An Event Calculus Formalization
of Timed Automata

Nicola Falcionelli, Paolo Sernani,
Dagmawi Neway Mekuria, Aldo Franco Dragoni

Universita Politecnica delle Marche, Ancona, Italy
{n.falcionelli, d.n.mekuria}@pm.univpm.it,
{p.sernani, a.f.dragoni}@univpm.it

Abstract. Both the Event Calculus and Timed Automata are two very
well known Knowledge Representation and Model Checking techniques.
Specifically, the Event Calculus is a logic framework that allows the
concept of time to explicitly appear inside formulas, while at the same
time avoiding to step outside First Order Logic. It provides the machinery
to perform what is known as Commonsense Reasoning, and an ontol-
ogy to express Domain Knowledge with three main elements: fluents
(time-dependent properties), events and timepoints. This ontology is par-
ticularly suited to intuitively model intelligent agents’ knowledge, thanks
also to the powerful reasoning capabilities of the formalism. On the other
hand, Timed Automata are a special kind of Finite State Machines, in
which state transitions can be also governed by time contraints. One
of their main applications is to formally verify and validate Real-Time
systems, expressed as Timed Automata networks. This kind of validation
has been already successfully used to demonstrate the soundness of sev-
eral algorithms, via the help of Model Checkers such as UPPAAL. This
work proposes a common point among these techniques, or more pre-
cisely, a methodology to translate the graph representations of (Discrete)
Timed Automata into Event Calculus logic predicates. Additionally, a
performance evaluation of a Prolog implementation of this technique is
shown, looking for possible relationships between Model Checking and
the various Event Calculus reasoning types.

1 Introduction

Logic programming and declarative languages have always been particularly suited
to represent graph, list and tree data structures. Algorithms such as traversing,
searching, insertion and deletions on these data structures rely on recursion, a
typical feature at the core of declarative paradigms. On a parallel track from the
operations themselves, representing knowledge in terms of predicates and facts
allows to easily and intuitively model even such complex data structures. For
example, an instance of an oriented graph can be easily represented by a list of
3-tuples in the form of < EdgeLabel, NodeOut, Nodeln >.

Graphs are also the fundamental structures of many mathematical modeling
techniques, such as Finite State Machines, Timed Automata, and Petri Networks.

Such techniques are commonly used to model complex dynamical systems, with
the goal of providing mathematical abstractions, simulating their execution, or
formally proving certain properties. To do such, the common practice is to involve
ad-hoc model checkers such as UPPAAL [4]: they usually have their built-in
languages, that allow to (graphically) represent, simulate and check the desired
model. More specifically, Timed Automata are a more powerful version of Finite
State Machines, in which regular state transitions are extended with timing
constraints (guards), in order to be able to explicitly describe time-dependent
behaviour.

With the goal of establishing a common underlying logic language as a
support for those model checking techniques, this work focuses on explaining
how (Discrete) Timed Automata can be implemented and simulated within the
Event Calculus, a First Order Logic formalism designed to represent how actions
affect different properties of a chosen scenario [17]. Being EC one of the few
that combine a linear temporal structure (Modal Logic and Situation Calculus
have branching time), it has been chosen as the reference language, thanks to its
feasible reasoning time/complexity (with the help of caching strategies [13, 6]),
good expressiveness/readibility and quite broad community coverage.

The work is organized as follows: sections 2 and 3 provide background for this
research, section 4 focuses on explaining the Event Calculus-Timed Automata
modeling technique by means of a Prolog implementation, section 5 puts such
implementation to the test to analyze how the reasoning performance change
with respect to two parameters, and lastly, section 6 draws the conclusions of
the paper and outlines the future work.

2 Related Work

The Event Calculus (EC) has been particularly useful as a knowledge representa-
tion and reasoning tool in several domains. [8] suggests a way to standardize the
definition of (assistive) monitoring rules in EC, providing a graphical representa-
tion and showing how reasoning can be performed on them. Such monitoring rules
can be potentially modeled as Timed Automata, and thus translated into EC
with the technique presented in this work. [9] shows how the EC can be exploited
to build intelligent agents, within an underlying Mobile Multi-Agent platform
such as MAGPIE. In [14] a way to model workflows and business processes in EC
is proposed. Concepts such as AND/OR splits/joins and reasoning strategies are
thoroughly explained, and some potential applications are discussed as well. No-
tably, the use of EC as a programming model for Al in games is discussed in [20],
opening for possible connections with Finite State Machines. The presented work
also stresses EC’s capabilities, widening the spectrum of formal models that can
be represented by means of the EC.

Execution time and complexity have always been a major constraint in logic
programming and in EC specifically. Even though the Cached-Event Calculus
and the Reactive-Event Calculus already improve the performance of plain EC a
lot, this is still not enough for most practical purposes. In this direction, [16, 7]

propose several EC-machinery integrated indexing strategies that provide a more
efficient Knowledge-Base management and query execution. A different approach
is the one took in [5], in which, thanks to logic-theory-compiling, part of the EC
flexibility is traded off for performance. In this work, the same indexing of [16] is
applied to the proposed EC implementation of TA, in order to investigate how it
impacts reasoning performance.s

In the field of model checking, EC have been extended to include Modal
Logic operators, as shown in [12]. [19] instead presents four several EC reasoning
strategies, which can be potentially exploited for Model Checking purposes also
with the presented EC-TA implementation. Instead, Timed Automata have
been widely used to model Real-Time systems and protocols, with the goal of
formally verifying their properties [21]. Notable examples, such as model-based
schedulability analysis or mutual exclusion protocols verification, can be found on
the UPPAAL (i.e. one of the most widespread Time Automata Model Checker)
website [3].

3 Background

This section briefly introduces to the main concepts needed to undestand this
work’s contribution.

3.1 Real-Time compliant Multi-Agent Systems (RTcMAS)

Having computer systems with stable and predictable behaviour is of vital
importance in mission critical applications. In those applications, CPU processes
and tasks must guarantee compliance to strict time constraints, which are usually
expressed as deadlines for their execution times. To ensure that a set of tasks
can be scheduled without having any deadline miss, a whole set of techniques
have been developed [10]. Since it would be too hard to ensure compliance to
these constraints if the programmer would have to take care of it, Real-Time
techniques have been included at an Operating System level. In this way, the
Scheduler will be the OS’s component responsible to assess schedulability within
certain constraints, while the programmer can focus on implementing the task’s
features. In order for the Real-Time techniques to work, the programmer must
provide the Worst-Case Execution Time (WCET) for each task, which is usually
a pessimistic estimate obtained statistically by running it many times.

In principle, these techniques can be applied in Multi-Agent Systems (MAS)
as proposed in [11]. During MAS negotiation protocols, each agent accepts/re-
fuses/delegates the execution of tasks based on their resource availability and
load; so, if the hypothesis of having WCETSs is applied, agent-local Real-Time
scheduling policies would allow the agent to take such decision in the most
rational way.

3.2 Event Calculus

Among a set of possible formalisms, the Event Calculus has been chosen as the
reference one for this work, as it combines great expressiveness and flexibility with
feasibility of reasoning, intuitiveness/readability and availability (implementation
and literature) [5,19,2]. More precisely, being a logic formalism for reasoning
about actions and their effects in time [17], it is a suitable tool for modeling
expert systems representing the evolution in time of an entity by means of the
production of events, and to be the core of intelligent agents [9, 16].

In a technical sense, EC is based on many-sorted first-order predicate calculus,
known as domain-independent axioms, which are represented as normal logic
programs that are executable in Prolog. The underlying time model of EC is
linear. EC manipulates fluents, where a fluent represents a property that can
have different values over time. The term F=V denotes that a fluent F has value
V as a consequence of an action that took place at some earlier time-point and
not terminated by another action in the meantime. Table 1 summarizes the main
EC predicates. Predicates, functions, symbols and constants start with lowercase
letter, while variables start with uppercase letter. Predicates in the text are
referenced as predicate/N, where predicate is the name of the predicate and N its
arity (e.g. number of arguments).

Table 1: Main Event Calculus predicates

Predicate Meaning

initially (F=V) The value of fluent F is V
at time 0

holdsAt(F=V,T) The value of fluent F is V
at time T

holdsFor(F=V,[Tmin,Tmax]) The value of fluent F is V
between Tin and Thax

initiatesAt(F=V,T) At time T the fluent F is
initiated to have value V

terminatesAt(F=V,T) At time T the fluent F is
terminated from having
value V

broken(F=V,[Twmin,Tmax]) The value of fluent F is
either terminated at Tmax,
or initiated to a different
value than V between Thin
and Tmax

happensAt(E,T) An event E takes place at
time T updating the state
of the fluents

The domain independent axioms of EC are the following:

holdsAt(F = V,0) <
initially (F' = V).

holdsAt(F =V, T) +
initiatesAt(F =V, Tj),
T, <T,
not broken(F =V, [Ts, T)).
Predicate (1) states that a fluent F holds value V at time 0, if it has been
initially set to this value. For any other time T > 0, the predicate (2) states that

the fluent holds at time T if it has been initiated to value V at some earlier time
point Ty, and it has not been broken on the meanwhile.

(2)

broken(F =V, [Trin, Tmaz]) <
terminatesAt(F =V, T),
Tmin < T:
Tnaz > T.

broken(F = Vi, [Timin, Tmaz)) <
initiatesAt(F = V5, T), Vi # Vs,
Tonin < T,
Toaz >T.

Predicates (3) and (4) specify the conditions that break a fluent. Predicate (3)
states that a fluent is broken between two time points Tmin and Tmax if within
this interval it has been terminated to have value V. Alternatively, predicate (4)
states that a fluent is broken within a time interval if it has been initiated to
hold a different value.

holdsFor(F =V, [Tynin, Trmaz]) <

initiatesAt(F =V, Tuin),
terminiatesAt(F =V, Thax),
not broken(F =V, [Tiin, Trmaz))-

(4)

holdsFor(F =V, [Tin, +0]) <
initiatesAt(F =V, Truin), (6)
not broken(F =V, [Tin, +09]).

holdsFor(F =V, [—00, Tnaz]) +
terminatesAt(F =V, Thaz), (7)
not broken(F =V, [—00, Tnaz))-

Predicates (5), (6) and (7) deal with the validity intervals of fluents. In
particular, predicate (5) specifies that a fluent F keeps value V for a time interval

going from Tmin to Tmax if nothing happens in the middle that breaks such
an interval. Predicates (6) and (7) behave in the same way, but deal with open
intervals.

The domain dependent predicates in EC are typically expressed in terms of
the initiatesAt/2 and terminatesAt/2 predicates. One example of a common rule
for initiatesAt/2 is

initatesAt(F =V, T) +
happensAt(Ev,T), (8)
Conditions|T).

The above definition states that a fluent is initiated to value V at time T if
an event Ev happens at this time point, and some optional conditions depending
on the domain are satisfied.

3.3 JREC

Straightforward implementations of EC [17] have time and memory complexity
which are not practical for developing real applications. This is due to the fact
that every time the EC engine is queried, the computation starts from scratch,
and all fluents validity intervals are calculated again. Cached Event Calculus
(CEC), proposed by Chittaro and Montanari [13], tries instead to overcome this
inefficiency by giving EC a memory mechanism, and moving computation from
query time to update time.

CEC formalizes the concept of Maximal Validity Interval (MVI), that repre-
sents a time interval in which a particular fluent holds without being terminated
by any event. A fluent is also associated to a list of MVIs, in order to express all
the time intervals in which that fluent holds continuously.

Whenever the rule engine is updated (e.g. by inserting a new event occurrence),
the fluents” MVIs are calculated, and then stored for further use, allowing
incremental computation for following updates. Also, every time a new event
is added to the database, CEC manages to compute MVIs only for the fluents
that can vary with that event, and does not check the MVIs of those fluents that
cannot possibly change, thus avoiding unnecessary computation.

JREC is a reasoning tool implemented in Java and tuProlog that is based on a
lightweight version of CEC known as Reactive Event Calculus (REC) [6]. The use
of Java has been an important requirement in order to ensure code portability.

JREC consists of three main components:

— The Prolog theory, which represents the actual CEC axiomatization that is
loaded into tuProlog;

— The Java engine, which allows to query and update the database without
having to interact directly with tuProlog, as well as adding specific domain-
dependent theories;

— The Tester, which is a GUI based stand-alone tool for editing theories,
visualizing fluents’” MVIs and event occurrences, mainly used for prototyping
and developing domain-dependent theories.

3.4 Timed Automata

Finite State Machines (FSM) are a very common tool to represent systems with
relatively simple behaviours, such as vending machines, turnstiles and traffic
lights. They are also useful for a variety of applications like regular expression
checking, videogame AI and software engineering. In this latter field, they are
expecially suited for formal verification of programs and network protocols, but
they are very limited in terms of expressiveness (i.e. being unable to explicitly
model time dependencies). For this reason, there is often the need to rely on
more powerful techniques, such as Timed Automata (TA). They enrich the FSM
semantics and synthax by providing additional constructs and mechanisms that
allow to effectively model timed systems, such as:

— a finite set of Clocks. Although all clocks increase with the same speed, they
can be set (or reset) individually upon state transitions.

— a finite set of Guards. They are conditions that check clock values put on
state transitions, that, if not satisfied, prevent the system from going to a
state from another.

— a finite set of State Invariants. Mainly used for Model Checking, their purpose
is to ensure progress, by preventing an Automata to be indefinetely stuck in
a certain state (reachability analysis).

Reachability analysis is one of TA’s main applications. Roughly, it works by finding
an Automata’s the possible runs (a run is a list of (StateName, ClockV alue)
2-tuples), and checking if these behave according to certain requirements. For
example, they could never (or always) reach a particular state, or be locked in
certain sequences of states. Finding all the possible runs is not a trivial task:
since the values clocks can hold are continuous, tools such as the Regions of
Equivalence are needed to manage the infinite number of possible runs. This and
other techniques allow TA’s verification problems to be decidable [21].

In this context, TAs have been extensively used to model and verify Real-Time
systems, Network Protocols and concurrent algorithms successfully, ensuring
important properties such as safety and progress [3]. Such improvements have
been possible also thanks to already existing Model Checkers such as UPPAAL [4].
A relevant example can be found in [15], which shows how Schedulability Analysis
can be carried out within UPPAAL, modeling Real-Time concepts such as tasks’
deadlines, dependencies, periods, and WCETs.

Fig. 1: A simple FSM representing a classical turnstyle mechanism. As long as a
coin is provided, the turning bars will remain unlocked. When they are pushed
(a person transits), the turnstyle will stay locked until a new coin is inserted.

Fig.2: A simple TA representing a variation of a classical turnstyle. When a coin
is loaded, the turning bars will stay unlocked for 10 time units. If they are pushed
after such time, the turnstyle will lock again, until a new coin is delivered.

4 Modeling Technique

The main contribution of this work is to propose a technique to model Timed
Automata execution semantics and structure by using Event Calculus elements,
such as facts, events and fluents. It is done by means of a logic theory articulated
into two components:

— An automata-independent theory that contains the general machinery for
the TA semantics;

— An automata-dependent theory that instantiate an actual TA, representing its
graph structure, states, transitions, guard constraints and clock assignments.

This two-part design allows modularity and incremental programming: in fact, to
create a new Automaton, it will be enough to write the corresponding Automata-
dependent theory, without the need to modify the machinery.

4.1 Timed Automata applied to RTcMAS

The goal of translating Timed Automata into EC formulas is to establish a
connection between the Real-Time part and the Knowledge Representation
(KR)/Reasoning part of an agent, as shown in Figure 3. This connection would
allow to have a common underlying language which is useful for both building
the agent’s mind (KR and reasoning) as well as to model, check and verify its
Real-Time properties.

In other words, if an agent (or an agent network) is represented as a Timed
Automaton (or a Timed Automata network), it would be possible to implement
it in Event Calculus formulas, without having the need of third parties model
checkers or ad-hoc languages. Then, once a comprehensive EC theory of such
agent(s) is built, different EC reasoning techniques might be used depending on
the context [19]. For TA formal verification, the most suitable reasoning technique
would be Model Finding, instead, as done in [16], for an online rule-based behavior
of the agent, Deduction shall be preferred choice.

' Local Scheduler KR & Reasoning
E Formal Modeled
E - Verliﬁcation > TA with EC

Fig.3: Agent’s components logical mapping

4.2 Automata-Independent theory

The Automata-independent theory contains the general machinery for clocks,
guards, and state transition to work.

Clocks have been modeled by using integer-valued fluents named clk/1. Since
real-valued fluents are not yet ready for practical use in the Cached/Reactive
Event Calculus, only Discrete Timed Automata can be modeled. However, this
should not be a limitation, since in Real-Time applications, time is usually
measured by the system clock, and from a formal point of view, [18] has proven
that a theory expressed in continuous time EC can be translated in discrete time
EC without losing in expressiveness. As shown in listing 1.1, clock fluents are
initiated and terminated by set/2 events, which implement the mechanism of
clock setting and resetting.

Listing 1.1: Generic TA implementation: clocks set/reset

initiates ((C,V),status((C),V),T).

terminates((C,.),status((C),Vold),T):—
holds_at (status((C),Vold),T).

When a set(C, V') event happens, the clock specified in the variable C' gets set
to the value V. All clocks are also incremented simultaneously by tick/0 events,
which simulate the flowing of time in the system (listing 1.2).

Listing 1.2: Generic TA implementation: flow of time

initiates (tick ,status((C),Vnew) ,T): —
holds_at (status((C),Vold),T),
Vnew is Vold + 1,
not (happens((C,-),T)).

terminates (tick ,status((C),Vold),T):—
holds_at (status((C),Vold),T).

It should be noticed that in order to avoid ambiguity as a double fluent initialisa-
tion, a tick/0 event increments a fluent only if there is not any other set/2 event
happening simultaneously. TA’s states are modeled as simple boolean fluents.
Since the system can only be in one state at a time, only one state fluent (for
each TA instance) can hold at a certain timepoint. State transitions are instead
represented as events, that can lead to the termination or initialisation of state
fluents. Such events, identified with the variable Lab, shall be the labels of the
transitions that goes from old states Sold to new states Snew. If a Lab event
happens at timestamp 7', clauses in listing 1.3 show that state fluents Sold and
Snew are terminated/initiated only (i) if there is an arc going from the old state
to the new one (with label Lab), (ii) if the system is currently in the correct
state to perform the transition, (iii) and the guard relative to such transition is
satisfied at that timestamp.

Listing 1.3: Generic TA implementation: state transitions and guards

initiates (Lab,Snew,T): —
(Lab, Sold ,Snew) ,
holds_at (Sold ,T),
(Lab, Sold ,Snew,T).

terminates(Lab, Sold ,T): —
(Lab, Sold ,Snew) ,
holds_at (Sold ,T),
(Lab, Sold ,Snew,T).

4.3 Automata-dependent theory

The purpose of the Automata-dependent theory is to instantiate the actual
automata by defining its graph structure, labels (of states and transitions), guard
conditions, clocks and clock resets. Such instantiation is traduced into writing
facts and mostly ground clauses that shall unify the variables defined in the
Automata-independent theory. The translation from a TA in a graphical form
to an Event Calculus theory will be shown by means of an example, which will
consist in modeling the TA in figure 4. It models a simple timed system, that
can be thought as a lightbulb and a button. If the button is pushed while the
lightbulb is switched off, it will turn on; then if the button is pressed again within
a certain time window, the lightbulb will shine even brighter, otherwise it will
turn off again.
The Event Calculus modeling of this TA is performed as follows:

— The initial state of the system is specified by the initially/2 facts. These
establish the value of the clock fluent clk(z) and which one of the state
fluents holds at timestamp -1 (i.e. from the beginning). From the code in
listing 1.4 it can be seen that the clock is initally set to 0, and the initial
state of the system is the of f state.

Listing 1.4: Light control system’s TA: initial state

initially (status((x),0)).

initially (off).

— The arc/3 facts in listing 1.5 model the graph structure of the automata. The
first argument is the transition’s label, the second one is the transition’s old
state and the third is the transition’s arrival state. For each transition in the
TA’s graph, one of these facts must be present in the Automata-dependent
theory. States that are not connected to others by any transition cannot be
represented within the current technique; this is actually an advantage, since
isolated states do not make much sense in both FSMs and TAs.

Listing 1.5: Light control system’s TA: graph structure

press ,off ;light).
press,light , off).
press , bright , off).
press ,light ,bright).

(
(
(
(

— Guards are implemented as shown in listing 1.6. If a transition does not
have any guard, it will be enough to put a guard/4 term with the first three
(ground) arguments being the transition’s label, the transition’s leaving and
arrival state, and the last one being an emtpy variable (to unify any possible
timestamp). If instead some constraint has to be imposed on clock values, it
will be enough to put a condition on the clock fluent’s value in the body of
the guard/4 clause, using the variable T instead of the empty variable.

Listing 1.6: Light control system’s TA: guards

(press,off ,light ,_).

(press,light ,off ,T):—
holds_at (status((x),X),T),
X > 3.

(press,light ,bright ,T):—
holds_at (status((x),X),T),
X = 3.

(press ,bright ,off ,_).

— Clock resets are instantiated by event chaining. Since clocks can be reset by
launching set/2 events (see section 4.2), they have to be generated automati-
cally when the appropriate transition is taken in the TA. For this particular
automata (fig. 4), code in listing 1.7 shows how the set(x,0) event is launched
every time the TA goes from the of f state to the on state, wrapping the
press event that triggers the transition (effectively setting the clock x to 0).

Listing 1.7: Light control system’s TA: clock reset

happens ((x,0),T):—
holds_at (off ,T),
happens(press ,T).

press

Fig. 4: The TA describing a simple light control system.

5 Tests

One of the main limitations of logic-based approaches, and specifically of the
Event Calculus, is reasoning performance. Even if this work is based on jREC,
which implements Reactive EC (a version of Cached EC), thus providing much
lower computation times with respect to standard EC, it is still interesting to
study how reasoning complexity is affected by use-case-specific parameters. [16]
highlights in fact that regular EC Caching strategies are not enough to achieve
reasoning feasibility in that particular use case, thus requiring solutions such as
event indexing and ad-hoc performance analysis. In the present work, the number
of state transitions occurrences (implemented in EC as events) and the number
of TA instances (bigger TA-dependent theory) have been selected as the two
main criterias to evaluate reasoning performance. They can be considered as two
orthogonal dimensions, and have led to two separate tests:

1. The first fixes the number of TA instances to one, while the number of events
(state transition occurrences and clock ticks) spans from 0 to 200, with a step
of 40;

2. The second test fixes the number of events to 200, while the number of TA
instances spans from 0 to 5, with step 1.

Within this setup, performance has been evaluated by measuring the time
needed by the jJREC reasoner to execute TAs runs. The reasoner is fed with a list
of events, which represent the state transitions occurrences, and as the output,
a list of states (with relative time references) is returned as a list of MVIs (see
section 3.2). The TA’s implementation chosen for the tests is the one shown in
section 4.2, and the input events have been selected in such a way that every TA
visits all of its three state cyclically. In addition to the state transition occurrence
events, tick events had to be included to allow the clock fluents to work, thus
modeling the flow of time in the system.

Lastly, the tests have been run on the standard jREC engine as well as
on a customized jJREC engine based on Red-Black Trees event indexing [16].

The machine used for such tests was a standard Ubuntu 16.04 desktop PC
configuration, with 16 GBs of RAM and a i7-6700k CPU.

2000
Standard jREC -------
1800 - Indexed JREC ===+
1600
1400 %
1200 7

1000 e

800 " v

Execution Time [ms]
\

600 vt
400 e

200 e

0 50 100 150 200

Number of Events

Fig. 5: Execution time for a single TA instance run, with events spanning from 0
to 200.

5.1 Results and Discussion

Plots in Fig. 5 and Fig. 6 highlight that the indexed jREC performs generally
better that the standard version. This was indeed expected, given the more
efficent event management accomplished by the indexing, but this difference is
more noticeable in Fig. 5’s plot. It can be explained by the fact that for the
multiple TA instances tests (Fig. 6), the number of events is kept constant, and
the indexing mechanism does not help managing the bigger TA-dependent theory.
The overhead caused by more TA instances prevails over the gain obtained by
the event indexing.

More importantly, the execution time trends for both tests seem to follow a
linear pattern. Even though this is a desirable behaviour in terms of scalability,
other factors such as TA’s complexity (number of nodes, number of transitions,
etc) and inter-arrival time of transition occurrences over average guards conditions’
time-windows might affect this trend considerably.

6000 -
Standard jREC -=----*
Indexed JREC —=—=—" o7

5000 /

4000 -

. s
3000 ety

Execution Time [ms]

2000

1000

0 1 2 3 4 5

Number of Instances

Fig. 6: Execution time for multiple TA instances runs, with number of events
fixed to 200.

6 Conclusions and Future Work

In this work, a methodology to represent, code and reason on/execute Timed
Automata using a Prolog implementation of the Event Calculus formalism is
shown. It has been also applied to model a simple Timed Automaton as a
use case, which has been also exploited to study the reasoning performance
and scalability. These tests have highlighted that the desired reasoning is indeed
feasible, and promising execution time trends. By now, the proposed methodology
only allows to carry out forward reasoning, giving the possibility to simulate
Timed Automata runs by providing a list of timed state transition occurrences.
Other backwards reasoning techniques, such as abduction or postdiction proposed
in [19] might be possibly involved to obtain more sophisticated model checking
and formal verification capabilities, even though this would mean to abandon the
Prolog implementation and go towards less efficient but more versatile engines [1].
Since the current methodology only involves TA’s execution semantics, state
invariants are not yet needed nor considered. Their inclusion within the TA-
independent theory would be another important step towards having a complete
TA representation methodology for model checking purposes. Such methodology
would then enable to effectively represent one or more Real-Time agents as Timed-
Automata, with the goal of formally verifying safety or reliability properties.
Lastly, in order to have a more realistic figure of the reasoning system behaviour,
the performance evaluation should be deepened by investigating other parameters,
such as more complex TA graph structure, and transition occurrences inter-arrival
time compared to guard conditions’ time-window.

References

1. DECReasoner reference website. http://decreasoner.sourceforge.net/

2. JREC reference website. http://www.inf.unibz.it/~montali/tools.html

3. List of works that used UPPAAL. http://www.it.uu.se/research/group/
darts/uppaal/examples.shtml

4. UPPAAL reference website. http://www.uppaal.org/

5. Artikis, A., Sergot, M., Paliouras, G.: An event calculus for event recognition. IEEE
Transactions on Knowledge and Data Engineering 27(4), 895-908 (2015)

6. Bragaglia, S., Chesani, F., Mello, P., Montali, M., Torroni, P.: Reactive event
calculus for monitoring global computing applications. In: Artikis, A., Craven,
R., Kesim Cigekli, N., Sadighi, B., Stathis, K. (eds.) Logic Programs, Norms and
Action: Essays in Honor of Marek J. Sergot on the Occasion of His 60th Birthday,
pp. 123-146. Springer Berlin Heidelberg (2012)

7. Bromuri, S., Brugues de la Torre, A., Duboisson, F., Schumacher, M.: Indexing the
Event Calculus with Kd-trees to Monitor Diabetes. ArXiv e-prints (Oct 2017)

8. Brugués, A., Bromuri, S., Barry, M., del Toro, O.J., Mazurkiewicz, M.R., Kardas,
P., Pegueroles, J., Schumacher, M.: Processing diabetes mellitus composite events
in MAGPIE. Journal of Medical Systems 40(2), 44 (2016)

9. Brugués, A., Bromuri, S., Pegueroles-Valles, J., Schumacher, M.I.: MAGPIE: An
agent platform for the development of mobile applications for pervasive healthcare.
In: Proceedings of the 3rd International Workshop on Artificial Intelligence and
Assistive Medicine (AI-AM/NetMed). pp. 6-10 (2014)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

Buttazzo, G.C.: Hard real-time computing systems: predictable scheduling algo-
rithms and applications, vol. 24. Springer Science & Business Media (2011)
Calvaresi, D., Schumacher, M., Marinoni, M., Hilfiker, R., Dragoni, A.F., Buttazzo,
G.: Agent-based systems for telerehabilitation: strengths, limitations and future
challenges. In: Proceedings of the 10th Workshop on Agents Applied in Health
Care (A2HC 2017) (2017)

Cervesato, I., Montanari, A.: A general modal framework for the event calcu-
lus and its skeptical and credulous variants. The Journal of Logic Program-
ming 38(2), 111 — 164 (1999), http://www.sciencedirect.com/science/
article/pii/S0743106698100213

Chittaro, L., Montanari, A.: Efficient temporal reasoning in the cached event
calculus. Computational Intelligence 12(3), 359-382 (1996), http://dx.doi.org/
10.1111/3.1467-8640.1996.tb00267.x

Cicekli, N.K., Yildirim, Y.: Formalizing workflows using the event calculus. In:
Ibrahim, M., Kiing, J., Revell, N. (eds.) Database and Expert Systems Applications.
pp. 222-231. Springer Berlin Heidelberg, Berlin, Heidelberg (2000)

David, A., lllum, J., Larsen, K.G., Skou, A.: Model-based framework for schedula-
bility analysis using uppaal 4.1. Model-based design for embedded systems 1(1),
93-119 (2009)

Falcionelli, N., Sernani, P., Brugués, A., Mekuria, D.N., Calvaresi, D., Schumacher,
M., Dragoni, A.F., Bromuri, S.: Event calculus agent minds applied to diabetes
monitoring. In: Sukthankar, G., Rodriguez-Aguilar, J.A. (eds.) Autonomous Agents
and Multiagent Systems. pp. 258—274. Springer International Publishing, Cham
(2017)

Kowalski, R., Sergot, M.: A logic-based calculus of events. New Generation Com-
puting 4(1), 67-95 (1986)

Mueller, E.T.: Event calculus reasoning through satisfiability. J. Log. and Comput.
14(5), 703-730 (Oct 2004), http://dx.doi.org/10.1093/logcom/14.5.703
Mueller, E.T.: Commonsense Reasoning: An Event Calculus Based Approach.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2 edn. (2015)

Phd, M.F.: The event calculus as a programming model for game ai

Waez, M.T.B., Dingel, J., Rudie, K.: A survey of timed automata for the development
of real-time systems. Computer Science Review 9, 1 — 26 (2013), http://www.
sciencedirect.com/science/article/pii/S1574013713000178

