack, and the potential impact that it
may have on computational models of trust.

All the leading statistical models of trust [TLRJ12, RPC06, FBZ13, BNS10, KSGM03] have been evaluated
using either (adapted) real-world datasets or via simulation. The metrics of evaluation typically include the
mean absolute error of an assessment of trustworthiness, or precision and recall of a classification mechanism
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with assessment against a set of straightforward attacks. As argued by Jøsang [Jøs12, JG09], however, this type
of analysis requires additional investigation to ensure robustness in real-world scenarios:

“Many studies on robustness in the research literature suffer from the authors desire to put their own
trust and reputation system (TRS) designs in a positive light, with the result that the robustness analy-
ses often are too superficial and fail to consider realistic attacks. Publications providing comprehensive
robustness analyses are rare.”

The small number of studies that attempt to investigate the robustness of trust models include Kerr & Cohen
[KC09], Wang et al. [WMLZ14], Muller et. al. [MWLZ16], Bidgoly & Ladani [BL16] and Ruan & Durresi
[RD16]. The attacks considered in these studies are rule-based, which are not necessarily representative of what
a sophisticated attacker is capable of. Kerr & Cohen, for example, employs a playbook approach, where the
attacker selects strategies using a similarity metric to assess situations in which engineered strategies have been
defined as relevant [KC09]. Wang et. al. define a stochastic process to model the attacker’s strategy in selecting
from representative attack actions [WMZL15].

We take a different approach, using the trust model employed by the decision maker (the principal) to assess
service providers given available evidence. A malicious service provider (the attacker), targeting a decision maker,
intends to influence their reasoning so that assessments of service providers are more to attacker’s benefit. From
the attacker’s perspective, therefore, the goal is to find what kinds of evidence have most influence on their
assessments. This may involve self-promoting the attacker, or slandering competitors [HZNR09], but we make
no prior assumptions about what strategies are most useful. In essence, the aim is to find sets of actions that
can affect the evidence used by the principal to shift the trust system to promote the malicious motive.

We ground our attack model on a hierarchical optimistic bandit optimization mechanism, presenting this
algorithm in Section 3. This is used to strategically sample the space of possible attacks on a trust model,
where we cannot assume that the attack space is convex. In Section 4, we assess the performance of this model
against HABIT [TLRJ12], a generic model that has been shown to be highly effective in challenging scenarios and
benchmarked against other leading algorithms, and discuss our findings in Section 5. Before giving an overview
of our approach, however, we formulate the trust problem itself and show how HABIT exploits evidence available
to make trust decisions.

2 Trust Model
Trust assessment is the problem of producing a numeric rating (or ranking) for each of a set of agents, A =
{1, . . . , n}, which are assumed to be functionally equivalent. In other words, we do not take into account questions
of risk in making delegation decisions, we focus on prediction of performance on some problem. Different models
use different kinds of evidence in making these assessment, the most simple being a determination of whether the
provision of a service was successful, or a failure. Other models use quality ratings, or take into account multiple
dimensions of performance such as quality and time to delivery. In general, however, these are observations made
by the principal, tr, of the agent concerned (often referred to as the trustee), te over some period of time (e.g.
from time 0 to time t): O0:t

tr→te. We assume at each time step an interaction is occurred. All the information
that is, in principle, available to form assessments is: E = {O0:t

i→j | (i, j) ∈ R}, where R is the all agent pairs
(i, j). We, therefore, assume, in common with most trust models, that these observations are made by a single
principal of the performance of a single agent. Generally goal of a statistical trust model is to estimate the
expectation of p(Otr→te | E), which is the observation that the principal, tr, expects in a future interaction with
te, given the evidence. Of course, the principal may have limited memory of past encounters, or it may have
limited, biased or no access to others’ observations (reports of others’ direct observations).

The HABIT model, proposed by Teacy et al. [TLRJ12], is a generic statistical trust model, which is com-
patible with both continuous and discrete forms of information and claims (evidence) that has been empirically
demonstrated to be robust to malicious and noisy information. The model can be instantiated with different
types of distribution so that it can consume different types of observation; e.g. success/failure, or a qualitative
performance rating. The generic model assumes that the reported performance of each trustee (reputation),
θ.→te, is dependent on a hyper-parameter vector φ, which is intended to account for the group behaviour of all
trustees. Thus, θ.→te is a set that consists of parameter vectors each every principal with a specific trustee,
θ.→te = {θi→te | i ∈ A}. These parameter vectors are used to define the probability of interacting with trustee
j with exactly the same experience as that reported from the perspective of principal i will be successfully,
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P (Oi→j = success) = θsuccessi→j . The aim is to calculate the trustworthiness of trustee te, from the perspective of
truster tr by all evidence E , which is E[θtr→te|E ].

Here, we adopt Dirichlet Process [Fer73] instance of the HABIT model. In this instance, trust assessments are
calculated analytically rather than through variational inference or Monte Carlo methods. Given all evidence E ,
the trustworthiness of trustee te is calculated as:

θtr→te ∼ Dir(αtr→te)

Otr→te ∼ Cat(θtr→te)
1

E[θtr→te|E ] = c0
Beta(O0:t

tr→te)

Beta(∅) E[Dir(θtr→te|O0:t
tr→te)] +

n∑
j=1

Beta(O0:t
tr→j ∪O0:t

tr→te)

Beta(O0:t
tr→te)

E[Dir(θtr→te|O0:t
tr→j ∪O0:t

tr→te)]

(1)

where:

Dir(θi→j |Oi→j) =

∏k
l=1(θ

(l)
i→j)

αl+nl

Beta(α+ n)
(2)

is the posterior Dirichlet distribution given the evidence, which increments each αl by number of times, nl.

Beta(α) =
∏k

l=1 Γ(αl)

Γ(
∑k

l=1 αl)
(3)

is the multivariate Beta function and c0 is the chosen Dirichlet process constant, which gives weight to direct
observation information O0:t

tr→te more than other observations. Lastly, expectation of a Dirichlet distribution is
defined by hyper-parameters, α = 〈α1, ..., αk〉 as:

E[Dir(θtr→te = l|Oi→j)] =
αl + nl∑k
i=1 αi + ni

(4)

For this investigation, since the evaluation of each interaction is binary, number of values is k = 2. The idea
behind Equation 2 is the assumption that there is a correlation between the truster’s interest, trustee te with
other trustees. The equation is taking account of this similarity between trustees.

3 Attacker Model
To misguide a truster, an attacker introduces new information to the system or alter previous historical infor-
mation. We denote an alteration of the evidence as E ′. However for an attacker, the objective is to find the most
rewarding modification E∗ ∈ X in an attack space X = {E ′0, ..., E ′|X |}, which is:

E∗ = argmax
E′

E[θtr→te|E ′]− E[θtr→te|E ]︸ ︷︷ ︸
trust gain

(5)

An attack is an alteration in the evidence available to a principal for misguiding the predictions of the principal
about the trustworthiness of other parties. Formally, we define an attack as: E ′ = {A(Ot

i→j)| (i, j) ∈ R and t
′ ∈

{0, ..., t}}, where A : {success, failure} → {success, failure} is the manipulation function. Finding the most
rewarding modification E∗ in brute force manner is not feasible, since the search space increases significantly by
the number of trustees and the interaction representation (e.g. having a larger k.) If we assume full control over
the evidence, the number of possible attacks are:

|X | =
(
ρ+ (|O0:t

tr→.| · k)− 1

(|O0:t
tr→.| · k)− 1

)
(6)

by weak compositions of ρ [HM04] where ρ is attack power: i.e. the number of observations that will be added
to the evidence by the attack. For instance, when the trust system has 20 service providers |O0:t

tr→.| = 20 and
binary opinions k = 2, the number of attacks with respect to the attack power:

1Cat(θtr→te) is a categorical distribution, such that p(Otr→te) = θtr→te.
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Power ρ Space size |X | Power ρ Space size |X| Power ρ Space size |X |
1 38 4 101270 7 38320568
2 741 5 850668 8 215553195
3 9880 6 6096454 9 1101716330

Table 1: Space size v. power

We introduce additional parameter, s to denote the number of trust links that the attacker can access, instead
of full control assumption. This reduces the space, such that:

|X | =
(
ρ− 1

s− 1

)(
|O0:t

tr→.| · k
s

)
(7)

First term is the strict compositions of ρ into s parts for counting number of ways to divide the number of
observations p into s parts. This number is then multiplied with number of ways this divided attack can be
applied to the evidence that principal has. Even though, having this second parameter reduces the space, still
exploring this space in a brute-force manner is not feasible. We consider exploring this spaceas an optimisation
problem, which is strongly non-convex (and in many cases, discrete rather than continuous e.g., when the scores
are discrete values), and thus, we cannot rely on standard gradient-based solutions either. Hence we turn to the
usage of sampling based techniques. Among these, bandit optimisation is one of the most promising techniques
for this problem.

To address this, we adapt a hierarchical optimistic bandit optimization HOO (cf., Algorithm 1) by Bubeck
et al. [BMSS11] which provides lower regret bounds with quadratic computational complexity to strategically
sample this space to estimate the mean-payoff gain of the attack in the attack space X .

The main idea of this strategy is to estimate the gains of attacks accurately in the maxima, the partition
that we are interested on, and loosely in the remaining partitions of the attack space. To achieve this, a binary
tree which represents the partitions of the attack space X is created by the optimization strategy (as shown in
Algorithm 1). Deeper nodes of the tree represent a smaller subset of attacks in the space. Each round a new
node is added with some statistical information, which is updated each round. These statistical information
is used for selecting a new region to explore more. Thus, the space is explored incrementally within the most
rewarding sub-regions.

The nodes in the binary tree are indexed with integer pairs (h, i), where the depth of a node is h and i is to
denote the index of all possible nodes at the depth (in range 1 ≤ i ≤ 2h). Therefore, the root node is represented
as (0,1). The children of the root node are denoted as (1, 1) and (1, 2). In general, children of (h, i) are the nodes
(h + 1, 2i − 1) and (h + 1, 2i). Regions of X are associated with each node and shown as Ph,i ⊂ X and must
satisfy the constraint, Ph,i = Ph+1,2i−1 ∪ Ph+1,2i for all h ≥ 0 and 1 ≤ i ≤ 2h.

The statistical information that is stored in the nodes are:

• Th,i: number of times an attack from the region (h, i) and its descendants are explored.

• Uh,i: initial estimate of the region (h, i), which is sum of:

– µ̂h,i: average reward received in the region associated with (h, i)

–
√
(2lnn)/Th,i: corresponds to the uncertainty of rewards of the average and

– ν1ρ
h: corresponds to maximum variation of mean-payoff function in the region Ph,i

• Bh,i: actual estimate of the mean-payoff function, calculated by Uh,i.

In particular, with the stored statistical information, the algorithm is progressively exploring the region as
follows: Each round, the region to explore is selected by picking the node with the highest B-value (6-10 lines of
Algorithm 1). The region that is selected is played and the corresponding reward is received (15-17 lines). The
tree is updated with the previous statistics given the collected reward (19-33 lines). In detail, the path (a set of
nodes) followed to select the region is updated with the reward in lines 19-21. The tree structure of space X , T
is traversed and the initial estimate of subregions are updated in lines 23-25. Initial optimistic estimates for new
descendants of the selected node (H, I) is set in lines 26-27. B-values are updated in lines 29-32.
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Algorithm 1 The HOO Strategy
Parameters: Two real numbers v1 > 0 and ρ ∈ (0, 1), attack space X , all evidence E .

Auxiliary function LEAF(T ): outputs a leaf of T

Initialisation: T = {(0, 1)} and B1,2 = B2,2 = +∞.

1: for n = 1, 2, ... do . For each round n
2: (h, i)← (0, 1)
3: P ← {(h, i)}
4: while (h, i) ∈ T do
5: if Bh+1,2i−1 > Bh+1,2i then
6: (h, i)← (h+ 1, 2i− 1)
7: else if Bh+1,2i−1 < Bh+1,2i then
8: (h, i)← (h+ 1, 2i)
9: else

10: (h, i)← choose a child randomly
11: end if
12: P ← P ∪ {(h, i)}
13: end while
14: (H, I)← (h, i)
15: Arbitrary choose one of corresponding attacks E ′

↪→ in space X with respected to partition (H, I)
16: Y = E[θtr→te|E ′]− E[θtr→te|E ] . Receive corresponding reward for selected attack
17: T ← T ∪ {(H, I)}
18: for (h, i) ∈ P do
19: Th,i ← Th,i + 1
20: µ̂h,i ← (1− 1

Th,i
)µ̂h,i +

Y
Th,i

. Update the mean µ̂h,i of node (h, i)

21: end for
22: for (h, i) ∈ T do
23: Uh,i ← µ̂h,i +

√
(2lnn)/Th,i + ν1ρ

h

24: end for
25: BH+1,2I−1 ← +∞
26: BH+1,2I ← +∞
27: T ′ ← T
28: while T ′ 6= {(0, 1)} do
29: (h, i)← LEAF(T ′

)

30: Bh,i ← min
{
Uh,i,max {Bh+1,2i−1, Bh+1,2i}

}
31: T ′ ← T ′ \ {(h, i)}
32: end while
33: end for
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4 Simulation Results
To evaluate the performance of our attack model, we conducted empirical experiments to investigate our attack
model in terms of: how prior evidence and the number of trustees in the environment affect the impact of an
attack and how our attack model performs before converging to the best possible attack. Each experiment is
repeated 1000 times with different trustee reputation parameters θtr→te and average was taken to minimise the
influence of random trustee parameters. All experiments included a simulated environment where an attacker
wants to influence a truster’s trust assessment of a single trustee. The targeted truster is making trust assessments
with HABIT model, as described in Section 2 and the attacker is modifying the truster’s observations of the
environment by using our attack model, as described in Section 3.

In each experiment, the number of rounds was allocated to HOO Strategy was equal to the number of possible
attacks. We set a high number of rounds to ensure convergence of the HOO Strategy, which can be seen that
convergence was achieved as a matter of fact in a smaller number of rounds (as shown in Figure 2). The truster
only had prior information about each trustee from the previous direct observations. Due to computational time
available for experiments, s, the number of trust links that were affected by the attack, was picked as 2.
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Figure 1: Trust gains by attacks in varying dimensions:

• the number of trustees: n

• and the number of total previous evidence: t

4.1 Prior evidence

To determine the effect of prior evidence in the environment to our attack strategy, we ran a series of experiments
in which prior information that truster had about trustees were varied in values of 3, 5, 7 and 10. The impact
of the attack, ρ, were ranging from 1 to 12. As shown in Figure 1a, in the case of the number of prior direct
interaction is being higher than the impact parameter |O0:t

tr→.| > ρ, the impact of attacks remained less than 0.10.
The increasing trust gains were achieved when the attack budget overwhelmed the prior information available.

4.2 Population in the environment

HABIT trust model takes advantage from the similarities in the behaviours of trustees. Their results show
that the number of trustees when correlation exists (similar reputation parameters, θ.→te), model achieves more
accurate trust assessments This advantage of the model turns out to be a disadvantage in an orchestrated
attack which our attack model collected higher trust gains with the generated attacks in more crowded trustee
populations (as shown in Figure 1b).
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4.3 Performance over time

We investigated the performance of the attack strategy in each round and observed to the rewards of the strategy
in the intermediate steps for the search for an optimal attack. In each of the varying number of trustees, HOO
strategy behaved similarly in terms of trust gain and cumulative reward. As the space grew when the number
of trustees increased and the number of rounds required likewise grew proportionally. It can be observed from
Figure 2, a set of eligible attacks were explored throughout rounds. These can be used at any point depending
on the resource of the attacker.
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Figure 2: Trust gains of HOO Strategy in each rounds with simulation settings:
varying number of trustees n and ρ = 20.

Error bars show standard error of the mean trust gain

5 Discussion
In our investigation, we considered a trust problem where an observer (truster) is making inference of risk of
interacting with service providers (trustees). The orchestrated attack, consisted the following assumptions:

Total Visibility: We assume that the attacker has access to observe whole environment, but only had the
ability to modify a subset of the information in the environment. On the other hand, many trust and
reputation systems tend to publish such historical knowledge in practice. In addition, the trust model that
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we are employing requires this assumption to make assessments. Therefore, for this empirical experiments,
our environment were fully observable. This may not be the case in some trust and reputation systems.

Static Environment: As in many trust systems, the dimension of time in interactions is meaningful. This
dimension can be exploited with on-off attacks, in which agents delay the interactions, meanwhile profiting
by malicious behaviour. After a malicious period, for instance, service providers may leave the system and
create a new identity to whitewash to previous poor reputation [WMLZ14] is not considered. One direction
for future research can be investigating these types of attacks and devising an approach to detect and
strengthen models of trust.

Knowledge about Trust Model: We assume that either the attacker has already known the trust model that
is employed by the system or the attacker creates a virtual equivalent of the scenario in the targeted trust
system. It is a strong assumption, however we would like to investigate further when such information is
not available to the attacker. From the attackers perspective, question of how to predict the trust model
that is used by the trust system and from moderators of the trust system perspective, question of how to
devise a trust system to hide its predictability is intriguing and it is in our future research agenda.

Heuristics to Reduce Attack Space: Heuristics can be employed to reduce the attack space, thus yielding
a higher performance in our attack model. For instance, as in our case, knowing that the targeted system
is using HABIT model, an attacker may incorporate a similarity metric and create a smaller attack space,
where the convergence can be achieved with fewer rounds. It is a realistic addition to our attack model that
we would like to explore.

It is important to note that the attack strategy that we devised is compatible with other computational trust
models. Other areas for future research are: investigating other trust models, trust-aware decision processes (e.g.
such as [GNTT17, SRR15]) and verifying its effectiveness of our attack strategy with more realistic assumptions
and creating defensive mechanisms to such sophisticated attacks.

6 Conclusion
In this paper, we have introduced a new evaluation technique with a generic attack model to model of trust.
We investigated the performance of our adaptation of HOO strategy as an attack model for finding optimal
attacks for a selected trust model. Our experiments showed that our attack model can exploit the strengths of
the employed trust model. In addition, this is the first contribution to show the potential of devising a more
realistic benchmark for models of trust. In future research, we will address the assumptions that were discussed
and at the same time improve the performance of our attack strategy.
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