
Introducing Online Profile Learning in
Crowdsourcing Task Routing

Discussion Paper

Silvana Castano1, Alfio Ferrara1, and Stefano Montanelli1

Università degli Studi di Milano
DI - Via Comelico, 39 - 20135 Milano

{silvana.castano,alfio.ferrara,stefano.montanelli}@unimi.it

Abstract. In this paper, we present an initial implementation with ex-
perimental results of online profile learning in Argo+, a framework for
crowdsourcing task routing characterized by i) feature-based representa-
tion of both tasks and workers, and ii) learning techniques inspired to
Rocchio relevance feedback for prediction of the most appropriate task to
execute by a given worker.

1 Introduction

In the recent years, the crowdsourcing philosophy has gained a lot of atten-
tion and many crowdsourcing systems/platforms appeared on the web scene for
satisfying the growing need of marketplaces where the offer of requesters pro-
viding jobs to execute can meet the work-force provided by the crowd. Humans
have different knowledge and abilities, thus a crowd worker can be trustworthy
on a certain task campaign that is coherent with her/his attitudes, as well as
she/he can be inaccurate on another campaign with different topics and skill
requirements not compliant with her/his attitudes. As a result, the capability
to effectively discover and represent the profile of engaged crowd workers is be-
coming a strategic asset of emerging crowdsourcing marketplaces. The goal is to
selectively choose a qualified and motivated crowd to recruit/involve in a given
campaign according to the required knowledge/abilities based on the features of
the tasks to execute. In this direction, the use of machine-learning techniques in
crowdsourcing applications is being appearing in the recent literature for min-
ing emerging worker skills from the analysis of executed tasks [6, 7, 12]. Online
learning techniques based on (multi-armed) bandits algorithms have been also
proposed for improving the quality of crowdsourcing results [8, 10, 14]. Online
learning of worker skills is also concerned with the so-called task routing issue,
that is the capability of a crowdsourcing system to assign a task to a worker

SEBD 2018, June 24-27, 2018, Castellaneta Marina, Italy. Copyright held by the
author(s).

2 S. Castano et al.

based on the expectations to obtain a successful contribution from her/his an-
swer. In the literature, popular solutions are characterized by the idea to rely on
human factors for addressing task routing (e.g., [1, 9]).

In this paper, we present an initial implementation of online profile learning
in Argo+, a framework for crowdsourcing task routing characterized by i) feature-
based representation of both tasks and workers, and ii) learning techniques in-
spired to Rocchio relevance feedback for prediction of the most appropriate task
to execute by a given worker. A detailed description of the Argo+ framework is
provided in [5]. In the following, we focus on discussing the preliminary results
obtained on a real crowdsourcing campaign, by comparing the performance of
Argo+ against a baseline with conventional task routing techniques.

The paper il organized as follows. Section 2 presents the basic elements of
the proposed Argo+ implementation. Experimental results are then discussed in
Section 3. Concluding remarks are finally provided in Section 4.

2 Learning-based task routing

A crowdsourcing campaign is characterized by a crowd of workersW = {w1, . . . , wk}
involved in the execution of a set of tasks T = {t1, . . . , tn}. A task t ∈ T is de-
fined as t = 〈idt, at,mt, dt, Ft〉, where idt is the unique task identifier, at is the
task action, mt is the task modality, dt is the task description, and Ft is the set of
task-features. A task action at denotes the task target, namely the goal that needs
to be satisfied through crowd execution (e.g., picture labeling, movie recognition, sen-

timent evaluation). A modality mt represents the kind of worker answer required
in task execution (e.g., creation, decision). A description dt represents the task
request given to each worker for illustrating what is demanded to her/him in
the task execution. A set of task-features Ft manually associated with the task
for providing a description of task requirements, namely a specification of the
capabilities expected from a worker for being involved in the execution of the
task t. For each feature f ∈ Ft, a task-feature weight ω(f) is associated to denote
the relevance of f within the task-features Ft. A worker w ∈ W is defined as
w = 〈idw, Fw〉, where idw is the unique worker identifier and Fw is the worker
profile expressed as a set of worker-features. A worker-feature f ∈ Fw denotes a
worker capability, either knowledge expertise or skill, and it is associated with a
worker-feature weight ω(f) denoting the “degree” of expertise/ability associated
with the worker.

2.1 Assigning tasks to workers

For enforcing task routing, Argo+ relies on a task classification procedure for
aggregating the tasks T to execute into K classes, so that tasks with similar
features Ft are associated with a same class. In the proposed implementation
of Argo+, probabilistic topic modeling are exploited for task classification. The
choice is motivated by the need to enforce a soft aggregation mechanism, where
a task with a plurality of features can have multiple associated classes and it can

Introducing Online Profile Learning in Crowdsourcing Task Routing 3

be exploited by workers with different expertise, each one focused on a different
class. In particular, the proposed solution is characterized by the use of La-
tent Dirichlet Allocation (LDA) [3] over the task-features, characterized by two
discrete probability distributions, namely φ and θ. φ describes the probability
distribution of task-features on classes. In particular, φk denotes the probability
of each task-feature f of being associated with the kth class on the K possible
classes. θ describes the probability distribution of classes on tasks. In particu-
lar, θt denotes the probability of the task t of belonging to each class k among
the K possible classes. Finally, we denote θkt the probability of the task t to be
associated with the class k. The choice of K, namely the number of classes on
which LDA works for task classification, is a configuration parameter and it is
discussed in Section 3.

Consider a worker w and associated worker profile Fw. When w asks for a task
t to execute, the probability distributions (φ, θ) created by task classification are
exploited. Through φ, Argo+ calculates the maximum a posteriori estimation θw
given the worker features Fw. This is done by using collapsed Gibbs sampling [13]
to learn the latent assignment of features to classes given the observed features
Fw. In particular, we repeatedly estimate the probability p(f | φk) of a feature
f to be assigned to a class k and we exploit this to estimate the probability
p(k | w) of the class k to be the correct assignment for the worker w. This
sampling process is repeated until convergence, so that for each class k ∈ K we
finally estimate:

θkw ∝

∑
f∈Fw

ω(f)k∑
f∈Fw

∑
j∈K

ω(f)j
, (1)

where ω(f)i denotes the weight of features of type f that have been assigned to
class i. Then, from the distribution θw, we select the class z and task t such that:

z = arg max
z∈K

θzw. (2) t = arg max
t∈T

θzt . (3)

We stress that a task t is available for assignment until the number of task
executions expected by the system is reached, then it is marked as finished and
it is excluded from the assignment mechanism.

Example 1. Consider to enforce Argo+ on a system with task classification based
on K = 10 and a set of thematic tags used as features both for tasks and
workers. A worker w asks for a task to execute and the profile Fw is defined by
the following features:

Fw = 〈 (web search, 0.85), (classification, 0.85), (smartphone, 0.51), (text, 0.34), ... 〉

Starting from Fw, we exploit Equation 1 in order to classify the worker w with
respect to the classes K. The resulting distribution θw is:

K 1 2 3 4 5 6 7 8 9 10

θw 0.07 0.57 0.02 0.08 0.06 0.02 0.02 0.04 0.02 0.07

4 S. Castano et al.

From θw, we exploit Equation 2 to select the most relevant class for the worker
profile, that is k = 2. The top-3 features associated with k = 2 in φ2 are:
classification, tweets, and web search, which motivates the relevance of the class with
respect to the worker profile Fw. Given the class, it is now possible to exploit
Equation 3 in order to select a task t for worker execution. The features Ft of
the task selected for assignment to w are Fw = 〈 (web search, 1.0), (classification,

1.0), (smartphone, 1.0)〉

2.2 Learning worker profiles

Given a task t executed by a worker w, we need to assess the quality of the
provided worker answer for deciding how to update the worker profile, and thus
how to enforce learning. We call α(t) the final task result determined by the
crowdsourcing system. We note that different solutions can be employed for
determining α(t). Popular solutions are based on majority voting mechanisms
where the final task result corresponds to the answer that obtained the majority
of preferences by the involved workers. Alternative solutions are also possible,
such as for example statistics-based techniques [4]. We say that a worker w pro-
vided a successful contribution to the task t when the worker answer coincides
with (or is equivalent to) α(t). Otherwise, we say that a worker w provided an
unsuccessful contribution to the task t. According to this, we define the worker-
task result ρ(w, t) as follows:

ρ(w, t) =

{
1 if w provided succ. contrib.
0 otherwise

For updating a worker profile, Argo+ relies on learning techniques inspired
to the Rocchio relevance feedback [11]. When a worker w executes a task t, we
associate the worker w with a new set of features F ′

w = Fw ∪ Ft. We denote
ω(f)w as the weight of the feature f in Fw (possibly being 0 if f was not in Fw)
and ω(f)t the weight of feature f in Ft (possibly being 0 if f was not in Ft).
Then, the new weight ω(f)′ for each feature in F ′

w is updated as follows:

ω(f)′ = γ · ω(f)w + (1− δ) · θzt · ρ(w, t) · ω(f)t, (4)

where γ is a dumping factor in [0,1] that determines how much of the original
weight of the profile features contributes to the new weight, and z is the class
chosen for the task assignment. The idea behind profile update is that when a
worker profile feature is not included in the task features, its weight is reduced
by a factor δ. In the other case, the new profile feature weight ω(f)′ is computed
as the weighted sum between the previous profile feature weight ω(f)w and the
task feature weight ω(f)t, which contribution is proportional to the relevance
θzt of the task t in the class z. The task feature weight ω(f)t is forced to be
equal to 0 when the worker does not provide a successful contribution on the
task (resulting in a reduction of the corresponding profile feature weight).

Introducing Online Profile Learning in Crowdsourcing Task Routing 5

Example 2. Consider the task assignment of Example 1. The worker w executed
t and ρ(w, t) = 1. We update Fw by applying Equation 4. The updated worker
profile F ′

w is the following (the class-task relevance θ2t = 0.77):

Fw = 〈 (web search, 0.78), (classification, 0.78), (smartphone, 0.74), (text, 0.03), ... 〉

We note that the three features of t affects the worker profile by changing
the relative feature weights. Features web search and classification remain the most
relevant, but the weight of smartphone that is a feature of t is increased. On the
opposite, the feature text of Fw becomes remarkably less relevant in the new
worker profile, due to the fact that it is not part of the task feature set Ft. After
the profile update, Argo+ will exploit the new worker profile for the subsequent
task assignments to w.

3 Experimental results

For evaluation, we present some preliminary experimental results based on the
comparison of the proposed Argo+ implementation against a basic task routing
mechanism called from now on baseline.

3.1 Experiment setup

Our experiment relies on a crowdsourcing campaign (named paintings) run through
the Argo crowdsourcing system (i.e., the system version implementing baseline

routing) between November and December 2018. The experiment involved 367
students from the Faculty of Arts and Literature at the University of Milan, who
have been asked to examine a dataset of paintings in order to choose for each
painting the correct author among a choice of six possible painters. The paintings

dataset is composed by 948 paintings from 56 different authors spanning from
the 13th century to the 20th century. Each task has been executed by more than
one worker, for a total of 8,573 executions. The fact that the paintings dataset is
featured by a correct answer for each task (i.e., the correct name of the painting
author) makes it possible to easily evaluate the effectiveness of the work done by
each worker (i.e., successful contribution) in terms of number of correct answers
given to the tasks question.

To setup the experiment for evaluating Argo+, we compare the success rate
of the baseline execution of paintings against the success rate obtained through
two different executions of paintings in Argo+: i) one execution with a flat worker
profile (called Argo+noprofile) where ω(f) = 0 is initially defined for each feature
(i.e., worker-feature), and ii) one execution with a custom worker profile (called
Argo+profile) where ω(f) = 1 for each feature on which the worker has declared
a competence. Competences declared by workers have been collected through a
self evaluation questionnaire about knowledge of painters and different periods
in the art history. Task and worker features have been taken from Wikidata
(https://www.wikidata.org) and they include the name of the author, the

6 S. Castano et al.

WORKER OPTIONS

Raffaello Sanzio
Gustav Klimt
Piero della Francesca
Francisco Goya
Giotto
Michelangelo Buonarroti

TASK FEATURES

Raffaello Sanzio
1516
High Renaissance
Portrait paintings of
cardinals

EXAMPLE OF WORKER ANSWER

{ "gold_answer" : "Q5597",
 "argo_answer" : "Raffaello Sanzio",
 "worker_answer_id" : "Q5432",
 "worker_answer" : "Francisco Goya",
 "task_id" : 1102,
 "answer_timestamp" : 2017-11-13T14:42:19,
 "worker_id" : 527,
 "task_refused" : false }

Fig. 1. Example of task with task feature and an example of (wrong) worker answer

year, and the Wikidata thematic categories available for a painting. An example
of task and worker answer is given in Figure 1.

The goal of our experimental evaluation is to assess whether Argo+ improves
the success rate with respect to baseline. In order to simulate the execution of
Argo+noprofile and Argo+profile on exactly the same set of workers and answers
used in baseline, our experiments are based on the idea to change the time-
sequence of tasks executed by each worker in baseline according to the assignment
schedule determined by Argo+. We aim at verifying whether the tasks success-
fully executed by a worker w are assigned to w before than others. Being the
task answers the same for all the experiments, the overall success rate will be
the same as well. However, if Argo+ performs better than baseline, we expect to
execute correct tasks before. In other terms, we aim at verifying if Argo+ reaches
a success rate better than baseline by taking into account the first r tasks as-
signments. In particular, we call r (request timestamp), the timestamp at which
the crowdsourcing system receives the request for a task to execute by a worker,
and we call σ(r, τ) the success rate of the system execution τ at the request
timestamp r. A system execution is a stream of task answers, each one collected
from a worker at a certain timestamp. In our evaluation, baseline is the reference
system execution, while Argo+noprofile and Argo+profile represent alternative sys-
tem executions of baseline where the time-sequence of task answers is changed
according to the Argo+ routing mechanism. The success rate σ(r, τ) is defined
as follows:

(a) σ(r, τ) = 1
r

r∑
i=1

ρ(w, t)i ; (b) στR =
∫ R
1
σ(r, τ)dr

where ρ(w, t)i in (a) is the worker-task result received by the system at the ith
request timestamp in the execution τ and (b) measures the overall system per-
formance of task routing with R representing the overall number of successfully
executed tasks in a system execution τ (i.e., R is the sum of all the ρ(w, t) = 1
in τ). Given two different system executions ε and γ, the delta value δr(γ, ε)
represents how much the success rate of γ changes with respect to ε at time r.

The delta value δr(γ, ε) is defined as δr(γ, ε) = σ(r,γ)
σ(r,ε) .

3.2 Considerations

Experiments have been performed with a number of classes K = 30 for task
classification and a dumping factor γ = 0.3 for worker profile learning. The com-

Introducing Online Profile Learning in Crowdsourcing Task Routing 7

parison of baseline against Argo+noprofile and Argo+profile on success rate σ(r, τ)
and delta value δ(γ, ε) are shown for the first 200 tasks requests in Figures 2(a)
and 2(b), respectively. We observe that both Argo+noProfile and Argo+Profile suc-

0 25 50 75 100 125 150 175 200
Task request

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

(r,
)

Baseline
Argo+ noprofile
Argo+ profile

0 25 50 75 100 125 150 175 200
Task request

0

1

2

3

4

5

6

In
cr

em
en

t o
f p

er
fo

rm
an

ce
 I(

,
) w

ith
 re

sp
ec

t t
o

th
e

ba
se

lin
e

Argo+ noprofile
Argo+ profile

(a) (b)

Fig. 2. (a) success rate on executed tasks, (b) increment of performances with respect
to baseline

ceed in improving the success rate of baseline, since successfully executed tasks
are assigned to workers before other tasks in most cases. For the first 200 re-
quests, the success rate of Argo+Profile is around 20% better than baseline. It
is also interesting to note that, at the very beginning of the system execution
(r < 50), the behavior of Argo+noProfile and Argo+Profile is very unstable since
learning has insufficient information for recognizing the appropriate task class for
each worker. However, Argo+ quickly learns the worker profile (r ≥ 50) and this
has a positive impact on the assignment of subsequent tasks. The performance
of Argo+noProfile becomes similar to baseline after the 300th worker request. This
is due to the fact that Argo+ first selects tasks that are highly relevant for the
worker profile, while subsequent assignments are about residual tasks of the K
classes for which the relevance for the worker profile is weaker.

Finally, we compare baseline and Argo+ through στR and we obtain that
στR = 399.59 for baseline, στR = 424.66 for Argo+Profile, and στR = 399.61 for
Argo+noProfile. As a result, we observe that the use of a questionnaire for initial-
izing the worker profile provides the best performance on the three considered
system executions (see also Figure 2(b) on the increment value). However, after a
small number of executions, the performance of the learning system without the
initial set-up of the worker profile becomes similar to the one of the system exe-
cution initialized with the questionnaire. This confirms the intuition behind the
use of flat profiles which argues that the auto-evaluation of worker skill/abilities
could be misplaced with respect to the real worker expertise, and thus sometimes
damaging the performance of the crowdsourcing system.

8 S. Castano et al.

4 Concluding remarks

In this paper, we presented an implementation of profile learning techniques in
Argo+ crowdsourcing framework [5] with some experimental results. Ongoing
research activities are aimed i) to extend the experimentation for considering
multiple kinds of tasks with different action, modality, and description, and ii)
to improve the Argo+ framework to support worker profile management over
different crowdsourcing campaigns with different task/worker features.

References

1. Amer-Yahia, S., Roy, S.B.: Human Factors in Crowdsourcing. PVLDB 9(13), 1615–
1618 (2016)

2. Arun, R., Suresh, V., Madhavan, C.V., Murthy, M.N.: On Finding the Natural
Number of Topics with Latent Dirichlet Allocation: Some Observations. In: Proc.
of the 14th PAKDD Conference. Hyderabad, India (2010)

3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of machine
Learning research 3(Jan), 993–1022 (2003)

4. Castano, S., Ferrara, A., Montanelli, S.: A Multi-Dimensional Approach to Crowd-
Consensus Modeling and Evaluation. In: Proc. of the 34th ER Int. Conference.
Stockholm, Sweden (2015)

5. Castano, S., Ferrara, A., Montanelli, S.: A Conceptual Framework for Crowdsourc-
ing Task Assignment with Online Profile Learning. In: Submitted to the 37th ER
Int. Conference. Xi’an, China (2018)

6. Gadiraju, U., Fetahu, B., Kawase, R.: Training Workers for Improving Performance
in Crowdsourcing Microtasks. In: Proc. of the 10th EC-TEL. Toledo, Spain (2015)

7. Goncalves, J., Feldman, M., Hu, S., Kostakos, V., Bernstein, A.: Task Routing and
Assignment in Crowdsourcing Based on Cognitive Abilities. In: Proc. of the 26th
WWW Int. Conference. Perth, Australia (2017)

8. Jain, S., Narayanaswamy, B., Narahari, Y.: A Multiarmed Bandit Incentive Mech-
anism for Crowdsourcing Demand Response in Smart Grids. In: Proc. of the 28th
AAAI Conference on Artificial Intelligence. pp. 721–727. Qulébec, Canada (2014)

9. Karger, D.R., Oh, S., Shah, D.: Budget-Optimal Task Allocation for Reliable
Crowdsourcing Systems. Oper. Res. 62(1), 1–24 (2014)

10. Liu, Y., Liu, M.: An Online Learning Approach to Improving the Quality of Crowd-
Sourcing. IEEE Transactions on Networking 25(4), 2166–2179 (2017)

11. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval,
vol. 1. Cambridge university press Cambridge (2008)

12. Organisciak, P., Teevan, J., Dumais, S.T., Miller, R., Kalai, A.T.: A Crowd of Your
Own: Crowdsourcing for On-Demand Personalization. In: Proc. of the 2nd AAAI
HCOMP. Pittsburgh, USA (2014)

13. Porteous, I., Newman, D., Ihler, A., Asuncion, A., Smyth, P., Welling, M.: Fast
Collapsed Gibbs Sampling for Latent Dirichlet Allocation. In: Proc. of the 14th
ACM SIGKDD Int. Conference. pp. 569–577 (2008)

14. Tran-Thanh, L., Stein, S., Rogers, A., Jennings, N.R.: Efficient Crowdsourcing of
Unknown Experts using Bounded Multi-armed Bandits. Artificial Intelligence 214,
89–111 (2014)

