
A Novel Accusation Model for Document Fingerprinting

Bettina Fazzinga1, Sergio Flesca2, Filippo Furfaro2, and Elio Masciari3

1 ICAR-CNR, Italy
{fazzinga,masciari,pontieri}@icar.cnr.it

2 DIMES, University of Calabria, Italy
{flesca,furfaro}@dimes.unical.it

Abstract. Watermarking digital content is a very common approach leveraged
by creators of copyrighted digital data to embed fingerprints into their data. The
rationale of such operation is to mark each copy of the data in order to uniquely
identify it. These watermarks are embedded in a suitable way to prevent their
stripping or modification by users for illegal distribution of the copy. If a copy
is illegally distributed by a pirate user (or a set of users referred as coalition) it
can be identified by the distributor that can analyze the fingerprint and accuse as
traitor the person in charge of that copy. Actions can then be taken against this
user, to prevent further illegal distribution. Many approaches have been defined
to obtain optimal fingerprinting code based on the well-known Tardos encoding.
However, such approaches suffer a great limitation, i.e., when the fingerprinting
code embedded in a document is too short, it is not useful for accusing a traitor
in a trial, as the probability that s/he might be innocent is too high, nevertheless,
the fingerprint code can be used to drive further investigation. To overcome this
limitation, in this work we provide a simple yet powerful accusation scheme that
can be applied for a widely used approach such phrase substitution[4] that prove
itself to be effective in many real world applications when the length of the fin-
gerprinting codes is too short to be used for accusing a traitor in a trial with the
classical approaches.

1 Introduction

Protection of copyrighted contents is a crucial activity for digital content producers in
order to avoid unauthorized use of the artifacts or worse in order to prevent sensible in-
formation to be stealth (e.g. private documents of an administrative board). A common
solution is the unique identification of each copy by embedding some distinguishing
features. This activity is usually known as fingerprinting (a.k.a. watermarking) and the
embedded content is referred as code.

In order to make this process robust against possible malicious users attacks, it is
mandatory to hide the positions where the code is embedded. Indeed, attacks can be
performed by group of malicious users (referred in what follows as pirates), who com-
pare their copies and identify the positions where they differ as a position of the em-
bedded code. The latter is referred as coalition attack. If the coalition succeeds in this

SEBD 2018, June 24-27, 2018, Castellaneta Marina, Italy. Copyright held by the author(s).

identification process, pirates can then arbitrarily change the code in these positions. For
the purpose of designing proper protection strategies, we can assume however that they
do not know the positions of the hidden code where the bits of their codes agreed and
therefore they cannot alter these positions. This assumption is referred as the marking
condition.

A (collusion resistant) fingerprinting code can be built by a randomized procedure
to choose codewords (the code generation) and a tracing algorithm tailored for tracing
one of the pirates based on all these codewords and the forged codeword read from the
unauthorized copy made by the pirates.

Obviously, we should avoid two type of errors: 1) accusing an innocent user and 2)
not accusing a pirate. In this respect, the tracing algorithm fails if it falsely accuses
an innocent user or outputs no accused user at all. The above mentioned errors should
occur with small probability.

This problem have been largely investigated in the literature and all the approaches
proposed so far shares a common terminology that we introduce here in order to ease
the reading of next sections.

More in detail, we briefly recall the following key terms:

– Alphabet size. The codewords are sequences over a fixed alphabet Σ. Usually, fin-
gerprinting codes are built by leveraging the binary alphabet Σ = {0, 1}, however
larger alphabets can be used thus the size Σ of the alphabet is an important param-
eter;

– Codelength. This parameter refers to the length of the codewords, usually denoted
by n;

– Number of users. Usually denoted by N, it coincides with the number of codewords.
– Pirate Coalition Size. This parameter takes into account the actual size of the coali-

tion that could be lower than the expected one (say it c), in such a case, the accusa-
tion algorithm should achieve a small error probability;

– Error probability. A code is ε-secure against a coalition of c pirates if the probability
of the error of the accusation algorithm is at most ε for any set of at most c pirates
performing an arbitrary pirate strategy to produce the forged codeword under the
marking assumption;

– Code rate. The rate R of a fingerprinting code is computed as R = log(N)
n , where

the logarithm is binary.

The goal of fingerprinting schemes is to find efficient and secure fingerprinting codes
while taking into account the high cost of embedding every single digit of the code. This
implies that fingerprinting codes should be short. However, in literature many proposal
have been defined based on the seminal work of Tardos[9] that state many interesting
theoretical results. Tardos fingerprinting is optimum as the code length that is sufficient
to deal with n users, c pirates and an innocent safety guarantee bounded by ε is asymp-
totically minimum. Moreover, the accusation algorithm allows to detect traitors by look-
ing only at the code they have been assigned to, disregarding both the codes assigned

Many fingerprinting algorithm guarantee a small probability of accusing an innocent even if
the number of pirates is greater than the expected one. However, in that case, the probability
of producing no accusation increases.

to other users and the type of attack that have been performed. It is worth noticing that
in literature have been defined many other approaches that slightly outperforms Tardos
scheme while having the same asymptotical complexity [7, 8]. Unfortunately, Tardos
based fingerprinting are not effective in accusation processes when the leveraged code
is too short. For instance, in the case that the code has to be embedded in a textual doc-
ument by applying some modification of words, phrases or generally speaking tokens
appearing in the text of the document as described in [2], and the document is about 20
pages long it is expected that the longest fingerprint that can be embedded is at most
200 bit long. In such a case, the Tardos accusation algorithm fails in accusing any user
with a suitable probability of being guilty as in the case that the maximum coalition
size is 2 and the desired probability of being guilty is 90% it requires a code of length
at least 800 bits. This code length could be impractical in many scenarios.

In order to overcome the above mentioned limitations, new approaches have been
proposed and one of the most interesting is joint-decoding. Joint-decoders compute
the guilty probability for a set of users instead of a single one. A first proposal has
been made in [6, 5], however those algorithms are tailored for small coalition and do
not scale-up properly. This drawback occurs as the search space computation grows up
exponentially w.r.t. the number of users (or the maximum expected number of users that
we may conjecture that could form a coalition for spreading the pirated copy).

To ameliorate this problem, joint-decoding has been investigated from the theoretical
viewpoint in order to define efficient approaches that work properly for real life situa-
tions. In this respect, a Markov Chain Monte Carlo (MCMC) based approach has been
proposed in [1]. The proposed approach leverages Gibbs sampling for estimating the
marginal probability that a user joined a coalition for generating a pirated copy. How-
ever, this approach turns to be ineffective for code length greater than 1024 bit due to
the low quality of the probability estimation (as noted by the authors themselves).

The main limitation of the above mentioned Tardos based approaches is that they
perform satisfactorily when dealing with image or video fingerprinting[3] while their
use for textual documents turns to be ineffective. More in detail, textual document wa-
termarking is prone to several types of attacks, even very simple ones like the so called
cut & paste attack. This attack allows to completely strip the watermark and the corre-
sponding fingerprinting code by simply extracting the text in the source document and
inserting it in a brand new document. The latter cause the deletion of eventual water-
mark inserted in the source text. This type of attack causes the fingerprint of the pirated
copy to be empty, thus avoiding any accuse to users by using Tardos based schemes.

In order to overcome such limitations, we propose a simpler but still effective accu-
sation model based on Metropolis-Hastings (MH) sampling. Next sections are devoted
to our proposal description.

1.1 Main Contributions

In this paper we address the fingerprinting code design by leveraging joint decoding
strategies based on Metropolis-Hastings scheme. More in detail:

– we implemented an accusation scheme based on MH Joint-decoding, which is re-
markably accurate even in condition where the code rate R is very low;

– we performed a deep experimental assessment of our approach that resulted quite
effective w.r.t. the actual baseline for this kind of approaches.

2 Background on Tardos code construction and exploitation

2.1 Preliminaries

In this section, we briefly describe the fingerprinting scheme proposed in [10]. We first
recall the basic assumption for this kind of encoding: pirates are not aware on the posi-
tion where the code is embedded in the document, i.e. the marking condition is verified.

Definition 1 (Marking condition). A fingerprint set of length m for n users over the
alphabet Σ is an n by m matrix X over Σ. A coalition of users is a subset C of
{1, . . . , n}. A pirated copy y ∈ Σm generated by a coalition C satisfies the mark-
ing condition w.r.t. a coalition C and fingerprint set X iff, for all positions 1 ≤ i ≤ m,
if all the values Xji with j ∈ C agree with some letter s ∈ Σ then yi = s.

The following definition introduce some key notions about fingerprinting codes.

Definition 2 (Fingerprinting Code). A fingerprint code of length m for n users over
the alphabet Σ is a distribution over the pairs (X, σ), where X is fingerprint set of
length m for n users and σ is an algorithm that takes a string y ∈ Σm (the pirated
copy) as input, and produces a subset σ(y) ⊆ [n] = {1, 2, . . . , n} (the set of accused
users). For ∅ 6= C ⊆ [n], a C-strategy is an algorithm ρ that takes the submatrix of X
formed by the rows with indexes in C as input, and produces a string y = ρ(X) ∈ Σm

as output. If for each X y = ρ(X) satisfy the marking condition w.r.t. C and X we say
that ρ satisfies the marking condition. We say that a fingerprint code is ε-secure against
coalitions of size c, if for any coalition C of size |C| ≤ c and for any C-strategy ρ, the
error probability

P [σ(ρ(X)) = ∅ ∨ σ(ρ(X)) ⊆ C]
is at most ε.

2.2 Building the Code

Let n and c be positive integers, 0 < ε < 1 and let k = dlog(1/ε)e. We define the
binary fingerprint code Fncε of length m = 100c2k for n users to be the following
distribution over the pairs (X,σ).
(X,σ) is constructed in two phases. First, let pi be independent, identically dis-

tributed random variables from [t, 1 − t] for all 1 ≤ i ≤ m obtained as follows. Let
t = 1

300c , t′ = arcsin(
√
t) and ri be selected by picking uniformly at random a value

in [t′, π/2− t′]. pi is choosen equal to sin2 ri.
In the second phase, we select the code matrix X , by selecting each entry Xji inde-

pendently from the binary alphabet {0, 1} with P [Xji = 1] = pi. Notice that indepen-
dence of the entries Xji holds only in the second phase. That is, two random variables
Xji and Xj′i are positively correlated as both of them tend to be 1 if pi is large.

When constructing the code log always denotes the natural logarithm.

2.3 Accusation Algorithm

The accusation algorithm σ is built by leveraging the values pi and the matrix X , as
follows. We define the n by m matrix U with entries

Uji =

√

1−pi
pi

ifXji = 1,

−
√

pi
1−pi ifXji = 0

Let σ accuse user j on the pirated copy y ∈ {0, 1}m as input if

m∑
i=1

yiUji > Z

whereZ = 20ck is a threshold parameter. In other words, σ(y) consists of the indices
j for which the jth entry of UyT exceeds Z.

2.4 Error and Code Length Bounds

The following two theorems bound the error probabilities of the codes Fncε . Theorem
1 bounds the “soundness error” of accusing an innocent user, while Theorem 2 bounds
the “completeness error” of not accusing any guilty one. For both theorems n ≥ c ≥ 1
and 0 < ε < 1 are arbitrary.

Theorem 1 (Soundeness). Let (X,σ) be distributed according to Fncε . Let j ∈ [n] be
an arbitrary user, let C ⊆ [n] be a coalition of arbitrary size not containing j, and let
ρ be any C-strategy. We have

P [j ∈ σ(ρ(X)] < ε.

Theorem 2 (Completeness). Let (X,σ) be distributed according to Fncε . Let C ∈ [n]
be a coalition of size |C| ≤ c, and let ρ be any C-strategy satisfying the marking
condition. We have

P [C ∩ σ(ρ(X)) = ∅] < εc/4.

Based on the two theorems above the following corollary holds.

Corollary 1. The fingerprint code Fnc εn is ε-secure against coalitions of size c if c ≥ 4.
The length of this code is O(c2log(n/ε)).

3 A MH-sampler based Joint Decoder

In this section, we describe our encoding scheme, based on Metropolis-Hastings algo-
rithm.

3.1 Metropolis-Hastings Samplers

Metropolis-Hastings (MH) algorithm aims at approximating a probability density func-
tion F (x1, . . . , xn), named target distribution, whose exact formulation is unknown,
exploiting the knowledge of a computable function P (x1, . . . , xn), named proposal
distribution, that is proportional to F (x1, . . . , xn). The result of an executions of a
MH sampler is a sequence of samples. This sequence of samples, which is typically
represented as an histogram, yields an approximation of F (x1, . . . , xn) as it is gener-
ated with the guarantee that the occurrences of each sample s ∈ S are proportional
to P (x1, . . . , xn) (thus to F (x1, . . . , xn)). In a sense, S has a similar shape to F . A
possible implementation of MH algorithm is reported below.

Algorithm 1 The MH sampler
Input: N output samples; B: number of samples for burn-in;
Output: a sequence of k accused users P = [p1, . . . , pk]

1: S = ∅
2: generate an initial sample s
3: for i = 0 to B +N do
4: s′ ← s
5: perturb s′

6: jitter = random()

7: if jitter ≤ min(1, P (s′)
P (s)) then

8: s = s
9: if k ≥ B then

10: Add s to S
11: return S

The algorithm works as follows. We first generate an initial sample s by random
picking up from the n-dimensional domain of P . At each step i a new candidate sample
s′ is generated by random perturbation of s. The perturbation is performed by modifying
each component of s in order to obtain a new point in the sampling space. In order to
make the perturbation strategy effective, we need to have specific implementation for
the context at hand, i.e., we need to take into account the semantic of each dimension
for the sample being considered.

Once s′ is computed, we compute the ratio r = P (s′)
P (s) . The latter operation measures

the variation of the target function F as it is proportional to P . Tus, r is leveraged for
deciding if s′ can be accepted as a new sample for F . If s′ can be used it is queued
to S. More in detail, this action is performed according to a probabilistic evaluation:
we generate a random number jitter ∈ [0, 1] and we decide to accept s′ if and only
if jitter ≤ min(1, P (s′)

P (s)). The latter implies that s′ will be accepted if F (s′) value is
greater than F (s) otherwise we conditionally accept s′ with a probability score whose
value is as lower as P (s′) is lower than P (s). If s′ is not acceptable, we add s to S’s
queue. Intuitively enough, it means that the adopted sampling generates samples with

higher P values (thus higher F values) while samples with low P values have few
occurrences in S or are excluded at all.

It is worth noticing that MH algorithm generates B + N samples where B and
N are input parameters, namely the number of samples you may want to burn before
collecting the actual samples is S and the expexted cardinality of S. We need to perform
an initial burn-in for the first samples generated by MH as the initial samples tend to
be highly correlated with the initial samples thus they could be generated according to
a different distribution w.r.t. the target one. For practical use, the burn-in is effective
when at least 1000 iterations have been performed.

3.2 A MH sampler for Joint Decoding

Algorithm 2 describes our accusation strategy based on MH sampling.

Algorithm 2 The MH accusation algorithm
Input: A pirated copy y, the code matrix X , the probability array p, an integer accU ,

an integer cMaxS
Output: a sequence of k accused users P = [p1, . . . , pk]

1: cCoal = ∅, cPcoal = 0
2: ST = ∅
3: for i = 1 to burnIt+ It do
4: tCoal = cCoal
5: if 0 < |tCoal| < cMaxS then
6: tCoal = genericUpdate(tCoal)
7: else
8: if |tCoal| = 0 then
9: tCoal = addUser(tCoal)

10: else
11: tCoal = remUser(tCoal)
12: tPCoal = computeProb(tCoal, y)
13: jitter = random()
14: if jitter < min(1, tPCoalcPcoal) then
15: cCoal = tCoal, cPcoal = tPCoal
16: if i > burnIt then
17: update(ST, cCoal)
18: return bestP irates(ST, accU)

Herein: cCoal is the current coalition, cPcoal is the probability of the current coali-
tion, tCoal is the generated coalition and tPCoal is the probability of the generated
coalition. Finally, ST is the set of generated coalition (that could contain duplicated
elements).

The algorithm works in two phases. The first phase initializes the coalition set by
generating burnIt coalitions that will be discarded as explained in previous section.

The second phase generates it coalition that are added to ST . Each new coalition is
generated by applying the following operation to the current coalition:

1. a random user not yet included in the coalition is added to it if the length of the
coalition in not maximum;

2. a random user is removed from the coalition (if at least one user is in the coalition);
3. a random user of the coalition is replaced with a random user not included in the

coalition.

More in detail, function genericUpdate updates the coalition by applying one of the
above mentioned operations. Function addUser implements the third operation while
remUser implements the second modification strategy.
Function computeProb(tCoal,y) computes the probability that a pirated copy y has been
generated by coalition tCoal whose users hold the codes included in matrix XtCoal as
follows:

computeProb(tCoal, y) = pCoal
|tCoal|−1

m∏
i=1

p(XtCoal [i] , y [i]) (1)

where p (XtCoal [i] , y [i]) is defined as follows. p (XtCoal [i] , y [i]) =
1
3 , if ∃h, k s.t. XtCoal[i][h] 6= XtCoal[i][k] and if no such h, k exists, and other-
wise

p (XtCoal [i] , y [i]) =

pu, if y [i] = −1 (a)
(1− pu)p[i], if y [i] = 1 e XtCoal [i] = 1 (b)
pup[i], if y [i] = 1 e XtCoal [i] = 0 (c)
pu(1− p [i]), if y [i] = 0 e XtCoal [i] = 1 (d)
(1− pu)(1− p [i]), if y [i] = 0 e XtCoal [i] = 0 (e)

(2)
Specifically, the definition computeProb(tCoal, y) assumes that the probability that

tCoal generates y is the combination of two different independent contributions:

– the fact that |tCoal| users formed a coalition, and
– the probability that the user in tCoal generated y

The first contribution is represented by the factor pCoal|tCoal|−1 in Equation (1), where
pCoal is the probability that two randomly picked users cooperate. The second contribu-
tion is represented by the product, for each bit i of the pirated copy y, of the probability
that the users in tCoal generated the i-th bit of y. The latter probability is assumed to
be pu if the i-th bit of y is unreadable (case (a) of Equation (2)), where pu is a constant
representing the probability that a bit of the code is accidentally discovered by the pi-
rates which made it unreadable or swithced its value even in the case that they all share
the same value for that bit. In cases (b), (e) of Equation (2), the probability that the
users in tCoal generated the i-th bit of y is assumed proportional to the probability the
the bit is not accidentally discovered and the probability that that value of the bit was
generated by the Tardos code generator. Finally, in cases (c), (d) of Equation (2) the
probability that the users in tCoal generated the i-th bit of y is assumed proportional to

the probability the the bit is accidentally discovered and the probability that that value
of the bit was generated by the Tardos code generator. Summarizing, given a generic
bit of the pirated copy, the probability that a coalition generated that bit is equal to 1

/3

if the corresponding bits of the coalition are different from one another, otherwise it is
assigned the value pu or 1− pu multiplied by the probability p(i) (or (1− p(i)) that it
has been generated by the Tardos fingerprint generator.

4 Experiments

In this section, we will describe the extensive experimental evaluation that we per-
formed in order to assess the validity of our joint-decoding technique. More in detail,
we will first describe the dataset generation then we will describe the standard approach
we compare to and finally, we will describe the performance metrics that we computed
by our experiments.

4.1 Data Set Generation

Testing the accuracy of fingerprinting codes requires a deep experimental evaluation,
thus, we generated a dataset composed of 1.296.000 test cases that have been obtained
as described in the following.

The dataset generator takes as input the following parameters:

– N : is the number of users that are going to receive the target document;
– L: is the length of the code generated for each user;
– A: is the attack type (in our study we consider Random, Majority and Minority

attacks that will be explained below);
– C: is the pirate coalition size;
– Pchange: is the probability that coalition users will change a bit. Each bit can be

changed independently by other bits.

For each bit of the code, every attack perform a code hiding by setting it to −1 with
Pchange probability. After this step, if all the pirates have the same bit they emit this
common bit. If a given bit is not the same for all the pirates the different attack types
work as follows:

1. Random: the bit is set to 1 or 0 with the same probability 1
2 ;

2. Majority: the bit is set to the value that occur in more than 50% of users. If the bit
value occurrences are tied we apply Random strategy;

3. Minority: the bit is set to the value that occur in less than 50% of users. If the bit
value occurrences are tied we apply Random strategy;

Once defined the possible attack types we can generate a test case instance by per-
forming the steps below:

1. We generate the Tardos codes of length L for N users;
2. We generate a pirate coalition of size C;

3. We generate an attack of type A performed by the pirates in the coalition that pro-
duce a pirated copy y.

As mentioned above, we generated a huge amount of instances. More in detail:

– We used the code length in the set {100, 150, 200, 250, 300, 350};
– Number of users in the set {50, 100, 150, 200, 250, 300};
– Pchange values {0.01, 0.03, 0.05, 0.07, 0.09};
– Coalition size ranging from 1 to 8;
– Random, Majority and Minority attacks.

For each combination of the above values we generate 300 test cases, thus the total
number of cases is 300 ∗ 3 ∗ 6 ∗ 6 ∗ 5 ∗ 8 = 1.296.000.

4.2 Term of comparison and accuracy measurement

In order to compare our results with a reliable baseline, in this section we compare
the performance of WFinger with the Tardos accusation algorithm. However, since we
consider very short codes the choice of an adeguate probability threshold for the Tardos
algorithm is very hard. Indeed, for a code of 200 bits, assuming that the maximum
coalition size is 3 and requiring a probability of accusing an innocent lower than 20% no
user will be accused. Hence, we had to consider a slightly modified version of the Tardos

accusation algorithm, which accuses the user having the gretest value of
m∑
i=1

yiUji (see

Section 2.3).
Finally, in order to perform a fair comparison with this modified version of the Tar-

dos accusation algorithm, we considered as accuracy measure for both WFinger and
Tardos the accuracy at one (named Acc in the figures), that is the fraction of the exper-
iments where the accused user (which is the first one returned by WFinger and Tardos,
respectively) is a guilty user.

4.3 Effectiveness Results

In Fig. 1 we first report the accuracy values obtained by our algorithm (denoted in the
following as WFinger) and the modified Tardos algorithm (denoted in the following
as Tardos) by averaging the results on the three types of attack. Fig. 1(a),(b),(c) and
(d) report, respectively, the accuracy w.r.t. the coalition size (a), the length of the code
(b), the number of users (c) and the probability of changing a bit of the code (d). As a
remarkable result, we observe that, on average, the accuracy of WFinger that is greater
than Tardos by a 20%.

As regards the accuracy w.r.t. the coalition size (Fig. 1(a)), it is worth noticing that the
accuracy of both algorithms decreases as the coalition dimension increases as expected.
However, for WFinger it is over 80% until the coalition size is 6, while for Tardos
this result is obtained only for coalition size lower than 3. The better accuracy of our
approach is compelling also when the coalition size further increase to 7 or 8 pirates.

As regards the accuracy w.r.t. the length of the code (Fig. 1(b)), it is easy to see that,
for code length greater than 100 bits the accuracy of WFinger is greater than 80% and

WFinger Tardos

 20

 40

 60

 80

 100

 1 3 5 7 8
A

cc
. (

%
)

Coalition size

 20

 40

 60

 80

 100

 100 150 200 250 300 350

A
cc

. (
%

)

Code Length

 20

 40

 60

 80

 100

 50 100 150 200 250 300

A
cc

. (
%

)

Num. of Users

 20

 40

 60

 80

 100

 1 3 5 7 9

A
cc

. (
%

)

Prob. of Changing a bit (%)

(a) (b) (c) (d)

Fig. 1: Average Accuracy Results

for code length greater than 200 bits it is greater than 90%, while Tardos never reach an
80% accuracy.

As regards the accuracy w.r.t. the number of users (Fig. 1(c)), we can note that even
for a huge number of users (greater than 250) the accuracy of WFinger is greater than
80% while Tardos never reach an 80% accuracy.

As regards the accuracy w.r.t. the probability of changing a bit of the code (Fig. 1(d)),
we point out tha this analysis give an hint about the robusteness of our approach. More
in detail, we introduce in our evaluation a parameter that states the possibility that a
random bit of the code is accidentally changed. The probability of this event is very
low, so we assign this parameter values lower than 10%. Also in this case WFinger
(accuracy greater than 90%) performs better than Tardos (accuracy lower than 70%) for
all probability values.

In order to provide a more detailed view of the obtained results, we report in Fig. 2, 3
and 4 the results obtained considering a single type of attack. It is easy to see that, also
when considering a single type of attack, the accuracy of WFinger always overcome
Tardos for every experimental setting.

WFinger Tardos

 20

 40

 60

 80

 100

 1 3 5 7 8

A
cc

. (
%

)

Coalition size

 20

 40

 60

 80

 100

 100 150 200 250 300 350

A
cc

. (
%

)

Code Length

 20

 40

 60

 80

 100

 50 100 150 200 250 300

A
cc

. (
%

)

Num. of Users

 20

 40

 60

 80

 100

 1 3 5 7 9

A
cc

. (
%

)

Prob. of Changing a bit (%)

(a) (b) (c) (d)

Fig. 2: Accuracy Results for the Random Attack

WFinger Tardos

 20

 40

 60

 80

 100

 1 3 5 7 8

A
cc

. (
%

)

Coalition size

 20

 40

 60

 80

 100

 100 150 200 250 300 350

A
cc

. (
%

)

Code Length

 20

 40

 60

 80

 100

 50 100 150 200 250 300

A
cc

. (
%

)

Num. of Users

 20

 40

 60

 80

 100

 1 3 5 7 9

A
cc

. (
%

)

Prob. of Changing a bit (%)

(a) (b) (c) (d)

Fig. 3: Accuracy Results for the Majority Attack

WFinger Tardos

 20

 40

 60

 80

 100

 1 3 5 7 8
A

cc
. (

%
)

Coalition size

 20

 40

 60

 80

 100

 100 150 200 250 300 350

A
cc

. (
%

)

Code Length

 20

 40

 60

 80

 100

 50 100 150 200 250 300

A
cc

. (
%

)

Num. of Users

 20

 40

 60

 80

 100

 1 3 5 7 9

A
cc

. (
%

)

Prob. of Changing a bit (%)

(a) (b) (c) (d)

Fig. 4: Accuracy Results for the Minority Attack

5 Conclusion

In this paper we investigated the design of a fingerprinting code based on Metropolis-
Hastings scheme. We implemented an encoding scheme that is quite accurate even if the
code length is very short (300 bits). The deep experimental evaluation we performed,
confirmed the validity of our approach in several stressing test bench.

References

1. Teddy Furon and Mathieu Desoubeaux. Tardos codes for real. In 2014 IEEE International
Workshop on Information Forensics and Security, WIFS 2014, Atlanta, GA, USA, December
3-5, 2014, pages 24–29, 2014.

2. Mohan S. Kankanhalli and K.F. Hau. Watermarking of electronic text documents. Electronic
Commerce Research, 2(1):169–187, 2002.

3. A. Kot. Watermarking, data hiding and image forensic. In 2005 5th International Conference
on Information Communications Signal Processing, pages nil94–nil94, 2005.

4. S. H. Low, N. F. Maxemchuk, J. T. Brassil, and L. O’Gorman. Document marking and
identification using both line and word shifting. In INFOCOM ’95. Fourteenth Annual Joint
Conference of the IEEE Computer and Communications Societies. Bringing Information to
People. Proceedings. IEEE, pages 853–860 vol.2, 1995.

5. Koji Nuida. Short collusion-secure fingerprint codes against three pirates. In Information
Hiding - 12th International Conference, IH 2010, Calgary, AB, Canada, June 28-30, 2010,
Revised Selected Papers, pages 86–102, 2010.

6. Koji Nuida, Satoshi Fujitsu, Manabu Hagiwara, Takashi Kitagawa, Hajime Watanabe,
Kazuto Ogawa, and Hideki Imai. An improvement of discrete tardos fingerprinting codes.
Des. Codes Cryptography, 52(3):339–362, 2009.

7. Boris Skoric, Stefan Katzenbeisser, and Mehmet Utku Celik. Symmetric tardos fingerprint-
ing codes for arbitrary alphabet sizes. Des. Codes Cryptography, 46(2):137–166, 2008.

8. Boris Skoric, T. U. Vladimirova, Mehmet Utku Celik, and Joop Talstra. Tardos fingerprinting
is better than we thought. IEEE Trans. Information Theory, 54(8):3663–3676, 2008.

9. G. Tardos. Optimal probabilistic fingerprint codes. In Conference Proceedings of the Annual
ACM Symposium on Theory of Computing, pages 116–125, 2003.

10. G. Tardos. Optimal probabilistic fingerprint codes. Journal of the ACM, 55(2), 2008.

