
Next Steps for OWL

Bernardo Cuenca Grau1, Ian Horrocks1, Bijan Parsia1, Peter Patel-Schneider2

and Ulrike Sattler1

1 School of Computer Science,
University of Manchester, UK

2 Bell Labs Research, NJ (USA)

Abstract. OWL 1.1 is a simple extension of the OWL DL species of the
W3C OWL Web Ontology Language. OWL 1.1 has been designed to pro-
vide some interesting and useful expressive additions to OWL DL while
retaining the desirable characteristics of OWL DL, including decidability
and implementability.

1 Introduction

OWL is an ontology language, or rather a family of three ontology languages,
developed by the World Wide Web Consortium (W3C) as part of its Semantic
Web activity [16]. The development of OWL was motivated by the key role
foreseen for ontologies in the Semantic Web (i.e., providing precisely defined and
machine processable vocabularies that can be used in semantically meaningful
annotations), and the recognition that existing web languages, such as RDF and
RDF Schema, were not expressive enough for this task [10].

The standardisation of OWL has led to the development and adaption of a
wide range of tools and services. These include reasoners such as FaCT++ [20],
Racer [5] and Pellet [18], and editing tools such as Protégé [17], Swoop [12],
Ontotrack [13].

Although OWL was initially designed for use in (the development of) the se-
mantic web, it has rapidly become a de facto standard for ontology development
in general, see, e.g. BioPax (http://www.biopax.org/). This is probably due to
the ready availability of a wide range of OWL tools, and the greatly increased
potential for sharing and reuse provided by the adoption of a standard. OWL
ontologies are now under development and/or in use in areas as diverse as e-
Science, medicine, biology, geography, astronomy, defence, and the automotive
and aerospace industries. Although this represents a considerable success story
for OWL, such widespread use of the language has also revealed deficiencies
in the original design, and led to requirements for language extensions. These
included increased expressivity with respect to properties, number restrictions,
and data-values, and some form of meta modelling [14].

On studying these requirements, it became clear that several of them were
addressed, at least in part, by recent developments in DL languages and rea-
soning techniques. This led to the idea to develop an incremental extension of

2

OWL, provisionally called OWL 1.1, that would exploit these recent develop-
ments in order to provide a more expressive language, but one which retained
OWL’s desirable computational properties (in particular decidability) and which
would allow for the relatively easy extension of existing reasoning systems in or-
der to provide support for the new language. The features to include in OWL
1.1 were agreed on a year ago at the first OWL: Experiences and Directions
workshop (http://www.mindswap.org/2005/OWLWorkshop/). In this paper, we
summarize the work that has been done since then in nailing down the details
of OWL 1.1 with the goal of starting a standarisation process. The documents
that describe the current status of OWL 1.1 are available online in (http://owl1-
1.cs.manchester.ac.uk/) and open for discussion.

2 Overview

The initial design of the OWL was (understandably) quite conservative, and
features that did not receive widespread support within the working group were
excluded from the language. Features for which effective reasoning methods were
not known (or expected to be shortly known) were also not included.

As mentioned above, the use of OWL, particularly the OWL DL species of
OWL, has identified several important features, support for which would greatly
increase the utility of the language. Some of these, such as qualified number
restrictions, were already supported by DL systems when OWL was designed,
but were excluded from the language. Others, such as complex role inclusion
axioms, could now be supported (at least in part) as a result of recent advances
in DL theory. OWL 1.1 is a simple extension to OWL DL that:

1. adds language features commonly requested by users of OWL DL;
2. is known to be decidable, and for which practical decision procedures have

been designed; and
3. is likely to be implemented by the developers of OWL DL reasoners.

The user requirements that drove the extensions in OWL 1.1, and the lan-
guage features that address them, fall into five distinct categories:

Syntactic sugar: Some commonly used representations are difficult and/or
cumbersome to express in OWL. For example, it is very common to assert that
a number of classes are pairwise disjoint (this is often the default for the direct
subclasses of a common parent class). Although this can be expressed in OWL,
it is necessary to assert each pairwise disjointness separately (or to employ some
representational “tricks”), which is cumbersome when large numbers of classes
are involved, and may also make it more difficult for reasoners to optimise the
way they deal with such sets of disjoint classes.

Increased expressiveness in property constructs: Although OWL is rela-
tively expressive, there are still many situations that are difficult or impossible

3

to represent using OWL. In particular, while OWL provides a wide range of con-
structors for building complex classes, relatively little can be said about proper-
ties. A very common requirement is to express the “propagation” of one property
along another property [19], e.g., it may be useful to express that certain locative
properties are transfered across certain part-whole properties. For example, the
OWL 1.1 axiom SubPropertyOf(propertyChain(locatedIn partOf)locatedIn) states
that, if something is located in a part of an object, it is also located in the object
itself; thus, when using a medical ontology, a lesion located in a part of a body
structure is recognised as being located in the body structure as a whole. This
enables highly desirable inferences such as a fracture of the neck of the femur
being inferred to be a kind of fracture of the femur, or an ulcer located in the
gastric mucosa being inferred to be a kind of stomach ulcer.

Furthermore, in OWL 1.1 properties can be made disjoint, and one can
state properties to be reflexive, irreflexive, symmetric, or antisymmetric. For
example the property motherOf should be irreflexive, because nobody can be a
mother of himself, and the properties childOf and spouseOf are naturally dis-
joint (DisjointProperties(motherOf, childOf), since x cannot be the mother and
the child of y at the same time.

Increased datatype expressiveness: OWL provides very limited features for
describing classes whose features include concrete values such as integers and
strings. It is a common requirement, for example, to express value ranges (a
Gale is a wind whose speed is in the range 34–40 knots), or relationships between
values (a square table is a table whose length equals its width). As an example,
the latter class can be expressed in OWL 1.1 using the axiom:

Class(SquareTable complete super(Table) restriction(holds(equal length width).

Meta-modelling: Meta-modelling, i.e., the treatment of classes, properties and
other entities as individuals, is allowed in some representation languages, includ-
ing the OWL Full species of OWL, but was forbidden in OWL DL because of
the computational difficulties that it may cause. However, users often say that
they want some aspects of meta-modelling, at least the ability to associate simple
information with classes such as synonyms, names in different languages, respon-
sible person, etc. Annotation properties were added to OWL to partly satisfy
this requirement, but the limited meta-modelling facililities provided by anno-
tation properties have not satisfied users, particularly as annotation properties
cannot be range-restricted.

OWL 1.1 allows a basic form of meta-modelling, called punning. In OWL
1.1, a name (like Person) can be used as any or all of an individual, a class,
or a property. In fact OWL 1.1 relaxes the disjointness of vocabularies re-
striction in OWL DL in the cases in which it is possible to disambiguate the
exact use of a name (for example, it is always possible to detect whether a
name is used as a class or as an individual, but not always whether a prop-
erty is used as an object or as a datatype property). For example, the follow-
ing sequence of axioms is allowed in OWL 1.1: Class(Person), Individual(Person),
Individual(John Person), SameIndividualAs(Person,Rock); however, these axioms
do not entail Individual(John Rock).

4

Semantic-free comments: Annotations provide for the ability to include what
might otherwise be considered “comments”, such as information about the au-
thor or version number of a class. In OWL, however, this information carries
semantics, and some counter-intuitive aspects, such as a membership in a class
not being inferable simply because the class has a different version number. This
has lead to the desire to have true comments, i.e., information associated with
classes, etc., that has no semantic import at all. The following example shows
some of the places that comments can appear:

Class(Person partial comment(′The basic class for people′))
super(Animal comment(′Why not Mammal?′))
type(MyClasscomment(′My classes are special′))
value(dc : creator peter comment(dc : creator john))

3 Influences on OWL 1.1

OWL 1.1 has borrowed heavily from recent research on Description Logics as
well as from recent research on the nature of the Semantic Web.

3.1 OWL 1.1 and Description Logics

There have recently been two streams of work on extensions to the Description
Logic underlying OWL DL (a.k.a. SHOIQ).

Firstly, there has been considerable work on how best to add datatypes and
relationships between data values to OWL-like languages. The general ideas and
requirements are basically similar, but the various proposals differ in detail: the
datatypes themselves need to be “admissible” (roughly speaking, this means
that datatype predicates are closed under negation and that the satisfiability
of conjunctions of these predicates is decidable), which ensures that we can use
datatype solvers as blackboxes in OWL reasoners.

Secondly, extensions to expressive description logics allowing more expressive
property constructs have been devised and investigated. This line of work has
lead to the RIQ [11], and SROIQ [7] description logics, and effective reasoning
processes for them.

The existence of this work in the Description Logic community has made it
simple to add qualified number restrictions, enhanced property constructs, and
more expressive datatypes.

3.2 OWL 1.1 and OWL

OWL 1.1 and OWL DL: As OWL 1.1 is a simple extension to OWL DL,
it borrows heavily from OWL DL. To this end, OWL 1.1 uses the same basic
syntax style as the so-called “abstract” syntax for OWL DL [16]. As well as using
the same syntactic style, OWL 1.1 incorporates the entire OWL DL syntax, only
providing extensions to it. In this way, any legal OWL DL ontology is also a legal
OWL 1.1 ontology.

5

As well, the meaning of OWL 1.1 is compatible with the meaning of OWL DL.
Instead of providing a direct model-theoretic semantics, the meaning of OWL
1.1 is provided by a mapping to the Description Logic SROIQ [2]. This method
of providing a semantics for OWL 1.1 gives more direct access to the theoretical
results concerning SROIQ, and is foreshadowed by the work of Horrocks and
Patel-Schneider reducing OWL DL entailment to Description Logic satisfiability
[8].

OWL 1.1 and OWL Full: OWL 1.1 does not provide any significant fea-
tures provided by OWL Full over OWL DL. This is largely because OWL 1.1
is essentially a Description Logic, and the facilities provided by OWL Full over
OWL DL (meta-modelling, blending objects and datatypes, unusual syntactic
forms, subverting basic constructs, etc.) are essentially those that go outside of
the Description Logic paradigm.

The only significant aspect of OWL Full that shows up in OWL 1.1 is meta-
modelling. However, OWL 1.1 provides meta-modelling facilities via punning,
which is not compatible with the meta-modelling features of OWL Full (which
are the same as those provided by RDF). See Section 3.3 for more on how meta-
modelling distinguishes OWL 1.1 from RDF and OWL Full.

OWL 1.1 and OWL Lite: Expressive ontology languages, such as OWL
1.1 and OWL DL, though decidable, have a high worst-case computational com-
plexity3 and are hard to use and implement efficiently. The design of simpler
ontology languages with more tractable inferences was considered of primary
importance by the W3C Web Ontology Working Group. The OWL Lite subset
of OWL DL was designed as a language that is easier to use and present to naive
users, as well as easier to implement.

The Web Ontology Working Group concluded that the main complexity of
OWL DL relies on the possibility of defining complex boolean descriptions using,
for example, union and complement; as a consequence, OWL Lite explicitly pro-
hibits unions and complements in the definition of concepts; additionally, OWL
Lite limits all descriptions in the scope of a quantifier to concept names, does
not allow individuals to show up as concepts, and limits cardinalities to 0 and
1. The goal was to significantly reduce the number of available modeling con-
structs, on the one hand, and to eliminate the major sources of non-determinism
in reasoning, on the other hand.

Although OWL Lite looks much simpler than OWL DL, it is still possi-
ble to express more complex concept descriptions by introducing new concept
names, exploiting implicit negations and using axioms to associate multiple de-
scriptions with a given concept name. So, from a user perspective, OWL Lite
is even harder to use than OWL DL, since the available modeling constructs
do not correspond to the actual expressivity of the language. Also, from a com-
putational perspective, OWL Lite is only slightly less complex than OWL DL
(namely ExpTime-complete instead of NExpTime-complete), and all the impor-
tant reasoning problems remain intractable.

3 Satisfiability and subsumption are NExpTime-complete for SHOIQ, and ExpTime-
complete for SHIQ.

6

OWL 1.1 identifies various subsets of OWL 1.1, each of which benefits from
tractable (i.e., polynomial time) reasoning for one or more important reason-
ing tasks [3]. The intention is that these subsets can be used and efficiently
implemented.

3.3 OWL 1.1 and RDF

OWL 1.1 diverges from the same-syntax extension of RDF vision of the Semantic
Web, as embodied in RDFS and OWL Full. Like all species of OWL, OWL 1.1
uses URI references for its names and thus fits well into the Semantic Web.
However, OWL 1.1 is not compatible with RDF, and thus is not compatible
with OWL Full. There are two areas of incompatibility.

OWL 1.1 includes semantic-free comments. In RDF, as in OWL Full, all infor-
mation is in the form of triples, and all triples have semantic import. This makes
it impossible to include syntactic-only comments that can survive transmission
or processing.

OWL 1.1 uses a (weak) form of meta-modelling called punning. In punning,
names can be used for several purposes; for example, Person can at the same
time be the name of a class and the name of an individual. The different uses
of a name are, however, completely independent, and from a semantic point
of view they can be thought of as separate names, e.g., Person-the-Class and
Person-the-Individual.

Punning is compatible with annotation properties as used in OWL DL, as
annotation properties were expressly designed so that their use would not have
any effect on class level entailments. However, punning is not compatible with
the meta-modelling possibilites inherent in the semantics of RDF [6] (and thus
inherent in OWL Full), precisely because it makes the two uses of a name se-
mantically independent.

A triple syntax is being provided for OWL 1.1, syntactically compatible with
the triple syntax for OWL DL. However, for the above reasons, this syntax could
not be given a meaning compatible with the RDF meaning for triples, at least
not without some very difficult semantic tiptoeing (as well as some questionable
encoding (such as creating fresh URI references for punning purposes, e.g., using
Person-the-Class and Person-the-Individual instead of just Person). The appro-
priateness of continuing along this line with OWL 1.1 is called even more into
question by the impossibility of extending it to Semantic Web languages with
expressive power on a par with that of First-Order Logic [15].

4 OWL 1.1 Specification

OWL 1.1 is a complete logic, and thus come with a syntax and a (model-
theoretic) semantics. Actually OWL 1.1 has two different syntaxes, the one
described here and an XML syntax. We only consider here the extensions to
the OWL DL abstract syntax [16].

7

4.1 Syntax for OWL 1.1

The “abstract” syntax of of OWL 1.1 is an extension of the “abstract” syn-
tax for OWL DL. In this Section, we provide some examples on how the OWL
DL syntax has been extended; for a complete specification we refer the reader
to http://owl1-1.cs.manchester.ac.uk/syntax.html. OWL 1.1 provides additional
expressive power to OWL DL, namely: qualified cardinality restrictions, lo-
cal reflexivity restrictions for simple properties, reflexive, irreflexive, and anti-
symmetric flags for simple properties, disjointness of simple and datatype prop-
erties, and regular property inclusion axioms. As an explample, we show below
the new syntax rules for cardinality restrictions and complex property inclusion
axioms:

individualRestrictionComponent ::= individualCardinality
individualCardinality ::= minCardinality(non-negative-integer description)

| maxCardinality(non-negative-integer description)
| cardinality(non-negative-integer description)

axiom ::= SubPropertyOf(propertyChain(individualvaluedPropertyID+)
individualvaluedPropertyID)

OWL 1.1 also provides syntactic sugar. For example, OWL 1.1 provides a con-
struct that allows to state that an individual does not have a particular property
value:

value ::= valueNot(individualvaluedPropertyID individualID)
| valueNot(individualvaluedPropertyID individual)
| valueNot(datavaluedPropertyID dataLiteral)

OWL 1.1 includes its own methods for user-defined datatypes, using a syntax
similar to the one used in Protégé. The semantics for OWL 1.1 user-defined
datatypes is taken from XML Schema Datatypes [1]. OWL 1.1 allows restrictions
that relate values for different data-valued properties on the same individual.

restriction ::= holds(datatypePredicateID { argument })
restriction ::= datatypePropertyID | dataLiteral
datatypePredicateID ::= equal | notEqual | lessThan | lessThanEqual

| greaterThan | greaterThanEqual

OWL 1.1 allows arbitrary comments to be inserted in ontologies.

comment ::= Comment({ dataLiteral | URIreference })

A comment is allowed anywhere white space is allowed. Comments have no se-
mantic import in OWL 1.1, but comments should survive processing and trans-
mission by OWL 1.1 systems.

8

4.2 Semantics for OWL 1.1

The semantics for OWL 1.1 rely on a translation into the description logic
SROIQ(D+), which extends the logic SROIQ [7] with datatypes and datatype
restrictions. A similar translation was used to define the semantics of Standard
OIL in terms of the Description Logic SHIQ(D) [4].

Since OWL 1.1 is an extension of OWL-DL (in the same way that SROIQ(D+)
is an extension of SHOIN (D)), this document also provides a well-defined se-
mantics for OWL-DL documents that is equivalent to the direct model-theoretic
semantics given in the OWL documentation [16]. Although both semantics are
equivalent, a translation-based semantics has several advantages with respect
to a direct semantics: a translation-based approach results in a cleaner, simpler
and more precise specification; it gives direct access to theoretical results for the
logic; and it provides a direct implementation pathway.

In the OWL 1.1 Semantics document 4 we define a translation function that
maps OWL 1.1 ontologies into equivalent SROIQ(D+) knowledge bases. The
translation function and the semantics of SROIQ(D+) [7] completely specify
the semantics of OWL 1.1. The translation of OWL 1.1 into SROIQ(D+) is
quite straightforward, and follows naturally from the syntax and semantics of
OWL-DL and from the syntax and informal specification of OWL 1.1 given in
Section 4.1. We refer the reader to the Semantics document for details on the
translation.

5 Implementation

OWL 1.1 has been developed outside any formal standardization process. In-
stead, the intent was to advance the state of the deployed and used art before
moving to a standards body. Several of the OWL 1.1 extensions were selected
because they were already supported by some OWL tools and were deployed
(or would quickly be deployed) by key users. For example, qualified number re-
strictions are supported by Racer, KAON2, and FaCT++ as well as the Protégé
editor. Unfortunately, this support is primarily through the DIG interface and
obsolete exchange formats.5 Both these features are strongly in demand from the
user community[21], but they are not used due to the lack of interoperability.
Since this interoperability was mostly a matter of agreeing on a common syntax,
it is likely that these features will be widely available after OWL 1.1 is finalized.

One difference in OWL 1.1 is the change in syntax. In OWL 1.1, there is a
normative XML syntax that is described by an XML schema 6and which is based
on DIG 2.0. The WebOnt working group did produce a document describing a
direct XML syntax for OWL, but it is incomplete and was never significantly
used. We expect that the availability of a sensible XML schema friendly format

4 http://owl1-1.cs.manchester.ac.uk/Semantics.html
5 See http://www.w3.org/2001/sw/BestPractices/OEP/QCR/ for a discussion.
6 http://owl1-1.cs.manchester.ac.uk/XMLsyntax.html

9

will make it possible to build useful OWL 1.1 tools based on the XML infrastruc-
ture. For example, schema aware editors could be fruitfully used to edit OWL
1.1, and XPath and XSLT could be used for a variety of tasks. There is also
an RDF encoding of OWL 1.1 (thus, an RDF/XML exchange format for it), so
users can adopt the format that best suits their needs. Some future extensions,
however, may build on the XML format (see section 6).

Several categories of OWL 1.1 features (syntactic sugar, semantic-free com-
ments, meta-modelling by punning) are essentially trivial to implement, since
they can be handled with a transformation into the core formalism. From an im-
plementation perspective, the most substantial extensions in OWL 1.1 are the
property constructors. In particular, the known decision procedure for SROIQ
involves the use of automata to manage the property chains. While the automata
seem modular, there is only very limited experience with implementing and opti-
mizing algorithms incorporating them [11]. The other extensions with regard to
properties (e.g., disjoint roles or negated property assertions), while conceptu-
ally simpler (e.g., negated property roles may be encoded using nominals), also
lack implementation experience. The consensus of implementors at the OWLED
workshop was that these features were reasonable to implement, but the first
implementations are not yet available.

Significantly, at the OWLED workshop, the major OWL reasoner imple-
mentors (those of Cerebra, RACER, FaCT++, KAON2, and Pellet) and editor
implementors (Protégé and Swoop) pledged to support OWL 1.1 in a timely
manner (in particular, for preliminary implementation within six months of rea-
sonably firm specifications), and implementation work is already underway.

6 Future Extensions

OWL 1.1 was from the start intended to be an easy, incremental improvement to
OWL. However, OWL 1.1 was also intended to start movement toward a larger
extension of OWL, which, for the purposes of this paper, we shall refer to as
OWL 2.0. There is a wide variety of academic and industrial research concerning
expressive extensions to OWL, much of it driven by user demand, some of it
driven by standardization in related areas. While it is difficult to predict what
a future working group might find compelling, there are five obvious features
which would be sensible to consider for the next version of OWL.

Syntactic extensibility: Since the OWLED workshop, there have been a num-
ber of additional proposals for syntactic sugar even beyond what OWL 1.1 offers.
This suggests that some form of macro system would be useful. An obvious pro-
posal is to center the system on the new XML syntax and make use of the
extensive transformation infrastructure for XML (e.g., XPath and XSLT). Such
a proposal is likely to emerge from the next OWL workshop.

Query: There are efficient implementations of some form of conjunctive ABox
querying in Racer, Pellet, and KAON2. While the Data Access Working Group
only defined the semantics of SPARQL queries for RDF graphs, there is a hook

10

allowing one to plug in other semantics, for example, that of OWL. It would be
straightforward to support such in OWL 2.0.

Integration with rules: Integration of rules of various sorts and DL-based
ontology languages is not only a hot research area, but also a requirement for
the new Rules Interchange Format (RIF) Working Group. The OWL community
could define some extensions to RIF specifically designed around OWL, e.g.,
based on SWRL [9] or on decidable variations of SWRL.

Non-monotonicity: A common request for OWL is non-montonic constructs.
Unfortunately, in spite of the intense interest, there is little settled consensus
or practical experience with non-monontonic features in DL systems. It may be
that in the coming year the picture will become clearer, but there needs to be a
more effective gathering of grounded use cases for non-monotonicity in OWL so
that the appropriate design decisions can be made.

Meta-modelling: OWL 1.1 meta-modelling does not facilitate domain mod-
elling [14], nor does it cover some useful sorts of annotative behavior. Although
the meta-modelling facilities of OWL Full were strongly argued for within the
WebOnt working group, actual use of those particular facilities is rare. So, more
work must be done to determine what additional meta-modelling capabilities
are both feasible and will be actually used.

References

1. Paul V. Biron and Ashok Malhotra. XML schema part 2: Datatypes. W3C Rec-
ommendation, May 2001.

2. B. Cuenca-Grau. OWL 1.1 Web Ontology Language Model-theoretic Semantics.
Draft Document, 2005.

3. B. Cuenca-Grau. Tractable Fragments of the OWL 1.1 Web Ontology Language.
Draft Document, 2005.

4. Dieter Fensel, Frank van Harmelen, Ian Horrocks, Deborah L. McGuinness, and
Peter F. Patel-Schneider. OIL: An ontology infrastructure for the semantic web.
IEEE Intelligent Systems, 16(2):38–45, 2001.

5. Volker Haarslev and Ralf Möller. RACER system description. In Proc. of IJ-
CAR 2001, 2001.

6. Patrick Hayes. RDF model theory. W3C Recommendation, 10 February 2004.

7. Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible SROIQ.
In KR-06, 2006. To appear.

8. Ian Horrocks and Peter Patel-Schneider. Reducing OWL entailment to description
logic satisfiability. J. of Web Semantics, 1(4):345–357, 2004.

9. Ian Horrocks and Peter F. Patel-Schneider. A proposal for an OWL rules language.
In Proc. of WWW 2004, 2004.

10. Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ
and RDF to OWL: The making of a web ontology language. J. of Web Semantics,
1(1):7–26, 2003.

11. Ian Horrocks and Ulrike Sattler. Decidability of SHIQ with complex role inclusion
axioms. In Proc. of IJCAI 2003, 2003.

11

12. A. Kalyanpur, Bijan Parsia, Evren Sirin, Bernardo Cuenca-Grau, and James
Hendler. SWOOP: a web ontology editing browser. J. of Web Semantics, 4(2),
2005.

13. T. Liebig and O. Noppens. Ontotrack: Combining browsing and editing with
reasoning and explaining for owl ontologies. In Proc. of ISWC 2004, 2004.

14. Boris Motik. On the properties of metamodeling in OWL. In Proc. of ISWC 2005,
2005.

15. Peter Patel-Schneider. Building the semantic web tower from RDF straw. In Proc.
of IJCAI 2005, 2005.

16. Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL web ontology
language semantics and abstract syntax. W3C Recommendation, 10 February
2004.

17. Protégé. http://protege.stanford.edu/, 2003.
18. E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical

owl-dl reasoner. To appear, 2005.
19. K. Spackman. Managing clinical terminology hierarchies using algorithmic cal-

culation of subsumption: Experience with SNOMED-RT. J. of the Amer. Med.
Informatics Ass., 2000. Fall Symposium Special Issue.

20. Dmitry Tsarkov and Ian Horrocks. Efficient reasoning with range and domain
constraints. In Proc. of the 2004 Description Logic Workshop (DL 2004), 2004.

21. K. Wolstencroft, A. Brass, I. Horrocks, P. Lord, U. Sattler, D. Turi, and R. Stevens.
A little semantic web goes a long way in biology. In Proc. of ISWC 2005, 2005.

