
From Hypertree Width to Submodular Width and
Data-dependent Structural Decompositions

Francesco Scarcello

DIMES, University of Calabria, 87036, Rende, Italy
scarcello@dimes.unical.it

Abstract. Identifying the frontier of tractability for conjunctive queries is a long-
standing question in database theory. Recent advances in structural decomposi-
tion methods provide an important answer regarding the fixed-parameter tractabil-
ity of conjunctive queries, and efficient algorithms based on decomposition meth-
ods have been implemented in database management systems. The paper shows
that these techniques are useful not only for long and complex queries, but even
for short and simple ones. Moreover, it sheds some light on some subtle issues
that are not completely understood yet, and discuss open problems, such as the
gap remaining between the theoretical fixed-parameter polynomial-time upper-
bound and the running times required by actual algorithms used in practice.

1 Introduction

Conjunctive queries are defined through conjunctions of atoms (without negation), and
are known to be equivalent to Select-Project-Join queries.The problem of evaluating
such queries is NP-hard in general, but it is feasible in polynomial time on the class
of acyclic queries (we omit “conjunctive,” hereafter), which was the subject of many
seminal research works since the early ages of database theory This class contains all
queriesQ whose associated query hypergraphHQ is acyclic, whereHQ is a hypergraph
having the variables ofQ as its nodes, and the (sets of variables occurring in the) atoms
of Q as its hyperedges.

In fact, queries arising from real applications are hardly precisely acyclic. Yet, they
are often not very intricate and, in fact, tend to exhibit some limited degree of cyclicity,
which suffices to retain most of the nice properties of acyclic ones. Therefore, several
efforts have been spent to investigate invariants that are best suited to identify nearly-
acyclic hypergraphs, leading to the definition of a number ofso-called(purely) struc-
tural decomposition-methods [12,9], such as thetree decompositions [20] and, after
some years, the(generalized) hypertree [7,8], fractional hypertree [15], component hy-
pertree [11], andgreedy hypertree [14,13] decompositions. These methods aim at trans-
forming a given cyclic hypergraph into an acyclic one, by organising its edges (or its
nodes) into a polynomial number of clusters, and by suitablyarranging these clusters as
a tree, called decomposition tree. The original problem instance can then be evaluated
over such a tree of subproblems (in our case, subqueries), with a cost that is exponential
with respect to a measure of the complexity of the subproblems, also calledwidth of

SEBD 2018, June 24-27, 2018, Castellaneta Marina, Italy. Copyright held by the author.

the decomposition, and polynomial if this width is bounded by some constant. For in-
stance, according to the treewidth notion, the width of a decomposition is given by the
maximum cardinality (minus one) of the set of variables occurring in the subqueries as-
sociated with the vertices of the decomposition tree. The (generalized) hypertree width
considers instead the number of atoms occurring in each subproblem, in other terms,
the number of hyperedges needed to cover the relevant variables in each vertex of the
decomposition tree. The fractional hypertree width [15] issimilar, but it is based on a
fractional cover of such variables, instead of an integral one, as in the case of (plain)
hypertree decompositions.

Besides the theoretical guarantees on the cost of evaluating class of queries having
bounded (fractional) hypertree width, experimental evidence of the benefits gained from
these structural decomposition methods in query optimization (and in the equivalent
Constraint Satisfaction Problem) has been provided in the literature by a number of
different authors and in different application domains, see, e.g., [5,6,1].

A yet more general width-concept is thesubmodular width [19], where the cost of a
decomposition is determined by the worst possible submodular function of sets of vari-
ables of the given hypergraph. Recall that a set functionf is submodular if, for every
elementx and any pair of setsS andT with S ⊆ T andx /∈ T , f(S ∪ {x})− f(S) ≥
f(T ∪ {x})− f(T) holds. That is, the marginal contribution of any element decreases
when sets become larger. This powerful notion is strictly more general than all previ-
ous techniques, as there are classes of hypergraphs having bounded submodular width,
but unbounded fractional hypertree width. However, havingbounded submodular width
(smw) does not guarantee a polynomial-time combined complexity as for hypertree de-
compositions, but just fixed-parameter tractability wherethe query hypergraph is used
as a parameter. This means that we have a polynomial-time data complexity of the form
O(f1(HQ) · |DB|f2(smw)), wheref1 is an exponential function of the query size. Marx
also proved that having bounded smw is in fact a necessary condition for the fixed-
parameter tractability of conjunctive queries (unless theExponential Time Hypothesis
fails) [19]. Unfortunately, it is not clear how to recognisequeries of bounded submodu-
lar width. It is worthwhile noting that, unlike the previousmethods, the decompositions
used to answer the query depend not only on the hypergraphHQ, but on the actual
database DB, too. Nevertheless, the submodular width ofHQ depends only onHQ,
which makes it an actual structural measure.

The primary aim of the paper is to shed light on the recent achievement in structural
decomposition methods, in particular

– to make clear why the powerful notion of fractional hypertree width is not able to
catch the precise complexity of a given query;

– to show, by using the case study of queries whose hypergraphsare simple cycles,
that using data-dependent decompositions, as in the case ofsubmodular width, pro-
vides better upper bounds on the cost of queries, and effective algorithms;

– to make evident that the benefits of such sophisticated notions occur not only in
long and complex queries, but even in short and simple ones, occurring in most
real-world applications;

– to give a hint of what is the submodular width of a query, and a hint of the problems
that are still open in this area of research.

2 Hypertree decompositions and the AGM bound

Let H a hypergraph, and denote the set of its nodes bynodes(H) and the set of its
hyperedges byedges(H). Formally, atree decomposition [20] of H is a pair〈T, χ〉,
whereT = (V, F) is a tree, andχ is a labelling function assigning to each vertex
p ∈ V a set of verticesχ(p) ⊆ nodes(H), such that the following three conditions are
satisfied: (1) for each nodeb of H, there existsp ∈ V such thatb ∈ χ(p); (2) for each
hyperedgeh ∈ edges(H), there existsp ∈ V such thath ⊆ χ(p); and (3) for each node
b in nodes(H), the set{p ∈ V | b ∈ χ(p)} induces a connected subtree ofT . Thewidth
of 〈T, χ〉 is the numbermaxp∈V (|χ(p)| − 1). Thetreewidth of H, denoted bytw(H),
is the minimum width over all its tree decompositions.

Hypertree Decompositions A generalized hypertree decomposition of a hypergraph
H is a tripleHD = 〈T, χ, λ〉, called ahypertree forH, where〈T, χ〉 is a tree decompo-
sition ofH, andλ is a function labelling the vertices ofT by sets of hyperedges ofH
such that, for each vertexp of T ,χ(p) ⊆

⋃
h∈λ(v) h. That is, all nodes in theχ labelling

are covered by hyperedges in theλ labelling.
Consider a generalized hypertree decompositionHD=〈T, χ, λ〉. The cyclicity mea-

sure used in standard generalized hypertree decompositions, called generalized hyper-
tree width and denoted byghw(H), is based on the cardinality of the setλ(p) in charge
of coveringχ(p), for each vertexp of the decomposition tree. Contrasted with the
treewidth, which is based on the cardinality ofχ(p), it is clear thatghw(H) ≤ tw(H)
always holds. It has been observed that more general notionscan be obtained by al-
lowing the use of more general functionsfHD(·), to measure the weightfHD(p) of any
vertex ofT , and hence to define the width of a hypertree decomposition.

A fractional hypertree decomposition [15] of a hypergraphH is a pairFHD =
〈HD , γ〉, whereHD = 〈T, χ, λ〉 is a generalized hypertree decomposition ofH, andγ
is a mapping associating each vertexp of T with a functionγp : λ(p) 7→ R mapping
hyperedges to non-negative real numbers. For each vertexp in T , γp encodes afrac-
tional cover of the nodes inχ(p): for eachv ∈ χ(p),

∑
h∈λ(p),v∈h γp(h) ≥ 1. Define

ρ(p) =
∑

h∈λ(p) γp(h). Thewidth of FHD is the maximum ofρ(p) over all verticesp
in T . Thefractional hypertree width ofH, denoted byfhw(H), is the minimum width
over all its fractional hypertree decompositions.2

Generalized hypertree width is obtained if in the definitionof fractional hypertree
decomposition we restrict the codomain of eachγp to be integral. It is thus not surpris-
ing that there are hypergraphs where the fractional hypertree width is smaller than the
(generalized) hypertree width.

The additional power of fractional covers in the decomposition vertices makes the
problem intractable, in general. Indeed, for a given hypergraphH and for any fixed
w ≥ 2, computing a hypertree decomposition of width at mostw (if any) is feasible in
polynomial-time, while checking whetherH has fractional hypertree width at mostw
is NP-hard [4]. However, there is a polynomial-time algorithm for deciding whether the
fractional hypertree width isf(w) for a functionf in O(w3) [18].

2 The equivalent (original) definition in [15] does not use theλ-labeling, so thatγp weighs all
hyperedges. Our definition is used, e.g., in [1].

Query evaluation Queries whose (fractional) hypertree width is bounded by some
constantk can be answered in polynomial time. Given a queryQ and a hypertree de-
compositionHD for the query hypergraphHQ, the query can be transformed into an
acyclic query, based on the decompositionHD . Each vertex of the decomposition tree
can be viewed as a subproblem to be solved: in our database context, such a vertexp
is associated with a subqueryQp whose atoms are the atoms inλ(p), and whose set
of output variables isχ(p). By computing the answers of these subqueries, we obtain
an acyclic query equivalent toQ that can be evaluated easily, by standard techniques.
Equivalently, we can see this transformation as a query planfor Q (where some atoms
can appear multiple times with different projections, if necessary). The crucial obser-
vation here is that the maximum number of answers of the subquery Qp associated
with each vertexp is at most|rp|ρ(p), whererp is the largest database relation asso-
ciated with the hyperedges inλ(p) [15,3]. Moreover, such answers can be efficiently
computed within this upper bound [1].

Tight Bounds The so-called AGM bound [3] states that, in fact, the upper bound on
the number of solutions at each subproblemQp provided by the best fractional cover
ρ∗ is tight: there exists some database DB such that the number of answers ofQp

over this database meets the fractional cover upper bound. This result has been refined
in [10], where a bound based on the so-calledcoloring number C(Qp) of such a query
is defined, in order to take into account the output variables, as well as certain kinds of
functional dependencies.

It follows that, whenever the fractional hypertree width ofa queryQ is w, and we
have any fractional hypertree decomposition of widthw, there always exists a database
DB such that evaluating the subproblemQp at some vertexp of the decomposition tree
requiresΩ(Nw) time, whereN is the size of the largest relation occurring inQp. Yet,
from the results based on the submodular width, it turns out that we could do much
better. How is that possible?

3 When worst cases are unachievable
In this section, we show that fractional hypertree decompositions do not provide a tight
bound on the cost of evaluating conjunctive queries. This isnot very clear, at a first
sight, because of the results mentioned in the previous section. However, we see that
even in very simple queries the worst cases predicted by fractional hypertree width are
impossible to achieve.

Let us start with a hint of what happens. Consider a conjunctive queryq with an
associated hypergraphHq havingfhw (Hq) = k, and letHD be a width-k fractional
hypertree decomposition forq. Let v be a vertex ofHD whose associated subproblem
has a fractional cover of weightk. Then, there exists a database DB such that solving
this subproblem takes at leastO(nk) time. However, it is possible that there exists
another decompositionHD ′ with no subproblem having such an evaluation cost over
this specific database DB. In its turn,HD ′ will have a critical database DB′ for which
some of its subproblems requireO(nk) time. But DB′ is not necessarily a bad case for
the previous decompositionHD . Therefore, it is possible that, for the given queryq, for
every database DB there is a fractional hypertree decomposition where any subproblem
occurring in its vertices can be evaluated in less thanO(nk) time.

As a case study of this phenomenon, we investigate the class of conjunctive queries
whose associated hypergraphs are (simple) cycles. These queries have (fractional) hy-
pertree width2, but they can be actually evaluated in subquadratic time on any given
database.

A simple example: the cyclesFirst, consider the following simple cyclic queryq4,
whose (hyper)graphG4 is shown in Figure 1:

ans(X̄)← r1(X1, X2) ∧ r2(X2, X3) ∧ r3(X3, X4) ∧ r4(X4, X1).

Consider the decomposition of this graph in the center of Figure 1, which involves
subproblems such asr1(X1, X2) ∧ r2(X2, X3) andr3(X3, X4) ∧ r4(X4, X1) having
a fractional cover of weight 2. It follows that there exists adatabase DB4 such that,
e.g., the subqueryans(X1, X2, X3)← r1(X1, X2)∧ r2(X2, X3) hasO(N2) answers,
where for the sake of simplicity we assume that the relationsare the same and that they
haveN tuples each.

Think now of how this worst-case bound can be achieved. Firstassume thatri is a
cartesian product of the domain of its variables: we haveN = |d(X1)| · |d(X2)| so that
|d(X1)| = N1/2. Becauseans(X1, X2, X3) cannot be larger than the cartesian prod-
ucts of the domain of its variables, it follows that, in this case,|ans(X1, X2, X3)| ≤
N3/2. In order to reach the worst-case bound ofN2, in DB4 the attributes should
have quite different domain sizes. In particular, we must have many values on the ex-
tremal variables of the chainX1, X2, X3, that is, almostN values forX1 andX3,
and a few values forX2. For instance,X2 may have just one skew value that is con-
nected to all values forX1 andX3, so thatans(X1, X2, X3) = d(X1) × 1 × d(X3)
and |ans(X1, X2, X3)| = N2. For completeness, note that ifX2 has many values,
say almostN , than it should behave like a key, and the size ofans(X1, X2, X3)
will be almost linear inN . Summing-up, to achieve theO(N2) worst-case bound
on ans(X1, X2, X3), we should have|d(X2)| = ∆, with ∆ much smaller thanN .
However, in this case we can use the decomposition shown on the right in Figure 1:
note that the subproblems in the vertices of this decomposition have at mostN∆ an-
swers, achieved in the vertices in the middle where we have a cartesian product of the
form ri × d(X2). The cost of evaluatingq4 over DB4 using this decomposition is thus
O(N∆), which is smaller than theO(N2) cost predicted by fractional hypertree width.

We next show that the above reasoning can be generalized to any database, showing
thatthe quadratic fractional hypertree-width worst-case is not tight, in particular such a
query can be evaluated inO(N3/2), that is, within the same bound as the triangle query.

A general bound for evaluating cyclesFollowing the intuition described in the pre-
vious section, we next show that actually we can guarantee a subquadratic evaluation
time for every conjunctive query having a cycle as its hypergraph and on any given
database. A further ingredient to obtain a precise upper bound is to consider horizontal
fragments of the relations, and possibly use different decompositions for evaluating the
given query on different fragments. Therefore, not only we look for the best decompo-
sition with regard to specific database, but also the best ones for different fragments of
the database.

This bound is a slight improvement of the upper bound described in [16] and it is
quite similar to the upper bound given in [2] for the special case of queries asking for
length-k simple cycles in graphs, whose techniques are indeed used both in [16] and

X1 X2

X4 X3

r1(X1, X2) ∧ r2(X2, X3)

r3(X3, X4) ∧ r4(X4, X1)

r1(X1, X2)

r4(X4, X1) ∧ r2(X2,)

r3(X3, X4) ∧ r2(X2,)

r2(X2, X3)

Fig. 1. The graphG4 and two of its hypertree decompositions

in the present paper. Contrasted with this latter upper bound, our result is more general
because it works with queries involving any combination of arbitrary binary relations,
while the results on graphs assume only one relation (the edge relationship of the input
graph).
Theorem 1. Let C be any class of conjunctive queries whose associated hypergraphs
are (simple) cycles. Then, the answers of any query in C having k atoms on a database

of size N can be computed in O((2/k)
1

⌈k/2⌉ ·N2− 1

⌈k/2⌉ + OUT), where OUT is the size
of the output.
Proof. Consider the following queryqk ∈ C over a database DBk of sizeN̄ :

ans(X̄)← r1(X1, X2) ∧ r2(X2, X3) ∧ · · · ∧ rk(Xk, X1),

wherer1, . . . , rk are binary relation symbols, not necessarily distinct, andfor each
i ∈ [k], ri hasNi tuples. Its associated hypergraphGk is a simple cycle havingk
vertices andk edges, and bothhw(Gk) = 2 andfhw(Gk) = 2 holds.

Let δ > 0 be a number that will be determined later. For eachi ∈ [k], let r′i ⊆ ri be
the (horizontal) fragment ofri consisting of the tuples{〈v, v′〉 ∈ ri | v occurs in more
than δ tuples in ri}. Let q′i be the variant of queryqk where the atomri(Xi, Xi+1) is
replaced byr′i(Xi, Xi+1), and consider a hypertree decomposition forq′i of the form
shown on the right in Figure 1, withXi playing the role ofX2. Note that the number
of tuples in the projectionr′i(Xi,) occurring in the decomposition vertices is at most
Ni/δ, so thatqi can be evaluated inO(N̄Ni/δ + OUTi). The OUTi answers of this
modified query are all those answers ofqk such thatXi is instantiated with any value
of its domain having degree at leastδ (if any). After the evaluation of all such modified
queries, we get all theOUTδ answers ofqk over DBk where some variable takes a value
having degree at leastδ. The total time used for such computations isO(N̄N̄/δ +
OUTδ). Note that, having these answers, each domain value having degree at leastδ is
no longer needed in any relation.

Then, we take care of the remaining fragment: consider the query q′′k : ans′′(X̄) ←
r′′1 (X1, X2)∧ r

′′

2 (X2, X3)∧· · ·∧ r
′′

k (Xk, X1) over the database DB′′k with the relations
r′′i = ri \ r

′

i, for eachi ∈ [k]. We evaluate this query by using a tree decomposition
of the form shown in the center of Figure 1 with two big vertices, each one covering
half of the query. The widthw of this decomposition is⌈k/2⌉. Let rs andrt be the
smallest relations in the database DB′′

k, having number of tuplesNr andNt, respec-
tively. We can always choose the decomposition in such a way that rs andrt occur

in different vertices. Consider now the evaluation of the subproblem comprising the
relationrs: because every value has degree at mostδ, every tuple ofrs can have at
mostδ extensions to tuples in the subsequent relation in the subproblem, sayrz ; the
same happens for every tuple inrz , and so on for all the atoms in this subproblem. The
evaluation of these atoms takesO(Nsδ

w−1) time and, similarly, we needO(Ntδ
w−1)

to evaluate the subproblem occurring in the other vertex of the decomposition, for a
total cost ofO((Ns + Nt)δ

w−1). Becausers andrt are the smallest relations, it can
be seen easily that(Ns + Nt) ≤ 2N̄/k, so that the total cost for evaluatingq′′k over
DB′′

k using such a decomposition isO(2δw−1N̄/k+ OUT′′), whereOUT′′ is the size of
the output relationans′′(X̄). By equating the cost of using the two kinds of decompo-
sitions, we can compute the valueδ = (k/2N̄)1/w that guarantees that we obtain the
same evaluation cost for either kind of fragment and for every possible input database.
With this value, the total cost for evaluatingqk on any given database DBk of sizeN̄ is
O((2/k)1/wN2−1/w +OUT), whereOUT is the size of the output relationans(X̄). ⊓⊔

4 Discussion and Open problems
Recent advances have shown that powerful structural decompositions such as the (frac-
tional) hypertree width or the submodular width may lead to effective algorithms even
for very simple queries, and not just for long and complex ones (possibly involving
atoms with large arities), which have been the typical targets for these sophisticated
techniques. Moreover, we have seen that the worst case upperbounds of the so-called
purely structural decomposition methods, where the choiceof the decomposition de-
pends only on the query hypergraph, are not tight.

Contrasted with such methods, the notion of submodular width, which is based on
data-dependent decompositions, is more powerful and in fact characterises the frontier
of fixed-parameter tractability for conjunctive queries. The algorithm used in [19] is
based on the computation of almost uniform horizontal fragments of all possible sub-
problems that can be evaluated in polynomial-time. Very roughly, uniform means here
that, in each fragment and for any subset of variables of a subproblem, partial solu-
tions over these variables extend to full solutions of the subproblem in a similar way.
Whenever a subproblem does not meet this condition, it can besplit in more subprob-
lems leading to new fragments. The subproblems of each new instance associated with
a fragment are kept locally consistent. That is, tuples thatare not useful in that frag-
ment are filtered out, and the procedure continues looking for new small, consistent and
uniform subproblems to deal with. This procedure works in fixed-parameter polynomial
time, where the parameter is the size of the query. Eventually, under the promise that the
submodular width is below some fixed thresholdw (which is used to define precisely
the above process), there should exist some tree decomposition whose subproblems are
among those that we have computed. Furthermore, whenever for an instance associated
with some fragment its subproblems are not empty, because they are pairwise consistent
we can conclude that the given query has some answer on the input database; otherwise,
we conclude that there are no answers (see also [14] for such consistency properties).

Marx’s algorithm is quite involved and its actual cost is quite high even for queries
with a few variables. The PANDA algorithm described in [17] aims at obtaining a sim-
ilar worst case bound, but is more suitable to effective implementations. However, be-
cause of its different uniformization procedure, its cost involves a(log n)h factor, where

h is the number of atoms in the query, which is not allowed in fixed-parameter poly-
nomial time algorithms (the parameter cannot occur as the exponent of a number that
depends on the input size). In fact, it is still open whether or not such a bad factor can
be avoided, so that an effective fixed-parameter polynomialtime algorithm can be im-
plemented. An algorithm for computing the submodular widthof a given hypergraph is
also missing, as well as a possible approximation of this notion. Furthermore, the fron-
tier of polynomial-time tractability for conjunctive queries involving atoms of arbitrary
arities is still unknown, and it is even unknown whether it can actually be charted or
not.

References
1. Aberger, C.R., Lamb, A., Tu, S., Nötzli, A., Olukotun, K., Ré, C.: Emptyheaded: A relational

engine for graph processing. ACM TODS42(4), 20:1–20:44 (2017).
2. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algorithmica

17(3), 209–223 (1997).
3. Atserias, A., Grohe, M., Marx, D.: Size bounds and query plans for relational joins. SIAM J.

on Comp.42(4), 1737–1767 (2013)
4. Fischl, W., Gottlob, G., Pichler, R.: General and fractional hypertree decompositions: Hard

and easy cases. In: Proc. of PODS’18 (2018)
5. Ghionna, L., Granata, L., Greco, G., Scarcello, F.: Hypertree decompositions for query opti-

mization. In: Proc. of ICDE’07. pp. 36–45 (2007)
6. Ghionna, L., Greco, G., Scarcello, F.: H-DB: A Hybrid Quantitative-structural SQL Opti-

mizer. In: Proc. of CIKM ’11. pp. 2573–2576 (2011)
7. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable queries. JCSS

64(3), 579–627 (2002)
8. Gottlob, G., Leone, N., Scarcello, F.: Robbers, marshals, and guards: Game theoretic and

logical characterizations of hypertree width. JCSS66(4), 775–808 (2003)
9. Gottlob, G., Greco, G., Scarcello, F.: Treewidth and hypertree width. In: Tractability: Practi-

cal Approaches to Hard Problems, pp. 3–38. Cambridge University Press (2014).
10. Gottlob, G., Lee, S.T., Valiant, G., Valiant, P.: Size and Treewidth Bounds for Conjunctive

Queries. J.ACM59(3), 1–35 (2012)
11. Gottlob, G., Miklós, Z., Schwentick, T.: Generalized hypertree decompositions: NP-hardness

and tractable variants. J.ACM56(6), 30:1–30:32 (2009)
12. Greco, G., Leone, N., Scarcello, F., Terracina, G.: Structural decomposition methods: Key

notions and database applications. In: A Comprehensive Guide Through the Italian Database
Research Over the Last 25 Years., Studies in Big Data, vol. 31, pp. 253–267. Springer

13. Greco, G., Scarcello, F.: Greedy strategies and larger islands of tractability for conjunctive
queries and constraint satisfaction problems. Inf. Comput. 252, 201–220 (2017).

14. Greco, G., Scarcello, F.: The power of local consistencyin conjunctive queries and constraint
satisfaction problems. SIAM J. Comput.46(3), 1111–1145 (2017).

15. Grohe, M., Marx, D.: Constraint solving via fractional edge covers. ACM Trans. on Alg.
11(1), 4:1–4:20 (2014)

16. Joglekar, M., Ré, C.: It’s all a matter of degree - using degree information to optimize multi-
way joins. Theory Comput. Syst.62(4), 810–853 (2018).

17. Khamis, M.A., Ngo, H.Q., Suciu, D.: What do shannon-typeinequalities, submodular width,
and disjunctive datalog have to do with one another? In: Proc. of PODS 2017, pp. 429–444.

18. Marx, D.: Approximating fractional hypertree width. ACM T. on Alg. 6(2), 29:1–17 (2010)
19. Marx, D.: Tractable hypergraph properties for constraint satisfaction and conjunctive queries.

J.ACM 60(6), 42:1–42:51 (2013)
20. Robertson, N., Seymour, P.: Graph minors. II. Algorithmic aspects of tree-width. J. of Alg.

7(3), 309–322 (1986)

