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Abstract. In this paper, we demonstrate how argumentation theory can be used 

to explore certain aspects of the development of discovery proof-events in time. 

The concept of proof-event was introduced by Joseph Goguen, who understood 

mathematical proof, not as a purely syntactic object, but as a social event, that 

takes place in specific place and time and involving agents or communities of 

agents. Since argumentation is inseparable from the process of searching for 

mathematical proof, we suggest a modified model of the proof-events calculus, 

based on certain versions of argumentation theories. We claim that the exchange 

of arguments and counterarguments set forward to clarify eventual gaps or im-

plicit assumptions occurring in the course of a proof-event can be formalized in 

this modified model. 

Keywords: Discovery Proof-Events, Argumentation, Proof-Events Calculus. 

1 Introduction 

The concept of mathematical proof has undergone significant changes in the 20th century. 

Proof, particularly formalized proof, was initially identified with truth in traditional phi-

losophy of mathematics. However, many mathematicians dealing with real proofs did not 

accept the paradigm of formalized proof. Joseph Goguen [10] suggested the broader con-

cept of proof-event, which is actually a social event that takes place in specific place and 

time and involves public communication. The concept of proof-event is designed to em-

brace any proving activity, including incomplete proofs or attempts to verify a conjecture. 

Vandoulakis and Stefaneas [31] described proof-events as activity of a multi-agent system 

incorporating their history, insofar as they form sequences of proof-events evolving in 

time. Thus, they modelled certain temporal aspects of proof-events, using the language of 

the calculus of events developed in Kowalski’s calculus of events [19]. 

Our approach combines proof-events with logic-based argumentation to study in a 

more adequate way the categories of purported, faulty or incomplete proofs, setting 

forward the concept of dialogue between agents using arguments and counterargu-

ments. Hence, we extend the calculus of proof-events by integrating argumentation the-

ory to represent the relevant stages of a discovery proof-event (incomplete or even false 
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proofs, ideas, valid or invalid inference steps, comments, etc.) in a form of dialogue of 

agents that use arguments and counterarguments or counterexamples in their attempt to 

clarify the validity of a purported proof. 

Many researchers have highlighted the role of argumentation in mathematics. Mathema-

ticians do much more, than simply prove theorems. Most of their proving activity might be 

understood as varieties of argumentation [2]. Lakatos’ Proofs and Refutations [20] is an 

enduring classic that highlights the role of dialogue between agents (a teacher and some 

students) by attempts at proofs and critiques of these attempts1. The comparison between 

argumentation supporting an assumption or a purported proof and its proof is based on the 

fact that proof can be regarded as a specific kind of argumentation in mathematics [22]. 

A methodological tool that has been widely used to examine argumentation is Toul-

min’s model [28], in which argument consists of “claim”, “data”, and “warrant” that 

are considered the essential elements of applied arguments. The procedure by which 

mathematicians evaluate reasoning resembles to argumentation, as various researchers 

have showed ([6], [1], [22, 23], [4], by adjusting Toulmin’s model to mathematical 

examples. We propose to integrate argumentation theory into the calculus of proof-

events. By doing so, we can represent all the relevant stages that we go through when 

proving, from the statement of a problem until its validation or rejection by the relevant 

community that uses arguments and counterarguments or counterexamples in checking 

the validity of a purported proof. 

To combine the proof-event calculus with argumentation theory, we use the basic 

structure of Toulmin’s model for the representation of arguments and Pollock’s logic-

based argumentation theory. We rely on Pollock’s view of defeasible reasoning that 

has non-monotonic character. Pollock represents argument in the form ,c , where Φ 

is a set of data and c is a claim [25]. He separated the rebutting and undercutting defeat 

and presented one of the first monotonic logics with concepts of argument and defeat, 

even though he did not explicitly distinguish between them [24]. 

In this paper, we proceed from a comparison of proof-events and argumentation. Then, 

we suggest a formalization of proof-events involving argumentation theory. We model 

the argument moves and the calculus of the temporal predicates. The aforementioned 

calculus is analyzed in terms of the levels of argumentation. In the last section, Fermat’s 

Last Theorem is investigated as a case study illustrating the concepts introduced. 

2 Proof-events vs. arguments 

Comparison of the basic elements of proof-events and argumentation theory shows sim-

ilarities in structure, the sequence of events, the agents, the layers of communication, 

and the levels of argumentation. 

                                                        
1  Lakatos uses Euler’s theorem for star-polyhedra to conclude that no proof is ultimately certain. 

However, in our view, Lakatos’ counterexamples can be removed by reinterpretation (by another 

agent) of the initial definitions, so that the community involved in a proof event could reach an 

agreement concerning the validity of a purported proof. Accordingly, the mathematical commu-

nity is the ultimate truthmaker of mathematical intuitions, the validity of which is decided within 

a finite, although possibly too long time-period of evolution of sequences of proof-events. 
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Arguments and proof-events have three common characteristics: a set of premises 

for a task or problem, a method of reasoning and a conclusion. Moreover, each proof-

event has temporal extension and, thereby history: it has a starting point and a termina-

tion point and what is posed to be proved, emerges often out of the history of earlier 

proof-events (sequences of proof-events or sequences of arguments and counterargu-

ments) [31]. A sequence of proof-events is complete when the community involved in 

it concludes that they have understood the suggested proof and agree that it is actually 

a proof or that is invalid, based on advocated counterargument (or counterexample). 

Proof-events presuppose the existence of at least two agents enacting the roles of 

prover or interpreter [31]. Similarly, argumentation involves (at least two) agents en-

acting the roles of supporter or opponent [17]. The layers of communication, under-

standing, interpretation, and validation that agents use to disseminate their knowledge, 

are common in both approaches. An agent is a proactive and intelligent system that 

enacts a specific role. We may consider some software systems as agents, provided that 

they possess these characteristics. The main concept advanced in agent-based ap-

proaches is that of autonomy: agents operate as independent individual entities trying 

often to collaborate and coordinate with others [13]. However, the steps that an indi-

vidual agent strives to perform in order to accomplish a mathematical task may intersect 

with the steps attempted or undertaken by other agents. A number of important ques-

tions arise out of this inter-agent debate, such as the systematization of agents’ contri-

bution as phases in a goal-directed plan (such as proving) and the review in the formal-

ization of logic-based languages in terms of both syntactic and semantic aspects [16]. 

3 Argumentation models 

Argumentation models generally contain the following main elements: an underlying log-

ical language with the definition of the concepts of argument, conflict between arguments 

and counterarguments, and status of argument. We will formalize proof-events based on 

argumentation theory, using a list of structures, which represent arguments and counter-

arguments. Our approach presupposes a multi-agent system, where the agents enact the 

roles of provers and interpreters. An argument has premises, sentences, and conclusion. 

Arguments considered in this section involve grounds and claims, which are formulae in 

classical logic and methods of inference by which a claim follows from a set of formulae, 

which are taken to be deductive inferences, denoted by ⊢. A proof-event е can be under-

stood as a communicated argument ,c  [26] concerning a stated (fixed) problem spec-

ified by certain conditions (predicates) and be designated by the pair ,e c , i.e. 

 , (Problem, ) ,( , ),e c e communicate t communicate c w  

where Φ is the Data of the argument, c is the Claim that refers to a stated (fixed) problem 

(proposition), specified by certain conditions (predicates) and w are the (possibly implicit) 

inference rules (Warrant) which allow Φ to be logically associated with c, such that: 

(i)  

(ii) c   

(iii) There is no , such that c . 
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A counterargument to a proof-event ,e c represents a new proof-event that can be 

designated by the pair ,e , where Ψ is the Data (generally different from those of 

Φ) on which is based the Claim (Counterargument) β that refers to the same fixed prob-

lem (proposition) stated at time t, specified by the same conditions (predicates). 

Argumentation may require chains (or trees) of reasoning, where claims are used in 

the assumptions for obtaining further claims [8], so that a proof-event could be an atomic 

argument or a sequence of arguments (fluent). Fluents f are sequences of proof-events 

(proving instances) evolving in time that refer to a fixed problem, specified by certain 

conditions [30]. Let R be a set of rules of inference. A fluent f is a formula of the form  

 
1 2 3
, ,e e e e   

where 
1 1 1 2 2 2 3 3 3
, , , , ,e c e c e c  is a finite, possibly empty, sequence of argu-

ments, such that the conclusion of proof-event 
i
e  is the claim 

i
c , i.e. 

 
1 1 2 2 3 3
( ) , ( ) , ( )conc e c conc e c conc e c  

for some rule 
1 2 3
, ,c c c c R  [33]. Accordingly, the meaning of the three essential 

components of argument based on Toulmin’s model [28], which abbreviated by corre-

sponding prefixes, are defined as follows for the concept of fluent: 

Data: 
1 2 3 1 2 3

( ) ( ) ( ) ( )prem e prem e prem e prem e   (1) 

Claim: 
1 2 3

( )conc e c c c c   (2) 

Warrant: 
1 2 3 1 2 3

( ) ( ) ( ) ( )sent e sent e sent e sent e w w w   (3) 

where c (Claim) is the statement communicated by the agent, Φ (Data) are facts that serve 

as the ground of the claim, and w (Warrant) are the inference rules, which allow data to 

be logically associated with the claim. The aforementioned elements are frequently used 

to define a consequence relation between the arguments and/or the counter-arguments. 

3.1 Argument moves 

In the course of a proof-event, we pass through various inference stages, such as at-

tempts, impasses, confirmed or unconfirmed steps, false suggestions or implicit as-

sumptions, intuitive ideas, intentions, etc. Arguments can then be specified as chains of 

reasoning leading to a conclusion with consideration of possible counterarguments at 

each step. When a chain of reasoning (
0 1 2
, ,

n
x x x x , where the argument 

i
x  attacks 

the argument 
1i

x  for 0i ) is explicitly constructed, distinct concepts of defeat can 

be conceptualized. When an agent has gained control of an argument, he must select 

which argument-move to apply. Gordon [11] refers to “argument moves” as analogues 



5 

of three roles for legal cases2. We reserve the term argument moves for specific, active 

tactics or strategy that a prover can choose to support his claim. We present four fun-

damental relations that indicate links and conflicts at the sequence of proof-events. The 

possible argument moves could provide support or attack the claim.  

Given a claim c and an argument communicated during the proof-event e, possible 

argument moves, which provide support for c [12] include: 

Equivalence: an argument for a claim, which is equivalent to (or is) c; 

Elaboration: an argument that is elaboration of c, and 

whereas argument moves, which oppose c [26] include: 

Rebutting: an argument for a claim which disagrees with c; 

Undercutting: an argument for a claim which disagrees with a premise of c. 

Argument moves that support a claim. A proof-event 
1
e  is equivalent with proof-

event 
2
e , if , c c , although it might be w w , i.e., whenever they have 

the same data and the same conclusion (although possibly different warrants), i.e. 

 Equivalence( , ) ( , ) ( , )e e e c e c .  (4) 

Therefore, equivalent proof-events can have different ways of proving3. 

If ,e c  is a proof-event, a set of sentences S is called that elaborates or embellishes 

upon e, if the following relation holds 

 Elaboration( , ) ( ) ( ) ( )e S sent e sent S concl e  iff S c  (5) 

These moves are used for backing our claim and supporting our proof, so that 

 Support( , ) ( , ) ( , )e t Equivalent e e Elaboration e S  (6) 

Counterargument moves that attack a claim. A counterargument communicated 

during the proof-event ,e  attacks or rebuts the conclusion of an argument com-

municated during the proof-event ,e c , if the following relation holds 

 Rebutting( , ) ( , ) ( )e e rebut e e concl e  iff c  (7) 

A counterargument communicated during the proof-event ,e  is called that un-

dercuts or attacks some of the premises (defeasible inference) of the argument commu-

nicated during the proof-event ,e c , if the following relation holds 

                                                        
2  This term was also previously used by Rissland [27], Asley and Aleven [7], Pease et al [21]. 
3  For instance, the Pythagorean Theorem has been proved in numerous ways, such as by Eu-

clid’s geometrical proving or by James Abram Garfield algebraic proving. 
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 Undercutting( , ) ( , ) ( )e e undercut e e prem e  iff 
i

i

 (8) 

for 
1 2

{ , , , }
n

. 

Given an argument communicated during the proof-event ,e c , a counterargu-

ment communicated during the proof-event ,e  attacks the argument communi-

cated during the proof-event e, at time t, iff e  rebuts e or e  undercuts e. In symbols, 

 Attack( , ) ( , ) ( , )e t rebut e e undercut e e   (9) 

3.2 Temporal Predicates 

Even though proof-events can be regarded as taking place instantaneously, the Event 

Calculus is actually neutral with respect to whether events have duration or are instan-

taneous [19]. Reasoning about actions and change (RAC) [16] is concerned with the 

study of how fluents change when new information is acquired and how this view of 

the problem is affected by the observation of some events remaining active or termi-

nated at a particular time. The language in RAC uses causal propositions (c-proposi-

tions), of the form “A initiates F when C” or “A terminates F when C”, which in this 

paper are represented in more detailed and specific form with the arguments’ and coun-

terarguments’ moves that initiate or terminate a fluent. In most cases, we will take into 

consideration only the starting point of a proof-event, with the exception of those proof-

events that terminate, or when duration plays a significant role. In these cases, we men-

tion both the starting and termination points. 

We apply the abovementioned operators combined with the basic temporal predicates 

from [32]: ( , )Happens e t , ( , , )Initiates e f t , ( , , )Terminates e f t , ( , )ActiveAt f t , 

1 2
( , , )Clipped t f t . In particular,  

( , )Happens e t  means that a proof-event e occurs at time t. (10) 

1 1 1
( , , ) ( , ) ( , ) ( , )Initiates e f t Happens e t attack e t support e t , at time 

1
t , (11) 

which means that if a proof-event e occurs at time t, then there are no counterarguments 

that attack the validity of the outcome of the proof-event and there is adequate support 

for our claim at the specific time 
1
t . 

1 2 1 1 1 1 1 2 1

2 2 2 2 1 1 2

( , , ) , , , [ ( , ),( ) ( , )]

[ , ( ( , ) ( , ))], for

Clipped t f t e e t t Happens e t t t t attack e t

e t Happens e t attack e t t t t
 (12) 

which means that a proof-event clips when there is no proof-event 
2
e  that attacks the 

counterargument 
1
e  attacking the proof-event 

1
e  between 

1
t  and 

2
t . 
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1 1 1 1

2 2 2 2 1 1 2

(e , , ) , , ([ ( , ) ( ) ( )]

[ , ( ( , ) ( , ))], for

Terminates f e e e t attack e t conc e prem e

e t Happens e t attack e t t t
 (13) 

which means that a fluent terminates when there is a counterargument attacking our 

sequence and there is no proof-event 
2
e  that happens in time 

2
t , with 

1 2
t t , to defend 

our claim. The termination of a sequence of proof-events may be caused by the proof 

of the falsity of the problem (there are counter-arguments that attack the conclusion of 

the proof-event), or the undecidability of the problem (there is a lack of adequate war-

rants to prove the desideratum). 

1 1 1

1

( , , ) ( , , ) ( , )

( , ), for every ,
n n n n n

n n n n

ActiveAt e f t Happens t e t attack e t

support e t n t t
 (14) 

which means that a fluent is active, if there is an argument to support our claim for every coun-

terargument attacking our claim. This means that for every counterargument ,
i i

e , 

1, , ,i n n  there is a proof-event 
1 1 1
( , )

n n n
e c , which 

1 1
( , )
n n

Happens e t  and 

defeats the attack of the counterargument ,
n n n
e , for 

1n n
t t . 

From the aforementioned, we can conclude that 

1 1 1 2 2

2

( , ) ( , , ) ( ) ( , )

( , , )

Happens e t Initiates e f t t t attack e t

ActiveAt e f t
 (15) 

which means that a fluent remains active at time 
2
t , if a proof-event e has taken place 

at time 
1
t , with 

1 2
t t  and has not been terminated at a time between 

1
t  and 

2
t . 

[ ( , , ) ( ) ( , , )]

( , ), at time , 1, , ,
i i n i

n n

i n ActiveAt e f t t t Terminates e f t

Valid e t t i n n
 (16) 

which means that a fluent could consider valid at time 
n
t , if it is active and there is no 

counterarguments to terminate it at time 
i
t , for every 1, , ,i n n . 

4 Levels of argumentation 

In order to define the warranted premises that are justified by a set of arguments in the 

sequence, we need a mechanism, which by recursion could examine the representation 

of the arguments. Pollock introduces defeasible reasoning where arguments are chains 

of reasoning that may lead to a conclusion, whereas additional information may destroy 

the chain of reasoning. Kakkas and Moraitis [17] presented three levels of arguments: 

object level arguments, which represent the possible decisions or actions in a specific 
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domain. First-level priority arguments, which express justifications on the object-level 

arguments in order to resolve possible conflicts. Then, higher-order priority arguments 

are used to deal with potential conflicts between priority arguments of the previous 

level until all conflicts are resolved. 

We can apply the same levels in mathematical proving, in order to understand the 

history of proof-events, starting from the statement of a problem until its validation or 

rejection, including attempts or failures [32]. The data and the claim of the initial proof-

events constitute the object-level arguments. Proof-events constitute the first-level pri-

ority arguments, in which we have preferences and justifications in the object-level 

arguments. The proof-events that have fulfilled their purpose terminate, while the rest 

of them continue to the higher-order priority arguments. As proof-events continue from 

lower levels to higher, they constitute fluents. In the example below, we describe the 

possible steps and conflicts for the justification of a proof-event e through the levels of 

argumentation. 

4.1 Object level arguments 

In the object level arguments, we have our claim and the initial representations of 

arguments. The proof-events that are not attacked constitute the fluent 
0
f  and continue 

to the first level priority arguments. 

 ( , ), 1, , , ,
i i i m

Happens e t i m m t t t   (17) 

 
0

[ ( , ) ( , ) ( )] ( , , )
i i i i i i m i m
e e eHappens t attack e t t t Initiates f t  (18) 

for 1, , , ,
i m

i m m t t t . 

4.2 First-level priority arguments 

 

1

1 1 1 1 1 1

1 1 1

( , , ), ( , , ),

1, , , ,
m m m m

m m m

Initiates e f t attacks e f t

i m m t t t
 (19) 

for every i  that we have 

 1

1

1 1 1 1

1

, , [ ( , ) ( ) ( )]

( )] ( )

[ , ( ( , )

( , )] ( , , )]

m i m i m i m i m i m i m i

m i m i m m

m i m i m i m i

m i m i m i m m

e e t attack e t conc e prem e

prem e t t t

e t Happens e t

attack e t Terminates e f t

 (20) 

so that the proof-events that have been attacked and could not resolve the conflict, ter-

minate in this fluent. The rest of them remain active, so we have: 
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11

( , , )
m j m m

ActiveAt e f t  for every ,j i j   (21) 

and continues to the second-level priority arguments. 

The same pattern continues for n-level priority arguments and for n fluents 
n
f , that 

deal with potential conflicts between priority arguments of the preceding level until all 

conflicts are resolved or our claim proved invalid. In the final level, we have 

4.3 Higher-order priority arguments 

If proof-events fail to resolve all the conflicts, our claim cannot be proved and it clips: 

 ( , , )
i n
tClipped t e  at the time 

( 1)n m n mn i
t t t   (22) 

If the proof –events manage to deal with all the attacks and 

 ( 1)

( 1)

, [ ( , , ) ( , , )]

( , ),at the time
m n j n n n n

n n m n mn i

j j ActiveAt e f t Terminates e f t

Valid e t t t t
 (23) 

then our claim is proved valid. 

5 A Case Study: Fermat’s Last Theorem 

We illustrate our approach by the examination of Fermat’s Last Theorem (FLT). It was 

formulated in 1637 by Pierre de Fermat, who stated that there are no three distinct pos-

itive integers a, b, and c, other than zero, that satisfy the equation n n na b c , when-

ever n is an integer greater than 2. The statement of the problem marks the starting-

point of a sequence of proof-events that evolved in time. Even though Fermat claimed 

to have proved this theorem, it actually took 358 years and numerous attempts under-

taken by eminent mathematicians (agents) to prove it until its final proof by Andrew 

Wiles in 1995. Fermat’s alleged proof cannot be included in the initial proof-event, 

since it was never communicated. In his letters, Fermat communicates the Theorem for 

the cases 3n  and 4n  and gives a solution only for the latter case. 

We cannot expose here the whole sequence of such proof-events. We confine our-

selves to select some of these historical attempts (proof-events) until the proof-event, 

during which the communication and validation of the final proof of the theorem took 

place and demonstrate how argumentation is involved in the process of search for proof. 

The first attempts to prove FLT concerned specific exponents. The case 3n  was first 

explored by Abu-Mahmud Khojandi (c. 940 - 1000), but his attempt has not survived (and 

thereby cannot be considered as a proof-event) and it is conjectured that it was incorrect. 

Leonhard Euler gave a proof for 3n  in 1755 and for 4n  in 1747, but his proof of 

the former case contained a basic fallacy [9, 39-40]. Many other mathematicians proved the 

theorem for 3n  using various methods. In 1825, Legendre (1752–1833) and Peter Gus-

tav Lejeune Dirichlet (1805-1859) proved independently FLT for the case 5n . Several 
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novel approaches were developed by Sophie Germain in 19th century [9, 59]. In 1839, Ga-

briel Lamé (1795 –1870) proved FLT for the case 7n . In 1847, he communicated a 

proof of FLT, but it was flawed, because it was assumed incorrectly that complex numbers 

could be factored into primes uniquely. This gap was indicated by Joseph Liouville [9, 76-

77]. Kummer proved the conjecture for regular prime numbers, but not for irregular primes. 

Further, the Theorem was proved for the exponents 6,10,14n . In 1984, Gerhard Frey 

pointed out a connection between the modularity theorem and Fermat’s equation, but FLT 

remained unproved. The Taniyama-Shimura-Weil conjecture, which was proposed in 1955, 

was the method that led to a successful proof of FLT, when Andrew Wiles accomplished a 

partial proof of this conjecture in 1994 [29]. 

Wiles, after spending six years applying various methods that were proved unsuc-

cessful, he approached the problem in a new way. He discovered an Euler system de-

veloped by Victor Kolyvagin and Matthias Flach, which, with his own extension, 

seemed to work successfully. He asked his colleague, Nick Katz, to help him in check-

ing his line of reasoning for eventual flaws. He decided to present his work in June 

1993 at the Isaac Newton Institute for Mathematical Sciences [29]. 

However, during the peer review, it became evident that there was an incorrect crit-

ical point in the proof. Wiles tried almost a year to resolve this point, firstly by himself 

and then in collaboration with Richard Taylor, but without success [18]. When Wiles 

was on the verge to quit his attempt, he experienced an insight that the Kolyvagin–

Flach approach and Iwasawa theory were each insufficient on their own, but in combi-

nation they could be strong enough to overcome this final obstacle. In 1994, Wiles 

submitted two papers that establish the modularity theorem for the case of semistable 

elliptic curves, which was the last step in proving FLT [29]. 

This example illustrates the contribution of different agents (mathematicians) that take 

part in the sequence of proof-events. Firstly, the main objective for a prover is to convince 

the community about the soundness of his reasoning and the validity of his purported 

proof. Moreover, other agents involved also in the proof-event contribute significantly by 

enacting sometimes as provers or supporters (by suggesting additional supporting argu-

ments) and other times as interpreters or opponents (by suggesting counterarguments that 

identify eventual gaps or inaccuracies). Thus, many agents participated in the considered 

sequence of proof-events in order to fulfil the initial task, which was the proof of FLT. 

This participation has the following manifestations: 

a. By suggesting partial proofs (for specific cases) of the Theorem. 

b. By the rejection of someone else’s attempt, pointing out a fault and/or inaccuracy. 

c. Through a dialogue between provers in order to detect and resolve weak or insuf-

ficiently supported arguments in proving (for instance, Wiles asked his col-

leagues’ contribution, notably Nick Katz and Richard Taylor, when he faced a 

dead-end in his attempt). 

During all these years, thousands of unsuccessful proofs have been undertaken, most 

of which remain unknown, but some of them have been proposed by eminent mathe-

maticians, such as Euler, Cauchy, Lamé, Kummer, and others. Argumentation is evi-

dent in interactive contexts, as they let counterarguments to be set forth and stronger 

arguments to survive. Both arguments and counterarguments play essential role in the 
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process of proving, contributing equally in the construction and justification of the 

proof. The warranted parts of the proofs act as groundwork for the subsequent proofs, 

while the counterarguments that identify faults in unsuccessful proofs open the way for 

better-justified proofs and, in some cases, turn the interest of the mathematical commu-

nity on new unexplored areas. In the next section, we present a model of this example 

in terms of the levels of argumentation. 

5.1 Object level arguments – Fermat’s Conjecture 

In the object level arguments, we have Fermat’s conjecture as the initial proof-event 

Fermat
e  and his claim that he has a proving for this conjecture, without any claim-coun-

terargument 
Fermat
e  clearly opposes this conjecture. 

 
1637 1637 0 1637

( , ) ( , ) ( , , )
Fermat Fermat Fermat

Happens e t attack e t Initiates e f t   

5.2 First-level priority arguments - Proofs for specific exponents 

In the first-level priority arguments, we have proofs for specific exponents n of the FLT 

from various mathematicians in different time points. 

For the exponent 3n , the proof-event 
3n

e  happened when Leonhard Euler gave 

a proof in 1755. Therefore, we have 
1755

( , )
Euler

Happens e t . 

Many other well-known mathematicians followed with equivalent proofs that sup-

port the validity of the proof for 3n . Each prover used a different way (warrant) for 

proving the conclusion. Thus, their provings are equivalent. 

 
3 3

( , ) ( , )
n i n i

Support e t Equivallent e e  for 1, ,14i , with 

1i : 
1707

( , )
Euler
e t , 2i : 

1802
( , )
Kausler
e t , 3i : 

1823
( , )
Legendre
e t ,  

4i : 
1855

( , )
Calzolari
e t , 5i : 

1865
( , )

Lamé
e t , 6i : 

1802
( , )
Kausler
e t , 

7i : 
1878

( , )
Gunther
e t , 8i : 

1901
( , )
Gambioli
e t , 9i : 

1909
( , )
Krey
e t ,  

10i : 
1910

( , )
Rycklik
e t , 11i : 

1910
( , )
Stockhaus
e t , 12i : 

1915
( , )
Carmichael
e t ,  

13i : 
1917

( , )
Thue
e t , 14i : 

1944
( , )
Duarte
e t . 

From the aforementioned, we have 

 

1755 3 1 1755

3 3 1755

3 1 1755

( , ) ( , , )

[ ( , ) ( , )] ( )

( , , ), for

Euler n

n i n i i

n i i

Happens e t Initiates e f t

attack e t support e t t t

ActiveAt e f t t t

  

Similarly, we have proofs for 5n  
5

( )
n
e  and 7n  

7
( )
n
e  by various mathema-

ticians (provers). The first proof for 5n  belongs to Legendre (1825). Accordingly, 

we have 
1825

( , )
Legendre

Happens e t . Equivalent proofs were also proposed. 
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5 5

( , ) ( , )
n j n j

Support e t Equivalent e e  for 1, ,10i , with 

1j : 
1825

( , )
Legendre
e t , 2j : 

1825
( , )
Dirichlet
e t , 3j : 

1875
( , )
Gauss
e t , 

4j : 
1843

( , )
Lebergue
e t , 5j : 

1847
( , )

Lamé
e t , 6j : 

1901
( , )
Gambioli
e t , 

7j : 
1905

( , )
Werebrusow
e t , 8j : 

1901
( , )
Rychlik
e t , 9j : 

1159
( , )
Corput
e t   

10j : 
1987

( , )
Terjanian
e t . 

From the aforementioned, we have 

 

1825 5 1 1825

5 5 1825 1825

5 1 1825

( , ) ( , , )

[ (e , ) ( , )] ( )

( , , ), for .

Legendre n

n i n i

n i i

Happens e t Initiates e f t

attack t support e t t t

ActiveAt e f t t t

  

For 7n , the first proof was provided by Lamé in 1839; therefore, we have 

1839
( , )

Lamé
Happens e t  and the equivalent supporting provings 

 
7 7

( , ) ( , )
n k n k

Support e t Equivalent e e  for 1, ,10k , with 

1k : 
1839

( , )
Lamé
e t , 2k : 

1840
( , )
Leberguet
e t , 3k : 

1876
( , )
Genocchi
e t , 

4k : 
1897

( , )
Maillet
e t . 

Therefore, we have 

 

1839 7 1 1839

7 7 1839 1839

7 1 1839

( , ) ( , , )

[ (e , ) ( , )] ( )

( , , ), for .

n

n i n

i

amé

i

L

n i

Happens e t Initiates e f t

attack t support e t t t

ActiveAt e f t t t

  

FLT was also proved for the exponents 6,10,14n . 

5.3 Second-level priority arguments – Even exponents 

Sophie Germain ( )
Germain
e  tried unsuccessfully to prove FLT for all even exponents 

2
( )
n p
e , which was proved by Guy Terjanian ( )

Terjanian
e  in 1977. Germain’s attempt 

was incomplete; thus, it clipped 

 

1776 2 1831 1 1

1776 1 1831

2 2 2 2 1 1776 1 1831

( , , ) , , [ ( , )

( ) ( , )]

[ , ( ( , ) ( , ))], .

Germain Germain Germain

Germain

Germa n

p

i

n
Clipped t e t e e t Happens e t

t t t attack e t

e t Happens e t attack e t for t t t

 

and became active again after the successful proving of Terjanian in 1977. 

 
2 2 1977 1977 1977

( , , ) ( , ) ( , ).
Terjann ian Terjaniap n

ActiveAt e f t Happens e t attack e t   
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5.4 Third-level priority arguments - Ernst Kummer and the theory of ideals 

The sequence of proof events continues in the third-level with further attempts for prov-

ing FLT. In 1847, Lamé’s proof ( )
Lamé
e  failed, because it incorrectly assumes that com-

plex numbers can be factored into primes uniquely, a gap that was revealed by Liouville 

( )
Liouville
e . Thus the counterargument generated by Liouville indicated the fault in 

Lamé’s proving and, without adequate proof-events to support 
Lamé
e , it was terminated. 

 

1847 1847 1847 1 2

2 2 1847

3 2

, , [ ( , ) ( )] ( )

[ , ( ( , ) ( , ))]

( , , ).

Liouville Liouville

Lio

Lamé Lamé

Lamé Lamé

Lamé

uville

e e t attack e t conc e t t t

e t Happens e t attack e t

Terminates e f t

  

Kummer ( )
Kummer
e  proved the conjecture for regular prime numbers ( )

regular
e , alt-

hough not for irregular primes ( )
irregular
e . Therefore, we have 

 
3 1893 1893 1893

( , , ) ( , ) ( , )
Kummer Kummerregular

ActiveAt e f t Happens e t attack e t , 

but 

 
1892 1893 1892

1892 1 1893 2 1893

1892 3 1893

, , , [ ( , ) ( )]

( ) [ , ( ( , )

( , ))] ( , , ).

Kummer Kummer Kummer irregular

Kummer Kummer

Kummer irregular

e e t t attack e t conc e

t t t e t Happens e t

attack e t Terminates e f t

  

5.5 Forth-level priority arguments - Connection with elliptic curves 

In the forth-level priority, provings are started to connect with elliptic curves. The Tani-

yama conjecture ( )
TSW
e  was proposed in 1955 

4 1955 1955

1955 1955

( , , ) ( , )

( , ) ( , )
TSW TSW

TSW TSW

Initiates e f t Happens e t

attack e t support e t
 

but it was not proved until 1994, when Andrew Wiles ( )
Wiles
e  accomplished a partial 

proof of this conjecture. Thus we have 

 1994 4 1955

1839 4 1994

( , ) ( , , ) ( , )

( ) ( , , ), for
Wiles TSW TSW i

i Wiles i i

Happens e t Initiates e f t attack e t

t t ActiveAt e f t t t
  

In 1984, Gerhard Frey ( )
Frey
e  pointed out a connection between the modularity the-

orem and Fermat’s equation, but FLT still remained unsolved. Thereby, we have 

1984
( , )
Frey

Happens e t . 
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5.6 Fifth-level priority arguments – Andrew Wiles 

In the fifth-level priority arguments, the procedure and history in the Andrew Wile’s at-

tempts is represented. Wiles ( )
Wiles
e  discovered and extended an Euler system. He also 

asked his colleague, Nick Katz, to help him in checking his reasoning for eventual faults. 

5 1993 1993

1993 1993

( , , ) ( , )

( , ) ( , ).
Wiles Wiles

Wiles Katz

Initiates e f t Happens e t

attack e t support e t
 

He presented his work in June 1993, but it soon became evident that there was an 

incorrect critical point ( )
Wiles
e  in the proof. Wiles tried for almost a year to resolve this 

point, firstly by himself and then in collaboration with Richard Taylor ( )
Taylor
e , but in 

vain. Thus, his attempted is clipped on the time period from 1993 until 1994. 

1993 1994 1 1

1993 1 1994 1

2 2 2 1 1993 2 1993

( , , ) , , [ ( , )

( ) ( , )]

[ , ( ( , ) ( , ))], .

Wiles Wiles Wiles

Wiles

Wile

Wiles

Taylor s

Clipped t e t e e t Happens e t

t t t attack e t

e t Happens e t attack e t for t t t

  

In 1994, Wiles managed to overcome this gap by combining Kolyvagin–Flach approach 

[ ( , )]
Wiles Kolyvagin Flach

Elaboration e S  and Iwasawa theory [ ( , )]
Wiles Iwasawa

Elaboration e S  

and he submitted his final paper which was the last step in proving FLT. 

 5 1994 1994 1994
( , , ) ( , ) ( , )

( , ) ( , )
Wiles Wiles Wiles

Wiles Kolyvagin Flach Wiles Iwasawa

ActiveAt e f t Happens e t attack e t

Elaboration e S Elaboration e S
 

5.7 Higher-order priority arguments-Fermat’s Last Theorem 

The proof–event managed to deal with all the attacks and we have 

 
1994 1994 1994

[ ( , , ) ( , , )] ( , )
Fermat FeWiles n rmn at

ActiveAt e f t Terminates e f t Valid e t   

at the time 
1994
t . 

Thus, FLT is proved valid by Wiles, with the contribution of the other agents that 

opened the way before him in this ages-long sequence of proof-events. 

6 Conclusion 

We have developed a model of the proof-events calculus [32] based on Pollock’s [26], 

Toulmin’s [28] and Kakas’ argumentation theories, extending the proof-events calculus 

by integrating argumentation theories. The combination of Vandoulakis-Stefaneas 

proof-events-based theory and logic-based argumentation has the advantage of high-

lighting weak areas in a proof. Proof-events are not considered as infallible facts before 

their ultimate validation, thus enabling the exploration of flawed approaches and proofs 

to be found and resolved. We outlined a calculus for proof-event argument, argument 

moves, and temporal predicates and analyzed them in terms of levels of argumentation. 
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