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Abstract. We present a framework for enforcing the application of
context-aware Role-based Access Control policies based on an Internet of
Things eco-system inspired by the Google’s Physical Web. In this setting
we are interested in capturing three contextual dimensions, namely who-
where-when, and using these information to restrict access to shared re-
sources. Formally, the framework consists of features types, an automata-
based model of time-sensitive roles, context-aware permission rules, and
an IoT infrastructure based on Eddystone Beacons for validating a policy
against the current state of users.

1 Introduction

In modern distributed systems based on the Internet of Things (IoT), security
layers of software applications must be tightly integrated with the underlying
system/network infrastructure. The integration is needed in order to increase the
privacy of user data, to ensure availability of access control configuration services,
and to integrate edge and fog components in the, possibly seamless, eco-system
that governs information assurance. In particular, devices at the edges of an IoT
system can be employed as active parts of location-based and time-dependent ac-
cess control policies enforcement mechanisms. Furthermore, a tighter integration
between the security layer and distributed infrastructures could provide better
provenance on data and information flows.

According to this idea, in this paper we present a framework for enforc-
ing the application of geo-referenced Role Based Access Control (RBAC) poli-
cies [5] based on an IoT infrastructure inspired by the Google’s Physical Web
paradigm [4,6,7,8,9,11,12,13,14,15]. The Google’s Physical Web project enables
smartphone users to interact with physical objects and locations through the
use of beacon technology. Beacons are low cost radio transmitters that typi-
cally transmit a unique ID on a regular interval, e.g., 100-1000ms, in a range of
approximatively 30 meters. Bluetooth-enabled devices can detect a beacon and
receive its corresponding identifier, following the so-called lighthouse metaphor.
Smartphone applications can use such IDs to signal their physical presence in

SEBD 2018, June 24-27, 2018, Castellaneta Marina, Italy. Copyright held by the
author(s).



the beacon vicinity to a remote server and the limited transmission range of
these transmitters provides precise users localization. The Physical Web is par-
ticularly useful for indoor scenarios equipped with low cost devices such as bea-
con transmitters. This technology can be applied to set up non-invasive and
precise localization methods, with easily configurable privacy protection layers
(e.g., associations between user IMEI’s and beacon identifiers, etc), to generate
location-based provenance meta-data, and to ensure a tight integration between
access control policies, physical spaces, and policy enforcement mechanisms.

Our framework consists of features types, context-aware permission rules,
and an IoT infrastructure for validating a policy against the current state of
users. In this setting, we are interested in capturing three contextual dimensions,
namely who-where-when, and use these information to restrict access to shared
resources. Users are assigned to stateful roles. A role must be considered as a
slowly changing condition of users, whereas a state represents time-dependent
a behavior associated with a specific role (e.g. typically a faculty member can
act as instructor, mentor, course attendee, etc). Similarly, locations have time-
dependent states that capture possible different usages of the same physical space
(e.g. a room can be used for meetings, seminars, courses, etc). Our time model
is based on deterministic finite-state automata inspired by logical specification
languages for the linear time flow. Access control rules are defined on top of
role and location states. Therefore, they can be used to define complex (i.e.
automata-based) time-dependent access policies.

We illustrate the main ideas underlying the specification language of context-
aware control access policies using an example. Consider a campus which physical
spaces are organized in buildings, floors, and rooms. A room may have several
usages, e.g., meeting room, seminar room, lecture room. The usage depends on
a predefined time schedule. The same room can have different usages in different
time slots. Users can assume different roles, e.g., student, teacher, mentor. Fur-
thermore, users perform actions like consulting and updating records related to
attendance at a given lecture, finding information on teachers, retrieving statis-
tics, etc. Permission rules formalize access control policies to public and private
data. Permissions are context-aware in that access to specific data can be con-
strained by the physical location of the user. Permission rules have to specify
properties such as: a student can update its attendance record only when she/he
gets access to the system from a classroom, teachers can get statistics on student
attendance anywhere, students can get information of teacher presence anywhere
in the department building, etc. This scenario can be nicely formalized by in-
troducing a time-dependent stateful model for roles and locations. The timed
model is based on a linear flow of time represented as an automata with a total
transition function (i.e., automata that have a lasso shape). Roles and locations
have an associated labeling function dependent of time that determines the dy-
namics in each role specialization and in the usage of physical spaces. Validation
is defined against permission rules associated to user operations by considering
a notion of state based on the current user location and the system time.



The main novelty of our proposal w.r.t. classical approaches like GeoRBAC
[5], TRBAC [1] or proximity frameworks like PROX [10] is the combination of
an automata-based specification of context-aware access control model with an
IoT validation infrastructure that can be automatically reconfigured by encoding
a policy into a relational data model and a corresponding control program for
policy enforcement.

A prototype of the system is currently under evaluation in our University
with the aim of providing an automated support for the management of typical
Academic Campus services like registration of attendance to lectures and meet-
ings, rooms and lectures allocations, etc. Specifically, lecture attendance is often
a problem for the performance of academic degrees (especially bachelor). Inter-
mediate tests are often used as a way to encourage students to actively attend
lectures and take exams. The platform provides (physical) web services and mo-
bile applications for the registration and analysis of lecture/meeting attendance.
Beacons are used to detect, in almost real-time, the presence of a student in a
lecture room. Our specification language can then be used to formally configure
access control to private data ensuring that users can modify their own record
only when they are physically present in a given room authenticated in the sys-
tem with their own smartphones. Furthermore, the same architecture can be
applied in every scenario that requires a verified list of attendees, for example
in the case of meetings in which it is mandatory to generate on-the-fly reports
or collect results of several voting during the same meeting.

A prototype of the system has been developed using the Node.js server-
side technology and Android for dedicated mobile app interfaces. The internal
structure of Node.js allows the system to handle a large number of connections
in a short period of time reducing potential risks of denial of service failures and
attacks. Furthermore, Android OS provides natively support for beacons, for
secure network connectivity, and for protecting device resources. In our system
private data are exposed to the server only after obtaining permissions from the
users. The system has been tested in a real scenario in the Database course of
the Computer Science Bachelor degree at the University of Genova (more than
120 students).

In the paper, we present the specification language, the validation mecha-
nism, system requirements, design principles, and implementation choices of the
proposed architecture. The remainder of the paper is organized as follows. Sec-
tions 2 and 3 specify the model, in terms of policy specification language and
enforcement. Section 4 focuses on infrastructure and system requirements. Sec-
tion 5 discusses software related issues (architecture, data model, and prototype
solutions) while Section 6 concludes.

2 Time Flow, Roles, Locations and Operations

Based on models for georeferenced and temporal access control languages [1,2,3,5],
in our model both roles and locations are assigned a time-dependent notion of
state. First of all, our notion of context is based on three dimensions: who, where,



and when. In other words we assume that the IoT infrastructure can provide pre-
cise information on current location and role (state) of each user in the window
with granularity associated to the time model selected in the specific policy. To
formalize these ideas, we first define our model of time.

Linear Time Model In this paper we consider a linear time model defined
via a finite automata AT = 〈P, succ〉, such that P is a finite set of time points
and succ : P → P is a total function that defines the successor succ(p) of any
point p ∈ P . In other words, AT is an automata that can only consist of an
initial finite suffix entering into a finite and simple loop. The automata AT will
be used to model different time granularities, e.g., possibly repeated time/days
slots during a week, months, etc.

Roles We define roles using feature types, i.e., a partially ordered set of enti-
ties. More specifically, the set of roles is defined by a finite set Role equipped
with a binary relation v such that 〈Role,v〉 forms a lattice, i.e., Role has top
and bottom element, and every subset of elements in Role admits a least upper
bound and a greatest lower bound. The v relation can be viewed as a hierarchy
relation (specialization) that can be used to build role hierarchies. For instance,
bachelorstudent v student Every role r ∈ Role comes with a finite set of pos-
sible states Stater and a labeling function ρr : P → Stater that associates a
given state to every time point. The labeling function must be compatible with
v in that if R1 v R2 the R1 inherits all permits of R2. In our model permits
are associated with states, thus compatibility requires that if R1 v R2, then
StateR2

⊆ StateR1
, i.e., state containment is contravariant w.r.t. role specializa-

tion.

Locations The set of physical spaces Location is a finite set equipped with a
binary relation v such that 〈Location,v〉 forms a lattice. Every l ∈ Location
comes with a finite set of possible states Statel and a labeling function ρl : P →
Statel that associates a given state with every time point. Similarly to roles,
the location labeling function must be compatible with the hierarchy relation,
i.e., if L1 v L2, then StateL2

⊆ StateL1
, i.e., state containment is contravariant

w.r.t. location specificity (i.e. specific users may have enlarged permissions in
fixed locations inside a building).

Operations Operations are defined by a finite set of labels Ops.

Example 1. As an example, consider a linear time automata AT with states
{0, 1, 2, 3, 4} s.t. succ(i) = i + 1 mod 5 s.t. 1 = Mon, 2 = Tue, etc. Now let us
consider the set

Role = {Student, Teacher}
Statestudent = {Attendant,Mentor}
Stateteacher = {Teacher}



where we omit top and bottom elements for simplicity. We assume here that users
can be either students or teachers that access with two types of resources. Now
we assume that ρStudent(i) = Attendant for i ∈ {0, . . . , 3}, and ρStudent(4) =
Mentor. Furthermore,

Location = {Building, F loor,Room1, Room2}

s.t. Room v Floor v Building,

StateRoom1 = StateRoom2 = {Meeting, Course, F loor,Building}
StateFloor = {Floor,Building}
StateBuilding = {Building}

where we omit top and bottom elements for simplicity. Furthermore, ρRoom1(i) =
Course for i ∈ {0, . . . , 3}, and ρRoom1(4) = Meeting, ρRoom2(i) = Meeting for
i ∈ {0, . . . , 4}.

Finally, we consider the following set of operations

Ops = {GetRecord, UpdateRecord, F indTeacher,GetStatistics}

The get/update record actions correspond to read/write operations on database
containing student activity reports, such as course attendance data, mentoring
activities, etc, that require certified time accountability, e.g., courses in which
attendance is mandatory for a given percentage of hours. FindTeacher allows
users to check for the presence of a teacher during specific time window and
in specific locations. GetStatistics corresponds to read operations on aggregate
data such as course attendance.

3 Access Control Rules and Policy Enforcement

Based on the previous sections, we are now ready to introduce our notion of
permissions in order to define context-aware access control rules.

Definition 1 (Permission). A permission rule is a tuple

p = 〈Op,RoleState, LocationState〉

where Op ∈ Ops, RoleState is a role state in
⋃

r∈Role Stater, and LocationState
is in

⋃
l∈Location Statel.

To clarify the meaning of permission rules, we need to introduce users, sessions,
and then a validation mechanism.

Let Id be a denumerable set of user identifiers. Every user has an associated
labeling function session that associates to the user an instance role. Permissions
are then defined by rules associated to role and location states. More precisely,
we introduce a notion of current state of a user via a state function defined as
follows. For u ∈ Id, state(u, t) = loc, where we assume that loc is an instance of
Locations.



Definition 2 (Validation of an operation). User u can perform operation
Op at time t if and only if there exists a permission rule p = 〈Op,RS,LS〉 s.t.

– state(u, t) = loc,
– session(u) = role,
– for every R ∈ Role s.t. role ∈ R we have that ρR(t) = RS
– for every L ∈ Location s.t. loc ∈ L we have that ρL(t) = LS.

Example 2. We list below some examples of permissions.

– p1 = 〈UpdateRecord,Attendant, Course〉 s.t. students can update their at-
tendance records from the room of a course only.

– p2 = 〈UpdateRecord,Mentor,Meeting〉 s.t. mentors can update their men-
tor accounting records from a meeting room only.

– p3 = 〈GetStatistics, Teacher,Building〉: teachers can consult the student
records anywhere in a building.

– p4 = 〈FindTeacher,Mentor,Building〉: only mentors are allowed to use the
service to locate a teacher in a building.

4 IoT Infrastructure

A prototype of the context-aware access control validation mechanism has been
implemented using a IoT infrastructure based on the combination of beacons,
wi-fi network technology, mobile, web, and database management components a
typical scenario of the Physical Web paradigm proposed by Google. Our opera-
tive scenario is a typical example of an Academic Campus and we assume that
each classroom is equipped with at least one beacon configured with a unique
identifier consisting of three subfields called UUID, MajorID, and MinorID. In
our experimental setup we adopted Estimote beacons. For lecture rooms for at
most 180 students a fix beacon turned out to be sufficient to detect all enabled
smartphones. We also assume that rooms of staff members are equipped with
beacons to inform students of their presences in the building and office-hour
updates. Finally, we assume that each room provides wi-fi access to students,
e.g., via Eduroam (https://www.eduroam.org/) access points. A (Web) server
must be installed either on an external cloud provider or on a local server. In
both cases it must be reachable from the local network, i.e., the firewall config-
uration must provide access to Web APIs needed by the smartphone and Web
applications.

The platform is based on a combination of hardware and software solutions
that must be deployed in physical spaces like lecture and meeting rooms in an
academic campus. The infrastructure and system requirements can be summa-
rized as follows.

1. The system should provide precise indoor localization of users via their
smartphones. The required precision must be in the order of a few tens
of meters (i.e., to cover a lecture room).



2. Registration of user presence must be done in real-time. The server must be
reachable from every lecture room.

3. Rooms must be viewed as geofences. Only users inside a given room should
be able to update data with georeferenced permissions.

4. The system should be resistant to server failures, e.g., by using multiple
server instances on different machines.

5. Logged data must be stored persistently in a data storage system. Data stor-
age must be accessible to the application and administrators, only.

6. Users must be informed that the server makes use of localization data.
7. Users must give their permission for releasing data stored in the device

(IMEI).
8. Data stored in the server should not be released to third parties.
9. Users must be uniquely identified via official credentials such as the matric-

ulation (staff) number assigned by the central administration.
10. User devices must be identified uniquely using IMEIs. Every user must as-

sociate a unique device (IMEI) to the corresponding personal identifier.
11. Data exchanged with the users must be encrypted and sent on secure chan-

nels.
12. To limit the budget, hardware and software infrastructures must be com-

posed by low cost devices, standard networking services provided in aca-
demic environments (e.g. server on virtual machines), open-source software
and development frameworks for server-side and mobile applications.

To meet all the above requirements, we need to satisfy constraints both at the
physical level (infrastructure and hardware) and at the software level (networking
and platform).

5 Software Platform Architecture

The software platform consists of an app with different views depending from
the current user (e.g., students, teacher, administrator), a Web application, and
a persistency server as described in the next sections. The server provides secure
APIs (secure TCP) for accepting user requests and for sending notifications.
Persistent data are stored in a MySQL server accessible only from the server.
The Web application allows staff members to create and modify user profiles,
visualize historical data and statistics for both classrooms and individual stu-
dents. Although responsive, this functionality must be viewed as an access point
designed for a traditional (non mobile) browser. Role and Location are mod-
eled using relational schemes. The state machines that defines RoleStates and
LocationStates is stored as a relation containing a key for the time points, and
states for each role instance. Thus validation of user state can be reduced to a
query in the record associated to the current time point. Machine time is mapped
to virtual time used in the access control specification by using a mapping func-
tion that is selected by the administrator. The mapping models the granularity
of the considered time model (e.g, it extracts current day and hour from machine



Matricula IMEI

3471890 980000832471652

3471891 990000551621881

3471895 990000144425624

Table 1. Association between student ID and IMEI

9-11 11-13

Mon CS1 (room 1) Seminar (room 1)
Tue CS2 (room 1) Seminar (room 2)
Wed CS1 (room 1) Seminar (room 2)
Thu CS2 (room 1) Seminar (room 2)
Fri CS3 (room 1) Tutoring (room 2)

Table 2. Weekly Room Allocation Plan

time or sim.). This provides an alignment between machine time and automata
time used in the enforcement step.

As an example, assume that Alice Smith is enrolled in the first year of
a Computer Science Bachelor degree. Alice has student ID 3471890 and the
association between her identifier and the IMEI of her smartphone (and of
other two students) is shown in Table 1. The association between beacons iden-
tifiers and rooms is shown in Table 3. According the permission rule p1 =
〈UpdateRecord,Attendant, Course〉 and p2 = 〈UpdateRecord,Mentor,Meeting〉
attendance and tutoring hours registration for Alice Smith is synchronized in ac-
cordance to the data in Table 2 and Table 3 and the current location of Alice
and time. Timing is based on the server time in order to avoid manipulation
of timestamps sent with user requests. Registration in all other cases (different
location, times) is forbidden.

The middleware underlying the platform has been implemented combining
different technologies. The server has been implemented using the Node.js IoT
framework, an efficient server-side development framework based on Javascript
and on the npm eco-system. Node.js provides very efficient packages for handling
secure TCP connections, Web servers, and applications. Node.js server-side li-
braries are optimized for network intensive applications even when executed on
single host or cluster. Indeed, Node.js allows to handle a large number of con-
nections in a short period of time reducing potential risks of denial of service
(this is very useful in our context since the system has to handle hundreds of
requests in a few minutes). This property is due to the internal structure of the
Node.js event-driven engine. Requests are not handled using multiple threads as
in the Apache server model since the Node.js engine is based on an event loop
that executes callbacks sequentially. Callbacks are picked from multiple priorities
FIFO queues. Furthermore, thread pool implemented using the C++ libuv con-
currency library supports the execution of asynchronous callbacks. Differently
from server architectures based on multiple threads, in Node.js the response to
connection requests require few system resources since they basically require



Physical space beaconID

room 1 101

room 2 102

Table 3. Association between rooms and beacons

the emission of events whose synchronous effect is that of enqueuing callback
invocations in the I/O queue. This choice mitigates the risk of classical denial
of service attacks based on a high number of simultaneous requests that could
congest the server by exhausting system resources (e.g., creation of new threads
to scale up the server).

The prototypes of the mobile applications have been developed in the An-
droid OS. Android OS provides native support for beacons (e.g., using OS no-
tification management or beacon SDKs like Estimote SDK). It also provides
secure network connections and access control policy management that protects
private data. Private data are exposed to the server only after obtaining permis-
sions from the owner. The authentication mechanism built on top of associations
between user and device identifier relies on secure network connections (secure
TCP sockets) between the smartphone application and the server. A smartphone
app, configured to detect beacons using libraries like the Estimote SDK, is pro-
vided in two different versions: students and teachers. The student app provides
sign-up, sign-in, and sign-out and a wide range of functionalities. The sign-up
service associates the smartphone IMEI to the unique student enrollment number
and to his contact details. After the first user registration, sign-in is automati-
cally enabled whenever the app is activated by the user. Indeed, the server can
retrieve the IMEI of the smartphone from the initial connection request issued
by the app. Thus, the silent authentication stage is based on the association
between the user identifier and the registered IMEI. Upon authentication, stu-
dents can register their attendance to a given lecture in a given time-slot. The
lectures schedule of each student is indeed synchronized, server-side, with the
lectures and rooms allocations plan, for each enrollment year. Thanks to this
synchronization, attendance is enabled only in specific time-slots and in physical
spaces. In addition the app provides user interfaces for visualizing the historical
data stored in the persistence server (profile, attendance log) and interfaces to
visualize, via a calendar widget, lecture plans (according to the corresponding
study plan), seminars, and other events registered by staff members.

Using protocols similar to those adopted for the student view, the teacher app
provides a user interface for visualizing statistics on students attendance, lectures
and events calendar. The aggregated number of presences provides indications for
each course trend: it is indeed possible to understand if the number of students
attending at the beginning of the course decreases significantly or remains stable
during the semester. It is also possible to check if there are days or time-slots
with a significant decrease in attendance and consequently try to implement
strategies to avoid such drop out. The app also provides a control widget for the
notification of presence in office-hours. Staff members can create, modify, and



delete events that will be notified to users and visualized in their calendar view.
Furthermore, they can access the room allocation service that is moderated by
a dedicated administrator.

6 Conclusions and Future Work

The Google’s Physical Web project – center stage at the Google IO developer
conference in 2016– was conceived to enable smartphone users to interact with
physical objects and locations through the use of beacon technology. The Google
Physical Web architecture has been supported with physical devices such as Es-
timote beacons and client API’s. Beacons are low cost radio transmitters that
typically transmit a unique ID on a regular interval, e.g. 100-1000ms, in a range
of approximatively 30 meters. Bluetooth-enabled devices can detect a beacon and
receive its corresponding identifier, following the so-called lighthouse metaphor.
Smartphone applications can use such ID to signal their physical presence in the
beacon vicinity to a remote server and the limited transmission range of these
transmitters provides precise users localization. The typical application domain
of physical web is that of proximity marketing [8]. In this context, beacons are
located nearby specific products and smartphone applications, enabled to de-
tect beacons, redirect the user towards web sites with details on the products,
brand, coupons, special offers, etc. Beacons have been applied in other domains
like indoor localization [6,7,9,11,15], crowdsensing in public transportation [4],
tourism [13], usage of physical spaces [12]. The main novelty of our physical
web application comes from the use of beacons as enabling-technology to en-
force context-aware access control policies. As a future work, we plan to extend
both the specification language and the compilation of permission rules into an
enforcement eco-system (devices, apps, data model, control program) and to
study more applicative scenarios both in academic environment as well as in the
enterprise domain.
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