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Abstract. The key objective of frequent itemsets (FIs) mining is un-
covering relevant patterns from a transactional dataset. In particular
we are interested in multi-dimensional and multi-level transactions, i.e.,
ones that include different points of view about the same event and are
described at different levels of detail. In the context of a work aimed at
devising original techniques for summarizing and visualizing this kind of
itemsets, in this paper we extend the definition of itemset containment
to the multi-dimensional and multi-level scenario, and we propose a new
similarity function for itemsets, enabling a more effective grouping. The
most innovative aspect of our similarity function is that it takes into
account both the extensional and intensional natures of itemsets.
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1 Introduction

The key objective of frequent itemsets (FIs) mining is uncovering relevant pat-
terns from a transactional dataset [2]. Since its initial formulation on transac-
tions of uniform and flat items, where a transaction corresponds to a set of
products bought together by a customer, FIs mining has been applied to dif-
ferent types of data. In particular, in this work we consider multi-dimensional
and multi-level data [8]. A multi-dimensional transaction represents an event
from different points of views, which we call features. In a multi-level transac-
tion feature values are described using hierarchies with different levels of detail.
A typical application is that of user profiling: each transaction describes a user
by means of several features related for instance to where she lives, where she
works, how much she earns; each feature values can be described at different,
hierarchically-organized levels (e.g., she lives close to Macy’s, which is in the
Garment district, which is part of Manhattan). In this context, a FI describes a
profile of a group of people sharing the same features/behavior.

The exponential nature of FIs [2] makes it difficult for data scientists and
domain experts to visualize and explore their information content. Increasing
the frequency threshold (i.e., the minimum itemset support) just decreases the
number of FIs possibly leading to missing useful information; so, it is recognized
that more effective approach is that of providing FI summaries to assist decision
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Fig. 1. A functional architecture of a framework to summarize and visualize FIs

makers in getting insights over data [14]. Summarization differs from FIs mining
since the latter searches, within a set of transactions, those itemset that are
frequently present disregarding redundancy. Conversely, summarization is an
optimization problem that addresses the extraction of the minimum number of
FIs that represent an entire population while maximizing the overall diversity
of the representatives. The two techniques are complementary to enhance and
simplify FIs analysis: the adoption of summarization on top of FIs mining makes
the choice of a frequency threshold less critical and enables the discovery of both
specific and general patterns. Though several FI summarization approaches have
been proposed in the literature (e.g., [1,12,5]), they do not consider the multi-
level and multi-dimensional natures of FIs. A third approach to make FI analysis
more effective is the use of advanced visualizations. Interactive visual interfaces
and visual data mining approaches can unveil hidden information, simplify the
process of understanding, and allow users to focus their attention on what is
important. Although some visual representations for FIs have been proposed in
the literature [13,9,4], to the best of our knowledge no approaches for visualizing
FIs summaries have been proposed so far.

To fill this gap, we are currently working on a framework addressing the sum-
marization and visualization of multi-level and multi-dimensional FIs. As shown
in Figure 1, our approach is independent of the algorithm applied for generating
the FIs taken in input [11,3]. The summarization and the visualization compo-
nents work jointly to give users the relevant information; the user can iteratively
create and visualize new summaries that better meet her needs by tuning a set of
parameters. In the context of this framework, here we extend the definitions of
FIs and itemset containment to the multi-dimensional and multi-level scenario,
and we propose a new similarity function for FIs that enables more effective
groupings. The most innovative aspect of our similarity function is that it takes
into account both the extensional and intensional natures of FIs. The intensional
nature is considered in feature-based similarity : the higher the number of features
(i.e., semantics) shared by two FIs, the higher their similarity; the extensional
nature is considered in support-based similarity : the higher the percentage of
transactions supporting both FIs, the higher their similarity. Adopting this two-
faceted similarity function, agglomerative clustering algorithms [7] can then be
leveraged to summarize FIs.

The paper is organized as follows. After providing the formal definitions of
multi-dimensional and multi-level FIs in Section 2, in Section 3 we propose our
similarity function. Finally, in Section 4 we discuss the research perspectives.



2 Itemsets

The itemsets we consider are multi-level, which implies the presence of a hierar-
chy of concepts. The type of hierarchies we consider are those defined in classic
multi-dimensional modeling [6].

Definition 1 (Hierarchy). A hierarchy H is defined by (i) a set LH of categor-
ical levels, (ii) a domain Dom(l) including a set of values for each level l ∈ LH
(all domains are disjoint), (iii) a roll-up partial order �H of LH , and (iv) a
part-of partial order ≥H of

⋃
l∈LH

Dom(l). Exactly one level dim(H) ∈ LH ,
called dimension, is such that dim(H) �H l for each other l ∈ LH . The part-of
partial order is such that, for each couple of levels l and l′ such that l �H l′, for
each value v ∈ Dom(l) there is exactly one value v′ ∈ l′ such that v ≥H v′.

The itemsets we consider are also multi-dimensional, i.e., they refer to differ-
ent features (e.g., worksIn) each related to a specific hierarchy (e.g., Location). A
feature defines the semantics carried by an item at a specific hierarchical level.
This can be formalized as follows:

Definition 2 (Domain Schema). A domain schema is a triple D = (H,F , µ)
where: (1) H is a set of hierarchies; (2) F is a set of features; and (3) µ is a
function mapping each feature onto one hierarchy.

Example 1. As a working example we will use the Profiling domain schema, which
describes the customers who regularly visit a mall and features the two hierar-
chies depicted in Figure 2. The first one is rooted in the Location dimension and
has two branches: the first one describes locations from the geographical point of
view (with reference to New York City), the second one based on their features.
In the roll-up partial order we have, for instance, Neighborhood �Location Borough;
in the part-of partial order, we have Harlem ≥Location Manhattan. The second
hierarchy describes incomes in terms of their ranges. The features of Profiling
are worksIn, frequents, and earns; specifically,

µ(worksIn) = µ(frequents) = Location, µ(earns) = Income

Itemsets are non-redundant sets of items, i.e., two items in an itemset cannot
be defined on values related in the part-of partial order (e.g., GreenwichVillage
and Manhattan). Finally, transactions are itemsets whose items are all defined
on dimension values (e.g., Macy’s).

Definition 3 (Itemset and Transaction). Given domain schema D = (H,F , µ),
an item of D is a couple i = (f, v) where f ∈ F , v ∈ Dom(l), and l is a level
of hierarchy µ(f). An itemset I of D is a set of distinct items of D where, for
each i, i′ ∈ I, with i = (f, v) and i′ = (f, v′), it is v 6≥µ(f) v′ and v′ 6≥µ(f) v. A
transaction is an itemset only including items defined over dimensions of H.

Example 2. Examples of itemset I and transaction T of Profiling are

I = {(worksIn,Harlem), (frequents,Museum), (earns,High)}
T = {(worksIn,CityCollege), (frequents,WhitneyMuseum), (earns, 35to60)}
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Fig. 2. Hierarchies (right) and values (left) for the Profiling domain schema; in red, the
level-domain mappings

Working with multi-dimensional and multi-level items requires to extend
the classic definition of containment between itemsets, which generalizes set
containment taking hierarchies into account.

Definition 4 (Itemset Containment). Given two itemsets I and I ′, we say
that I is contained in I ′ (denoted I v I ′) iff for each item i ∈ I, i = (f, v), there
is an item i′ ∈ I ′, i′ = (f, v′) such that v′ ≥µ(f) v.

Let I denote the set of all items of a schema domain. It can be easily verified
that the containment relationship is reflexive, antisymmetric, and transitive, and
that for each pair of itemsets in I there are a least upper bound and a greatest
lower bound; so v induces a lattice on 2I . The top element of the lattice is the
empty itemset, the bottom element is I. Given two itemsets I and I ′, we denote
with lub(I, I ′) and glb(I, I ′) their least upper bound and greatest lower bound.

Example 3. Figure 3 shows a small portion of the containment lattice for Profil-
ing; for simplicity we restrict to features frequents and earns and denote items by
their value only. For instance, for frequents it is {Amenity} v {College,Store}
and {Amenity} v {College}. Besides, it is

lub({CityCollege}, {College,Store}) = {CityCollege,Store}
glb({CityCollege}, {College,Store}) = {College}

Transaction T is said to support itemset I iff I v T . With reference to
Example 2, T supports I. Given a set of transactions T , the set of transactions
that support I is denoted by TI ⊆ T . This allows us to introduce a relevant
numerical property of itemsets, namely, their support.

Definition 5 (Itemset Support). Given itemset I, its support sup(I) within
a set of transactions T is defined as

sup(I) =
|TI |
|T |
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Fig. 3. A portion of the containment for Profiling, including containment arcs; itemsets
in gray are not completely expanded

Itemset I is said to be frequent if it is greater or equal to a given threshold.
Note that, since the containment relationship induces a lattice on the set 2I of
all possible itemsets, it also induces a partial order over the set F ⊆ 2I of FIs.
Thus, from now on we will say that F is a POS (Partially Ordered Set).

3 Itemset Similarity

We argue that itemset similarity is a two-faceted concept: (1) according to
feature-based similarity, the higher the number of features (i.e., semantics) shared
by two FIs, the higher their similarity; and (2) feature-based similarity is useless
if two FIs include two distinct groups of transactions, thus, it is complemented
by support-based similarity in which the higher the percentage of transactions
supporting both FIs, the higher their similarity. These two aspects of similarity
are not necessarily correlated; for example, support-based similarity can be low
even if feature-based similarity is high when non-shared features are rare and
supported by a small fraction of transactions.

In a multi-level and multi-dimensional domain, computing feature-based sim-
ilarity is not just a matter of finding the subset of common items between two
FIs, but it is also related to the informative value they carry in terms of level
of detail. Intuitively, we consider an FI to be more relevant than another if it
includes a larger number of distinct features; in turn, the relevance of a feature
increases with the level of detail at which it is expressed.

Definition 6 (Itemset Relevance). Given itemset I, its relevance is defined
as

rel(I) =
∑

f∈Feat(I)

rel(f) +
∑

l∈Levf (I)

rel(l)





where Feat(I) is the set of distinct features of the items in I, Levf (I) is the
set of levels of the values coupled with feature f in the items of I, rel(f) is the
relevance of f , and rel(l) is the relevance of level l. Conventionally, rel(∅) = 0.

We finally introduce the similarity between two FIs as a linear combination
of a support-based and a feature-based similarity.

Definition 7 (Itemset Similarity). Given a set of transactions T , a POS
of FIs F , two FIs I and I ′ supported by T , and a coefficient λ ∈ [0..1], the
similarity of I and I ′ is defined as

sim(I, I ′) = λsimsup(I, I
′) + (1− λ)simrel(I, I

′)

where

simsup(I, I
′) =

sup(glb(I, I ′))

sup(I) + sup(I ′)− sup(glb(I, I ′))

simrel(I, I
′) =

{
rel(lub(I,I′))
rel(glb(I,I′)) , if lub(I, I ′), glb(I, I ′) ∈ F
0, otherwise

Both simsup and simrel range in [0..1] and can be intuitively explained as follows:
simsup is the ratio between the number of transactions supporting both FIs I
and I ′ and the number of transactions supporting either I or I ′; simrel is the
ratio between the relevance of the features common to I and I ′ and the relevance
of the union of the features of I and I ′. Clearly, since the lub and glb operators
are commutative, it is always sim(I, I ′) = sim(I ′, I).

Example 4. With reference to the hierarchies defined in Figure 2, we assume that
(i) all features are equally relevant (rel(f) = 1 for all f), and (ii) relevance in-
creases by 0.1 for each level of detail. Given FIs I = {(frequents,College), (worksIn,
Store)} and I ′ = {(frequents,College), (frequents,Store)}, it is

L = lub(I, I ′) = {(frequents,College), (frequents,Store), (worksIn,Store)}
G = glb(I, I ′) = {(frequents,College)}

Assuming for instance that sup(I) = 0.3, sup(I ′) = 0.4, sup(L) = 0.2, sup(G) =
0.5, and λ = 0.5, then sim(I, I ′) = 0.44.

4 Discussion

In this paper we have proposed an original similarity measure for multi-
dimensional and multi-level FIs, to be used for enabling the creation of concise
and valuable summaries of sets of FIs. Though for space reasons we cannot fully
detail how summaries are defined and visualized in our approach, in this section
we give an informal explanation.

First of all, since our goal is to support interactive exploration and navigation
of FIs, we organize summaries in a hierarchical fashion so that they can be



analyzed at different levels of detail. So we build a hierarchical clustering of
the set of all FIs using an agglomerative algorithm; any (complete and disjoint)
“cut” of the resulting dendrogram is a summary.

In a summary each cluster is represented by a single FI; specifically, the repre-
sentative of cluster c is the most specific FI in c, i.e., such that I v rep(c),∀I ∈ c.
With reference to this, we note that the strategy commonly used in the literature
picks as a cluster representative its most general FI [5]; however, this strategy
often lacks in properly characterizing clusters since it easily yields very low rel-
evance as the cluster cohesion decreases, which may entail one or more features
appearing in some of the cluster FIs to be missing from the representative. Con-
versely, when using our strategy, all the features appearing in at least one FI of
the cluster are included in the representative.

As to the agglomerative clustering algorithm we adopt, it is basically a greedy
algorithm that progressively merges couples of clusters starting from singletons
and until one single cluster is obtained. Remarkably, the POS of FIs induced by
our definition of itemset containment allows the search space to be significantly
pruned. Indeed, our preliminary tests show that the POS obtained when a fea-
ture is described using a linear hierarchy of n levels is several orders of magnitude
smaller than the one we would get if those n levels were flat. Another relevant
improvement we get in terms of computational complexity depends on an in-
teresting property of our similarity function. It can be proved that, in domains
where the relevance of the levels of a hierarchy increases with the level of detail
(i.e., rel(l) ≥ rel(l′) if l �H l′), similarity is antimonotonic along the itemset
containment relationship. As a consequence, at each step of our agglomerative
algorithm we can just estimate the similarity between FIs that are directly con-
tained into one another, thus avoiding a large number of useless computations.

Finally, to visualize summaries we adopt treemaps, a popular method for
visualizing large hierarchical data sets by mapping hierarchical concepts into
2D areas [10]. Figure 4 shows a treemap in which the visualization area is
partitioned into nested rectangles, each corresponding to a cluster of FIs whose
area is proportional to the cluster cardinality; colors code both the predominant
feature (i.e., the one with the highest relevance within the cluster FIs) of the
cluster representative (hue) and its support (saturation). So, for instance, the
top right pink rectangle describes a cluster that (i) includes 97 FIs with support
ranging from 0.14 to 0.58 and relevance ranging from 1.00 to 3.60; (ii) has
10 child clusters in the dendrogram; and (iii) has a representative (namely,
{(earns, avg30), (livesIn, close), (livesIn, collina BO), (worksIn,Bologna), (worksIn,
close)}) whose predominant feature is livesIn. On this visualization the user
can then apply classical OLAP operators (roll-up, drill-down, slice-and-dice)
to navigate the dendrogram so as to flexibly explore the set of FIs at different
abstraction levels and focusing on the more relevant FIs.
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Fig. 4. Visualization of summaries
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