GLOO: A Graphical Query Language for
OWL Ontologies

Amineh Fadhil and Volker Haarslev

Concordia University, Montreal, Quebec, Canada
{f_amineh,haarslev} @cse.concordia.ca

Abstract. The database usability experience has shown that visual query
languages tend to be superior to textual languages in many aspects. By
applying this principle in the context of ontologies, we present GLOO, a
graphical query language for OWL-DL ontologies. GLOO maps diagrammatic
queries to DL based query languages such as nRQL, which is offered by the
OWL-DL reasoner Racer. GLOO hides the complexity of a DL query language
from users and allows them to query OWL ontologies with less difficulty.

1 Introduction

Ontologies play an increasingly important role in the domain of knowledge
management and information systems. Although progress has been made in
supporting ontology editing and visualizing, not much has been accomplished for
non-expert or naive users wishing to query an ontology. Ideally, queries should be
easy to design in order to facilitate the task for domain experts, who often lack
necessary technical skills. However, the current state of the art requires one to submit
a textual, description logic (DL) or SQL-like query to an OWL reasoner. The logic
and syntax of these querying languages obviously necessitates a tedious effort from
users before being able to reach a successful level to write query effectively. The
importance of an effective and easy to use query system has already been recognized
in the database area. Experimental evaluations of visually querying a database
confirm this belief [1, 2]. In this paper, we propose a visual query system (VQS)
equipped with GLOO, a formal graphical query language (VQL) for OWL-DL
ontologies.

2 The Visual Query Language

2.1 Basic Visual Notation

The basic elements of GLOO are illustrated in Table 1. A concept (or class) is
represented by its name in a filled oval, an individual by its name in a filled rectangle,
a role (or property) by its name and an arrow pointing from one concept to another
one.



The applicable operators for these building blocks are negation, complement,
conjunction (or intersection) and disjunction (or union). The difference between
negation and complement relies on the fact that the former represents true classical
negation of concepts whereas the latter designates negation as failure (NAF). The
semantics of negation is to find individuals or pairs of individuals that are instances of
the negated concept or role respectively. On the other hand, the semantics of
complement is to find individuals or pairs of individuals that are not known to be
instances of the complemented concept or role. On that account, negation is
graphically illustrated by the “NOT” keyword while complement is distinguished by
the “NOT KNOWN” keyword as shown in Table 1 for the visual elements <concept-
negated>, <role-negated>, <concept-complemented>, and <role-complemented>. A
role can have as domain and range any combination of the concept elements.

Table 1. Visualization of the basic elements of GLOO.

Basic Elements of GLOO Visual Representation

<concept>

<concept-negated>
NOT concept

<concept-complemented> FOT KNOWN TO BE concept
<individual>

<role> role

<role-negated> NOT role

Y ¥

<role-complemented> NOT KNOWN TO role

v

2.2 Query Formulation with Conjunction and Disjunction

Basic operators that are commonly expected to be available for querying are
conjunction and disjunction. In GLOO, they are graphically depicted by a special
node labeled with the keyword ‘AND’ and ‘OR’ respectively. The ‘AND’ keyword
unambiguously leads the user to the conclusion that the concepts connected to the
‘AND’ node are intersected. In fact, the diagram shown in Figure 1(a) illustrates a
query asking for instances of man who are doctors and have a child. Users may
combine two queries with these operators. For instance, one may first be looking for
married men by constructing the ‘man-married-human’ query and then wishing to
know those men who have a child by constructing the ‘man-has_child-human’ query
and later on be interested in finding out those men who are also married and have a
child by connecting the two previous queries with the ‘AND’ node as shown in Figure
1(b). Note that this query is intersecting two identical concepts and is equivalent to
the simplified one shown in Figure 1(d) where these concepts were merged. Thus,
this simplified query, although not explicitly using the ‘AND’ operator, is implicitly a
conjunctive query. The merging is not possible for the query shown in Figure 1(c)
because the intersection is performed over distinct concepts and thus the semantics of



the query would be modified into asking for men who are doctors that happen to have
a child and are married. These examples demonstrate that users can start by
composing simple queries and then produce more complex, novel ones by connecting
them with the intersection and union operators.

;
h 5 @ @
sy marfied has_Ehild
(2) (b)
Ei
marriei/ “has-child
marfied has.hild
CEPRCD
(©)

(d)

Fig. 1. Visualization of conjunctive queries.

2.3 Mapping the VQL to nRQL

We claim that GLOO is formal because it is semantically and syntactically
unambiguous given that its ‘connectivity syntax’ is formally defined by a grammar.
The term ‘connectivity syntax’ is meant to refer to how the graph components are
linked together. In fact, the visual layout of a query does not affect its semantics but
the connectivity of its components directly impacts on its meaning.

The expressive power of GLOO can be informally described by being able to
formulate queries on DL ABox elements (concept and role assertions) and make use
of conventional operators (negation, complement, union and intersection) for building
up more complex, refined queries. Our proposed VQL is independent of any OWL-
query language and offers basic functionalities for querying OWL-DL ontologies.
However, even though GLOO is mapped to nRQL, it does not match nRQL’s full
expressive power. In fact, our VQL hides the complexity of nRQL’s syntax by
mainly hiding query variables but this also causes the impossibility of unambiguously
visualizing some queries.

nRQL [3] is implemented by an optimized OWL-DL query processor known to be
highly effective and efficient. A nRQL query is composed of a query head and a
query body. The query body consists of the query expression whereas the query head
corresponds to the variables mentioned in the body that will be bound to the result.



Visually, the query head is symbolized by the selection of the concepts whose
instances are to be part of the result. The building blocks of nRQL necessary for the
semantic ‘translation’ of GLOO are ‘concepts query atoms’ and ‘role query atoms’.
These query atoms can be observed in the query of Table 2 that depicts the
conjunction of two role query atoms and three concept query atoms.

Table 2. Example of a graphical query and its equivalent in nRQL.

Visual Query Corresponding nRQL query

g, (Retrieve (x1 x2 x3)

<human / (and (x1 x2 has-child)

« (x1 x3 has-child)

has-chil&/ has-child (x1 human)
D SO (x2 human)
<humanj human ; (x3 human)
;\ 'J"/_J _11\ ‘J"/_J )
)

GLOO is particularly useful in representing queries searching for complex role
filler graph structures in an ontology. For instance, the query shown in Table 2 is
searching for children having a common parent.

3 Conclusion and Future Work

In conclusion, we proposed a VQL for OWL-DL ontologies hiding the complexity of
a textual query language such as nRQL. The visual simplification is twofold, first by
eliminating the textual syntax with the VQL and not allowing syntactic errors through
the user interface (UI); second by assisting users in the querying process through the
VQS features such as providing immediate feedback with result cardinalities. The
implementation of the UI is underway. Part of the VQL has been already
implemented. Work is still under progress for completing GLOO’s VQS.

References

1 Catarci, T., Santucci, G.: Are Visual Query Languages Easier to Use then Traditional
Ones? An Experimental Proof. In Proceedings of the tenth Conference of the British
Computer Society Human Computer Interaction Specialists Group-People and
Computers X. August, 1995, Huddersfield, UK. P.323-338.

2 Catarci, T., Santucci, G.: Diagrammatic vs Textual Query Languages: A Comparative
Experiment. In Proc. Of the IFIP W.G.2.6 Working Conference on Visual Databases,
March 1995.

3 Haarslev, V., Mdller, R., Wessel, M.: Querying the Semantic Web with Racer +
nRQL. CEUR Workshop Proceedings of KI-2004 Workshop on Applications of
Description Logics (ADL 04), Ulm, Germany, Sep 24 2004.



