From Hypertree Width to Submodular Width and
Data-dependent Structural Decompositions

Francesco Scarcello

DIMES, University of Calabria, 87036, Rende, Italy
scarcel l o@li nmes. unical .it

Abstract. Identifying the frontier of tractability for conjunctiveugries is a long-

standing question in database theory. Recent advancesiatustl decomposi-
tion methods provide an important answer regarding thefpadmeter tractabil-
ity of conjunctive queries, and efficient algorithms basedlecomposition meth-
ods have been implemented in database management systeensafder shows
that these techniques are useful not only for long and conpleries, but even
for short and simple ones. Moreover, it sheds some light omessubtle issues
that are not completely understood yet, and discuss opéigong, such as the
gap remaining between the theoretical fixed-parametempatyal-time upper-

bound and the running times required by actual algorithnasl irs practice.

1 Introduction

Conjunctive queries are defined through conjunctions ahattwithout negation), and
are known to be equivalent to Select-Project-Join quefibs. problem of evaluating
such queries is NP-hard in general, but it is feasible in pofgial time on the class
of acyclic queries (we omit “conjunctive,” hereafter), whiwas the subject of many
seminal research works since the early ages of databasy fhieis class contains all
queries)) whose associated query hypergrafifi is acyclic, wheré is a hypergraph
having the variables @ as its nodes, and the (sets of variables occurring in th@)sato
of @ as its hyperedges.

In fact, queries arising from real applications are hardcjsely acyclic. Yet, they
are often not very intricate and, in fact, tend to exhibit sdimited degree of cyclicity,
which suffices to retain most of the nice properties of acyaties. Therefore, several
efforts have been spent to investigate invariants that ese duited to identify nearly-
acyclic hypergraphs, leading to the definition of a numbesmtalled(purely) struc-
tural decomposition-methods [12,9], such as théree decompositions [20] and, after
some years, th@eneralized) hypertree [7,8], fractional hypertree [15], component hy-
pertree[11], andgreedy hypertree[14,13] decompositions. These methods aim at trans-
forming a given cyclic hypergraph into an acyclic one, byaoriging its edges (or its
nodes) into a polynomial number of clusters, and by suitabignging these clusters as
a tree, called decomposition tree. The original problertaimse can then be evaluated
over such atree of subproblems (in our case, subquerigl)awbst that is exponential
with respect to a measure of the complexity of the subprobletso calledvidth of

SEBD 2018, June 24-27, 2018, Castellaneta Marina, Italgy@ght held by the author.

the decomposition, and polynomial if this width is boundgdsbme constant. For in-
stance, according to the treewidth notion, the width of aodguosition is given by the
maximum cardinality (minus one) of the set of variables odog in the subqueries as-
sociated with the vertices of the decomposition tree. Tleadgalized) hypertree width
considers instead the number of atoms occurring in eachrghlgm, in other terms,
the number of hyperedges needed to cover the relevant lesiabeach vertex of the
decomposition tree. The fractional hypertree width [15imilar, but it is based on a
fractional cover of such variables, instead of an integred,@s in the case of (plain)
hypertree decompositions.

Besides the theoretical guarantees on the cost of evaiueliss of queries having
bounded (fractional) hypertree width, experimental en@eof the benefits gained from
these structural decomposition methods in query optintizgiand in the equivalent
Constraint Satisfaction Problem) has been provided initeeature by a number of
different authors and in different application domaing, eg., [5,6,1].

A yet more general width-concept is thgbmodular width [19], where the cost of a
decomposition is determined by the worst possible subnamduhction of sets of vari-
ables of the given hypergraph. Recall that a set funcfié®m submodular if, for every
element: and any pair of set§ and7T with S C Tandx ¢ T, f(S U {z}) — f(S) >
(T u{z}) — f(T) holds. That is, the marginal contribution of any elementedases
when sets become larger. This powerful notion is strictlyengeneral than all previ-
ous techniques, as there are classes of hypergraphs hatingdd submodular width,
but unbounded fractional hypertree width. However, habiognded submodular width
(smw) does not guarantee a polynomial-time combined coxitplas for hypertree de-
compositions, but just fixed-parameter tractability whitvequery hypergraph is used
as a parameter. This means that we have a polynomial-timedatplexity of the form
O(f1(Hg) - |DB|26mW)) wheref, is an exponential function of the query size. Marx
also proved that having bounded smw is in fact a necessamjitcam for the fixed-
parameter tractability of conjunctive queries (unlessBkponential Time Hypothesis
fails) [19]. Unfortunately, it is not clear how to recognigeeries of bounded submodu-
lar width. It is worthwhile noting that, unlike the previoosethods, the decompositions
used to answer the query depend not only on the hypergkgphbut on the actual
database DB, too. Nevertheless, the submodular widtH @fdepends only o,
which makes it an actual structural measure.

The primary aim of the paper is to shed light on the recentagment in structural
decomposition methods, in particular

— to make clear why the powerful notion of fractional hypegtreidth is not able to
catch the precise complexity of a given query;

— to show, by using the case study of queries whose hypergeaphsmple cycles,
that using data-dependent decompositions, as in the cas®wiodular width, pro-
vides better upper bounds on the cost of queries, and effegijorithms;

— to make evident that the benefits of such sophisticated moti@cur not only in
long and complex queries, but even in short and simple oresirong in most
real-world applications;

— to give a hint of what is the submodular width of a query, anthadf the problems
that are still open in this area of research.

2 Hypertree decompositions and the AGM bound

Let H a hypergraph, and denote the set of its nodesdes(#) and the set of its
hyperedges bydges(H). Formally, atree decomposition [20] of H is a pair(T, x),
whereT = (V,F) is a tree, andy is a labelling function assigning to each vertex
p € V aset of verticeg (p) C nodes(#), such that the following three conditions are
satisfied: (1) for each nodeof H, there existp € V such thab € x(p); (2) for each
hyperedgé: € edges(H), there existp € V such that C x(p); and (3) for each node
bin nodes(H), the se{p € V' | b € x(p)} induces a connected subtreelofThewidth

of (T, x) is the numbemax,ecv (|x(p)| — 1). Thetreewidth of H, denoted by w(H),

is the minimum width over all its tree decompositions.

Hypertree Decompositions A generalized hypertree decomposition of a hypergraph
‘HisatripleHD = (T, x,), called ahypertreefor H, where(T), x) is a tree decompo-
sition of #, and\ is a function labelling the vertices @f by sets of hyperedges @&
such that, for each vertexof T', x(p) C U,L@(,U) h. That s, all nodes in thg labelling
are covered by hyperedges in théabelling.

Consider a generalized hypertree decompositiér=(T', x, A). The cyclicity mea-
sure used in standard generalized hypertree decompasitialhed generalized hyper-
tree width and denoted hyhw(#H), is based on the cardinality of the s€p) in charge
of coveringx(p), for each vertexp of the decomposition tree. Contrasted with the
treewidth, which is based on the cardinalitygfp), it is clear thayhw(H) < tw(H)
always holds. It has been observed that more general nateomée obtained by al-
lowing the use of more general functiofigp (-), to measure the weightyp (p) of any
vertex of ', and hence to define the width of a hypertree decomposition.

A fractional hypertree decomposition [15] of a hypergrapt# is a pair FHD =
(HD,~),whereHD = (T, x, \) is a generalized hypertree decompositiofigfand~y
is a mapping associating each vertegf T with a function~, : A(p) — R mapping
hyperedges to non-negative real numbers. For each velited’, v, encodes drac-
tional cover of the nodes in(p): for eachv € X(p), 3 1,cx(p).ven Tw(h) = 1. Define
p(p) = X ne) Yp(h)- Thewidth of FHD is the maximum op(p) over all verticep
in T. Thefractional hypertree width of #, denoted byfhw(#), is the minimum width
over all its fractional hypertree decompositions.

Generalized hypertree width is obtained if in the definitidriractional hypertree
decomposition we restrict the codomain of eagto be integral. It is thus not surpris-
ing that there are hypergraphs where the fractional hygestidth is smaller than the
(generalized) hypertree width.

The additional power of fractional covers in the decompasivertices makes the
problem intractable, in general. Indeed, for a given hyplg# and for any fixed
w > 2, computing a hypertree decomposition of width at mogif any) is feasible in
polynomial-time, while checking wheth&t has fractional hypertree width at mast
is NP-hard [4]. However, there is a polynomial-time aldumitfor deciding whether the
fractional hypertree width ig (w) for a functionf in O(w?) [18].

2 The equivalent (original) definition in [15] does not use théabeling, so thaty, weighs all
hyperedges. Our definition is used, e.g., in [1].

Query evaluation Queries whose (fractional) hypertree width is bounded byeso
constantt can be answered in polynomial time. Given a qu@rand a hypertree de-
compositionHD for the query hypergrapk ¢, the query can be transformed into an
acyclic query, based on the decompositiéh. Each vertex of the decomposition tree
can be viewed as a subproblem to be solved: in our databasextosuch a vertex

is associated with a subquefy, whose atoms are the atomsfp), and whose set

of output variables is(p). By computing the answers of these subqueries, we obtain
an acyclic query equivalent 1@ that can be evaluated easily, by standard techniques.
Equivalently, we can see this transformation as a queryfola@ (where some atoms
can appear multiple times with different projections, itassary). The crucial obser-
vation here is that the maximum number of answers of the seriyq), associated
with each vertey is at most|r,|*(?), wherer, is the largest database relation asso-
ciated with the hyperedges iX(p) [15,3]. Moreover, such answers can be efficiently
computed within this upper bound [1].

Tight Bounds The so-called AGM bound [3] states that, in fact, the uppamiabon
the number of solutions at each subprobl@mprovided by the best fractional cover
p* is tight: there exists some database DB such that the nunfbemswers of@,
over this database meets the fractional cover upper bounmsl ré&sult has been refined
in [10], where a bound based on the so-calielbring number C(Q,,) of such a query
is defined, in order to take into account the output varigtaiesvell as certain kinds of
functional dependencies.

It follows that, whenever the fractional hypertree widthaofuery@ is w, and we
have any fractional hypertree decomposition of widtlthere always exists a database
DB such that evaluating the subproblérp at some vertex of the decomposition tree
requires2(N™) time, whereN is the size of the largest relation occurringiy. Yet,
from the results based on the submodular width, it turns loat we could do much
better. How is that possible?

3 When worst cases are unachievable

In this section, we show that fractional hypertree decoritioos do not provide a tight
bound on the cost of evaluating conjunctive queries. Thisoisvery clear, at a first
sight, because of the results mentioned in the previousosed¢iowever, we see that
even in very simple queries the worst cases predicted byidred hypertree width are
impossible to achieve.

Let us start with a hint of what happens. Consider a conjuaaieryg with an
associated hypergrap, having fhw(#H,) = k, and letHD be a widthk fractional
hypertree decomposition fgt Let v be a vertex off D whose associated subproblem
has a fractional cover of weiglt Then, there exists a database DB such that solving
this subproblem takes at lead{(n*) time. However, it is possible that there exists
another decompositioBD’ with no subproblem having such an evaluation cost over
this specific database DB. In its turFD’ will have a critical database DBor which
some of its subproblems requi&rn*) time. But DB is not necessarily a bad case for
the previous decompositidiiD. Therefore, it is possible that, for the given queryor
every database DB there is a fractional hypertree decotipogsihere any subproblem
occurring in its vertices can be evaluated in less hén*) time.

As a case study of this phenomenon, we investigate the dassnctive queries
whose associated hypergraphs are (simple) cycles. Thesesghave (fractional) hy-
pertree width2, but they can be actually evaluated in subquadratic timenyngaven
database.

A simple example: the cyclesFirst, consider the following simple cyclic quegy,
whose (hyper)grap8yy is shown in Figure 1:
ans(X) — 1 (Xl, Xg) A\ TQ(XQ, Xg) A\ 7“3(X3, X4) A\ 7“4()(47 Xl).

Consider the decomposition of this graph in the center ofiféid., which involves
subproblems such as (X1, X2) A ro(Xo, X3) andrs(Xs, X4) A r4(X4, X71) having
a fractional cover of weight 2. It follows that there existslaabase DB such that,
e.g., the subqueryns(X1, Xo, X3) < r1(X1, X2) Ar2 (X2, X3) hasO(N?) answers,
where for the sake of simplicity we assume that the relattsaghe same and that they
haveN tuples each.

Think now of how this worst-case bound can be achieved. Bgstime that; is a
cartesian product of the domain of its variables: we hisive |d(X7)|- |d(X3)]| so that
|d(X1)| = N'/2, Becausens(X;, X2, X3) cannot be larger than the cartesian prod-
ucts of the domain of its variables, it follows that, in thsse,|ans(X1, Xo, X3)| <
N3/2_In order to reach the worst-case bound/ét, in DB, the attributes should
have quite different domain sizes. In particular, we musehaany values on the ex-
tremal variables of the chaiX;, X5, X3, that is, almostV values forX; and X3,
and a few values foX,. For instance Xo> may have just one skew value that is con-
nected to all values foK; and X3, so thatans(X1, X2, X3) = d(X1) x 1 x d(X3)
and |ans(X1, X2, X3)| = NZ2. For completeness, note thati, has many values,
say almostN, than it should behave like a key, and the sizeaok(X;, X2, X3)
will be almost linear inN. Summing-up, to achieve th@(N?) worst-case bound
on ans(X1, X2, X3), we should haved(X2)| = A, with A much smaller thanV.
However, in this case we can use the decomposition showneoright in Figure 1:
note that the subproblems in the vertices of this decomipaditave at mostV A an-
swers, achieved in the vertices in the middle where we hawtasian product of the
form r; x d(X3). The cost of evaluating, over DB, using this decomposition is thus
O(N A), which is smaller than th@(NN?) cost predicted by fractional hypertree width.

We next show that the above reasoning can be generalizeg ttatabase, showing
thatthe quadratic fractional hypertree-width worst-case is not tight, in particular such a
query can be evaluated ®(N3/2), that is, within the same bound as the triangle query.

A general bound for evaluating cycles Following the intuition described in the pre-
vious section, we next show that actually we can guarantedguadratic evaluation
time for every conjunctive query having a cycle as its hypaph and on any given
database. A further ingredient to obtain a precise uppent@ito consider horizontal
fragments of the relations, and possibly use different adgmsitions for evaluating the
given query on different fragments. Therefore, not only aakifor the best decompo-
sition with regard to specific database, but also the best fanalifferent fragments of
the database.

This bound is a slight improvement of the upper bound deedrih [16] and it is
quite similar to the upper bound given in [2] for the specade of queries asking for
length% simple cycles in graphs, whose techniques are indeed ugbdrbfl6] and

| (X1, X2) |

@ @ r1(X1, X2) Ara(Xa2, X3) | | r4(Xy, X1) Ara(Xa,) |
@.@ | r3(X3, X4) Ara(Xy, X1) | r3(X3, X4) Ara(Xa,) |
| r2(Xa2, X3) |

Fig. 1. The graphG4 and two of its hypertree decompositions

in the present paper. Contrasted with this latter upper pomr result is more general
because it works with queries involving any combinationifitaary binary relations,
while the results on graphs assume only one relation (the elgtionship of the input
graph).

Theorem 1. Let C be any class of conjunctive queries whose associated hypergraphs
are (simple) cycles. Then, the answers of any query in C having k& atoms on a database

1

of size N can be computed in O((Z/k)ﬁ - N7 T#/7T 4 OUT), where OUT isthe size
of the output.
Proof. Consider the following query, € C over a database DBof size NV:

ans()_() — 7“1(X1, XQ) N TQ(XQ, Xg) VANEERIVAN ’I“k(Xk,Xl),

wherery, ..., r, are binary relation symbols, not necessarily distinct, flan@ach
i € [k], m hasN; tuples. Its associated hypergragh is a simple cycle having
vertices and: edges, and bothw(Gy) = 2 and fhw(G)) = 2 holds.

Letd > 0 be a number that will be determined later. For eaeh[k], letr; C r; be
the (horizontal) fragment of; consisting of the tuple§(v,v’) € r; | v occursin more
than § tuplesinr;}. Letq, be the variant of query, where the atom; (X;, X;1+1) is
replaced by} (X;, X;+1), and consider a hypertree decompositiongoof the form
shown on the right in Figure 1, witl(; playing the role ofX>. Note that the number
of tuples in the projection; (X, -) occurring in the decomposition vertices is at most
N; /6, so thatg; can be evaluated i®(N N; /6 + OUT;). The OUT; answers of this
modified query are all those answersgpfsuch thatX; is instantiated with any value
of its domain having degree at leasfif any). After the evaluation of all such modified
queries, we get all theuTs answers ofy;, over DB, where some variable takes a value
having degree at least The total time used for such computationsO$N N /6 +
OUT;). Note that, having these answers, each domain value haemge at least is
no longer needed in any relation.

Then, we take care of the remaining fragment: consider tleeygy: ans”(X) «
(X1, Xo) A (X2, X3) A+ - A1) (X, X1) over the database CfBwith the relations
ri = r; \ 1}, for eachi € [k]. We evaluate this query by using a tree decomposition
of the form shown in the center of Figure 1 with two big vericeach one covering
half of the query. The widthv of this decomposition igk/2]. Let r, andr; be the
smallest relations in the database DBiaving number of tuple®/, and N;, respec-
tively. We can always choose the decomposition in such a Watrt andr; occur

in different vertices. Consider now the evaluation of thbmoblem comprising the
relationr,: because every value has degree at mogvery tuple ofr, can have at
mostd extensions to tuples in the subsequent relation in the sbitgm, sayr,; the
same happens for every tuplerin and so on for all the atoms in this subproblem. The
evaluation of these atoms tak&@$N,6*~!) time and, similarly, we nee®(N;6“ 1)

to evaluate the subproblem occurring in the other vertexhefdecomposition, for a
total cost ofO((N, + N;)6“~1). Because, andr, are the smallest relations, it can
be seen easily thatV, + N;) < 2N /k, so that the total cost for evaluating over
DB/ using such a decomposition&26“~1 N /k + OUT”), whereOUT” is the size of
the output relatiomns” (X). By equating the cost of using the two kinds of decompo-
sitions, we can compute the valde= (k/2N)'/* that guarantees that we obtain the
same evaluation cost for either kind of fragment and forgpessible input database.
With this value, the total cost for evaluatipg on any given database RRBf size N is
O((2/k)"/® N?=1/* 1 OUT), whereOUT is the size of the output relatioms(X). O

4 Discussion and Open problems

Recent advances have shown that powerful structural degsitigns such as the (frac-
tional) hypertree width or the submodular width may leadfteative algorithms even
for very simple queries, and not just for long and complexsofmossibly involving
atoms with large arities), which have been the typical tarder these sophisticated
techniques. Moreover, we have seen that the worst case hppeds of the so-called
purely structural decomposition methods, where the choidbe decomposition de-
pends only on the query hypergraph, are not tight.

Contrasted with such methods, the notion of submodulatyighich is based on
data-dependent decompositions, is more powerful and trcferacterises the frontier
of fixed-parameter tractability for conjunctive queriefieTalgorithm used in [19] is
based on the computation of almost uniform horizontal fragts of all possible sub-
problems that can be evaluated in polynomial-time. Vengirdy, uniform means here
that, in each fragment and for any subset of variables of arstitem, partial solu-
tions over these variables extend to full solutions of thepsablem in a similar way.
Whenever a subproblem does not meet this condition, it caplitin more subprob-
lems leading to new fragments. The subproblems of each retarice associated with
a fragment are kept locally consistent. That is, tuples #natnot useful in that frag-
ment are filtered out, and the procedure continues lookingdar small, consistent and
uniform subproblems to deal with. This procedure works iadibparameter polynomial
time, where the parameter is the size of the query. Evegtugltier the promise that the
submodular width is below some fixed threshaldwhich is used to define precisely
the above process), there should exist some tree decomopagiiose subproblems are
among those that we have computed. Furthermore, whene\em fostance associated
with some fragment its subproblems are not empty, becaegetie pairwise consistent
we can conclude that the given query has some answer on thedatabase; otherwise,
we conclude that there are no answers (see also [14] for sudistency properties).

Marx’s algorithm is quite involved and its actual cost istguiigh even for queries
with a few variables. The PANDA algorithm described in [1i#ha at obtaining a sim-
ilar worst case bound, but is more suitable to effective anpntations. However, be-
cause of its different uniformization procedure, its casbives alog n)" factor, where

h is the number of atoms in the query, which is not allowed indiparameter poly-

nomial time algorithms (the parameter cannot occur as tpereent of a number that
depends on the input size). In fact, it is still open whethremat such a bad factor can
be avoided, so that an effective fixed-parameter polynotinied algorithm can be im-

plemented. An algorithm for computing the submodular widfth given hypergraph is
also missing, as well as a possible approximation of thisonoFurthermore, the fron-

tier of polynomial-time tractability for conjunctive ques involving atoms of arbitrary

arities is still unknown, and it is even unknown whether it @ctually be charted or
not.

References
1. Aberger, C.R., Lamb, A, Tu, S., Notzli, A., Olukotun,,Ré, C.: Emptyheaded: A relational
engine for graph processing. ACM TORIg(4), 20:1-20:44 (2017).
2. Alon, N., Yuster, R., Zwick, U.: Finding and counting givéength cycles. Algorithmica
17(3), 209-223 (1997).
3. Atserias, A., Grohe, M., Marx, D.: Size bounds and queanglfor relational joins. SIAM J.
on Comp42(4), 1737-1767 (2013)
4. Fischl, W., Gottlob, G., Pichler, R.: General and fragtibhypertree decompositions: Hard
and easy cases. In: Proc. of PODS’18 (2018)
5. Ghionna, L., Granata, L., Greco, G., Scarcello, F.: Hyperdecompositions for query opti-
mization. In: Proc. of ICDE’07. pp. 36—45 (2007)
6. Ghionna, L., Greco, G., Scarcello, F.: H-DB: A Hybrid Qtitative-structural SQL Opti-
mizer. In: Proc. of CIKM "11. pp. 2573-2576 (2011)
7. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decaositiums and tractable queries. JCSS
64(3), 579-627 (2002)
8. Gottlob, G., Leone, N., Scarcello, F.: Robbers, marstzadd guards: Game theoretic and
logical characterizations of hypertree width. JGE&), 775-808 (2003)
9. Gottlob, G., Greco, G., Scarcello, F.: Treewidth and Iype width. In: Tractability: Practi-
cal Approaches to Hard Problems, pp. 3—-38. Cambridge WsitydPress (2014).

10. Gottlob, G., Lee, S.T., Valiant, G., Valiant, P.: Sizel &reewidth Bounds for Conjunctive
Queries. J.ACMb9(3), 1-35 (2012)

11. Gottlob, G., Mikl6s, Z., Schwentick, T.: Generalizggbbrtree decompositions: NP-hardness
and tractable variants. J.ACB§(6), 30:1-30:32 (2009)

12. Greco, G., Leone, N., Scarcello, F., Terracina, G.:chtral decomposition methods: Key
notions and database applications. In: A ComprehensivdeStirough the Italian Database
Research Over the Last 25 Years., Studies in Big Data, vopf31253—-267. Springer

13. Greco, G., Scarcello, F.: Greedy strategies and lastgands of tractability for conjunctive
queries and constraint satisfaction problems. Inf. Congi2 201-220 (2017).

14. Greco, G., Scarcello, F.: The power of local consistémepnjunctive queries and constraint
satisfaction problems. SIAM J. Compd(3), 1111-1145 (2017).

15. Grohe, M., Marx, D.: Constraint solving via fractionalge covers. ACM Trans. on Alg.
11(1), 4:1-4:20 (2014)

16. Joglekar, M., Ré, C.: It's all a matter of degree - usiagrée information to optimize multi-
way joins. Theory Comput. Sy€s2(4), 810-853 (2018).

17. Khamis, M.A., Ngo, H.Q., Suciu, D.: What do shannon-tiypsualities, submodular width,
and disjunctive datalog have to do with one another? In: RifoeODS 2017, pp. 429-444.

18. Marx, D.: Approximating fractional hypertree width. MCT. on Alg. 6(2), 29:1-17 (2010)

19. Marx, D.: Tractable hypergraph properties for constrsatisfaction and conjunctive queries.
J.ACM 60(6), 42:1-42:51 (2013)

20. Robertson, N., Seymour, P.: Graph minors. Il. Algorithaspects of tree-width. J. of Alg.
7(3), 309-322 (1986)

