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Abstract. We consider the scenario where the executions of different
business processes are traced into a log, whose traces describe the pro-
cess instances as sequences of low-level events (representing basic kinds
of operations). In this context, we address the following problem: given
a description of the processes’ behaviors in terms of high-level activities
(instead of low-level events), and in the presence of uncertainty in the
mapping between events and activities, find all the interpretations of each
trace Φ, in terms of the process model that Φ conforms to and of the se-
quence of activities that may have triggered the events in Φ. We describe
the probabilistic framework presented in [7] supporting the extraction of
a compact representation of Φ’s interpretations, where each interpreta-
tion is associated with a probability score representing the probability of
being the actual one.

Keywords: Business processes · Graph structure · Probabilistic condi-
tioning.

1 Introduction

Thanks to the increasing diffusion of automated tracing systems, the analysis of
log data describing executions of business processes has gained momentum with
the growth of the Process Mining research field, which addresses the “confronta-
tion between event data and process models” [1] through new process-aware data
analysis tasks, such as: inducing a process model [2], quantifying “how much” a
log and a model conform one to the other [14], and supporting advanced query-
based process analytics [13, 6, 8, 9].

However, all the approaches and tools developed in this field require that
each log event can be mapped to well-defined activities, corresponding to some
high-level view of the process. As a matter of fact, this assumption often does
not hold in practice: in the logs of many processes, the events just represent
low-level operations, with no clear reference to the business activities that were
carried out through these operations, as shown in the following example.
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activity activity

label description

A Send an alert to managers

D Dispatch a contract proposal

F Fix the issue

G Get more information from the client

I Retrieve data from the IS

N Notify the request’s outcome

P Define a service package

R Receive a request

Fig. 1. Running example: processes, activities and events (left), and activity descrip-
tions (right). The graph on the left summarizes the possible mappings between activities
and events, and process-activity relationships.

Example 1 (Running example). Consider the case of a phone company, where
two business processes are carried out: a process W1 for the activation of services,
and an issue-management process W2.

An abstract description of the behaviors of these processes is available in
the form of loose process models, that specify which high-level activities compose
each process, and several temporal constraints over the execution of the activities.
The activities of processes W1 and W2 are shown in Figure 1 via process-activity
links. In addition, assume that the following constraints are known to be satisfied
by the two processes’ instances: (i) every instance of either process starts and
ends with an execution of activities R and N , respectively, and these activities
cannot be executed multiple times in the instance; (ii) in every instance of W1,
any execution of activity P (resp. D) must be followed (resp. cannot be followed)
by an execution of activity D (resp. P ).

All these activities are performed by executing low-level operations (e.g., email
exchanges, phone calls, database accesses). Figure 1 reports all the operations,
regarded each as an event and denoted with a Greek letter, as well as their map-
ping to the high-level activities.

Notably, the event-activity mapping is many to many: for example, activity G
can produce an instance of either event δ or event γ, while an instance of event δ
can be generated by the execution of either activity G or N . Thus, any execution
of a process activity generates an instance of one of the events associated with
the activity, and the sequence of all the event instances that are produced for an
entire process instance is stored in the log as the trace of the process instance.
For example, an instance of W1 corresponding to the activity sequence RI GP N



might be stored in the log in the form of a trace α β γ β ξ or of a trace α β δ β
δ, where α (resp. β, γ, etc.) denotes an instance of event α (resp. β, γ, etc.).

Assume that we want to interpret a trace Φex = α β ξ ξ as an execution
of either W1 or W2, that means replacing each event in Φex with one of the
activities that could have generated it, while ensuring that the resulting activity
sequence complies with one of the process models. Only three of such activity
sequences exist for Φex: R I D N , R I A N , and R P D N . Indeed, the
sequence R P A N too complies with the event-activity mapping, but it is not a
valid interpretation, since it does not conform to either W1 (no occurrence of D
appears in the sequence after that of P ) or W2 (P is not an activity of W2).

In the process management scenario like that illustrated above, we address
the following problem, called interpretation problem: Given a log L, containing
traces generated by an arbitrary number of business processes, and a set W of
(partial) behavioral models for the processes, we want to interpret each trace
Φ = e1 . . . em in L by establishing: 1) the process whose execution generated the
sequence of events stored in Φ, and 2) for each low-level event ei in Φ, which
activity generated ei as a result of its execution.

The need of bridging some abstraction gap between log events and process
activities has been addressed by several recent works [11, 4, 3, 15, 12], However,
these approaches cannot actually solve the interpretation problem stated above
as: (i) they assume that all the given traces come from a single business process;
and (ii) they return just one “optimal” interpretation for each trace. In fact,
the problem stated here has been only considered in [5] and in [10] in simplified
settings. Both these interpretation techniques have been considered as terms of
comparison in the experimental evaluation of our approach performed in [7].

2 Our framework

In our context, an instance w of a process W is the execution of a sequence
A1 . . . Am of activities ; in turn, the execution of each activity Ai yields an in-
stance ei of an event Ei; hence, the trace describing w consists in the sequence
e1 . . . em of event instances. For any event ei occurring in a trace, we assume that
the starting time of its execution is stored in the log, and denote it as ei.ts. In the
following, we assume given the sets W, A, E of (types of) processes, activities,
and events, respectively.

We assume that every process W ∈ W is “regulated” by a “composition
rule”, that restricts the sequences of activities that are allowed to be executed
when W is enacted. The set of composition rules of the processes in W will be
denoted as CR. More specifically, the composition rule associated with W is a
tuple 〈ActSet, StartAct, EndAct, IC〉, where:

- ActSet is the set of activities that are allowed to be executed in any instance
of W ;

- StartAct (resp. EndAct) ⊆ActSet is the set of the starting (resp. ending)
activities of W , which are the activities that are allowed to be executed at
the beginning (resp. end) of any instance of W ; and



- IC is a set of constraints of the form A ⇒T B (called must-constraint) or
A ⇒T ¬B (called not-constraint), where A, B ∈ A and T is of the form
‘≤ c’, where c is a constant.

Here, A ⇒T B (resp. A ⇒T ¬B), that basically imposes that, within every
instance of W , the beginning of an instance a of A always (resp. never) precedes
the beginning of an instance b of B such that the width of the interval between
the starting times of a and b satisfies T . Omitting T is the same as specifying
T =‘≤ ∞’.

Example 2 (Running example (continued)). Continuing Example 1, it holds:
W1.ActSet = {G,D,P,N,A,R, I}, W2.ActSet = {N,A,R, I, F},
W1.StartAct = W2.StartAct = {R}, W1.EndAct = W2.EndAct = {N},
W1.IC = {P ⇒ D,D ⇒ ¬P}, and W2.IC = ∅.

The solution of an instance Φ = e1 . . . em of the interpretation problem is
called interpretation for Φ consistent with CR (or, simply, consistent or valid
interpretation, when Φ and CR are understood), and is a pair 〈σ,W 〉, where:

– σ is called sequence-interpretation and is a sequence A1 . . . Am of activities,
where ∀j ∈ [1..m] Aj ∈ cand-act(ej) (where cand-act(ej) is the set of activities
whose execution is known to possibly generate an instance of ej), meaning that
each ej is interpreted as the result of executing activity Aj ;

– W is called process-interpretation and denotes a process, meaning that Φ is
interpreted as generated by process W ;

– σ conforms to the composition rule of W .

Example 3 (Running example (continued)). Consider trace Φ1 = αβγξ, where
α, β, γ, and ξ are instances of α, β, γ and ξ, respectively. The correspon-
dence depicted in Figure 1 between the types of the events occurring in Φ1

and the activities is encoded by: cand-act(α) = {R}, cand-act(β) = {I, P},
cand-act(γ) = {G} and cand-act(ξ) = {A,D,N}. On the basis of this
cand-act(·), Φ1 can be interpreted as the result of executing one of the
following sequences of activities: σ1 = RI GA, σ2 = RP GA, σ3 = RI GD,
σ4 = RP GD, σ5 = RP GN , and σ6 = RI GN . By also looking at the compo-
sition rules of the process models, we have that: (i) σ1 is inconsistent with the
composition rule of W1, as A /∈ W1EndAct, and also with W2’s composition rule,
since both G /∈ W2.ActSet and A /∈ W2.EndAct ; (ii) σ2 is inconsistent with the
composition rule of W1, since it violates P → D and it is A /∈ W1.EndAct, and it
is inconsistent with also with the composition rule ofW2, since G,P /∈ActSet and
A /∈ W2.EndAct ; (iii) σ3 is inconsistent with the composition rules of both W1

and W2, since D /∈ W1EndAct, D /∈ W2.EndAct and G /∈ W2.ActSet ; (iv) σ4 is
inconsistent with the composition rules of bothW1 andW2, sinceD /∈ W1EndAct
and D /∈ W2.EndAct (also G,P /∈ W2.ActSet); (v) σ5 is inconsistent with the
composition rule of W1, since it violates P → D, and with W2’s composition
rule, since G /∈ W2.ActSet ; and (vi) σ6 is consistent with the composition rule of
W1, and inconsistent with W2’s composition rule, since G /∈ W2.ActSet. Thus,
we have only one consistent interpretation for Φ1, that is 〈σ6,W1〉. Consider



now the trace Φ2 = αβξξ, which coincides with the trace Φex of Example 1. As
discussed in that example, the only consistent sequence-interpretations for Φ2

are σa = RI DN , σb = RP DN , and σc = RI AN , leading to the following
interpretations: 〈σa,W1〉, 〈σb,W1〉, 〈σc,W1〉 and 〈σc,W2〉.

As a matter of fact, an instance of the interpretation problem admitting
multiple solutions. This situation is likely to happen frequently, for the following
reasons: 1) the correspondence between events and activities is many to many,
so that an event instance can be interpreted as the result of different activity
executions; 2) the description of the process models provided by composition
rules can be rather “loose”, and hence there may be process instances consistent
with the composition rules of different processes: that is, the execution of a
sequence of activities can be interpreted as the execution of different processes.

The presence of this uncertainty suggests to address the interpretation
problem in probabilistic terms: we model the correspondence between events
and activities probabilistically. In this direction, we assume that the many-to-
many correspondence between events and activities is modeled by a probability
distribution function (pdf) pa(A|E) returning the a-priori probability that
an instance of event E is generated by an execution of A. For instance,
pa(A1|E1) = 0.75 and pa(A2|E1) = 0.25 means that any instance of event E1

is generated by the execution of either A1 or A2, and that the former case is
three times more probable than the latter. This pdf is said to be a-priori since
it assigns probabilities to the activities, of which the event can be viewed as
the low-level result, without looking at the context where the event instance
happened. That is, it provides an interpretation for the events that occur in a
trace without looking at the other events occurring in the same trace.

In the same spirit, we assume given a pdf pa(W ) over W, associating each
W ∈ W with the a-priori probability that a trace in a log encodes an instance of
W . For instance, given W = {W1,W2}, p

a(W1) = pa(W2) = 0.5 means that, in
the absence of further knowledge, W1 and W2 are equi-probable interpretations
of any trace.

Given the a-priori pdfs pa(A|E) and pa(W ), we could employ a näıve way
to solve the interpretation problem, that is the following: first, assume that the
event instances in Φ are independent of one another; then, use the a-priori pdf
pa(A|E) to probabilistically interpret each ei in Φ = e1 . . . em as an instance of
an activity Ai, and the pdf pa(W ) to probabilistically interpret the whole Φ as
an instance of one of the processes, say Wj . As implied by the independence
assumption, every sequence-interpretation σ = A1 . . . Am obtained this way will
be associated with the probability pa(σ) = Πm

i=1p
a(Ai|Ei) (that is, the product

of the a-priori probabilities of the event-to-activity mappings at each step), while
the process-interpretation Wj will have probability pa(Wj). In turn, the interpre-
tation 〈σ,Wj〉 will have probability pa(〈σ,Wj〉) = pa(σ) ·pa(Wj). Unfortunately,
this näıve approach is unlikely to provide reasonable results, as explained in the
following example.

Example 4 (Running example (continued)). Assume that the a-priori probabil-
ities of the activities are pa(R|α) = 1, pa(I|β) = pa(P |β) = 0.5, pa(G|γ) = 1,



pa(G|δ) = 0.4, pa(N |δ) = 0.6, pa(A|ξ) = 0.2, pa(D|ξ) = 0.5, pa(N |ξ) = 0.3, and
pa(F |φ) = 1, and those of the the processes are pa(W1) = 0.6, pa(W2) = 0.4.
Consider trace Φ1. Every sequence-interpretation of Φ1 is associated with a
probability, implied by pa and the independence assumption. In particular:
pa(σ1) = pa(R|α) · pa(I|β) · pa(G|γ) · pa(A|ξ) = 0.1; pa(σ2) = 0.1; pa(σ3) =
pa(σ4) = 0.25; pa(σ5) = pa(σ6) = 0.15. Moreover, owing to the values of
pa(W1) and pa(W2), we can say that Φ1 encodes an execution of W1 with
probability 0.6, and of W2 with probability 0.4. In turn, the probabilities of
any interpretation 〈σ,W 〉 for Φ1 (with W ∈ {W1,W2} and σ ∈ {σ1, . . . , σ6})
is pa(〈σ,W 〉) = pa(σ) · pa(W ). In particular: pa(〈σ1,W1〉) = 0.1 · 0.6 = 0.06,
pa(〈σ1,W2〉) = 0.1 · 0.4 = 0.04, and so on. However, we know from our running
example that there is only one interpretation consistent with the composition
rules, that is 〈σ6,W1〉. Moreover, the sum of the probabilities of the consistent
interpretations should be 1 (or, equivalently, every invalid interpretation should
have zero probability), while, in this case, the a-priori probability of the only
valid interpretation 〈σ6,W1〉 is p

a(σ6) · p
a(W1) = 0.09, and the other interpreta-

tions (that are all invalid) have non-zero probability.

Example 4 shows that the näıve approach, relying only on the independence
assumption and the a-priori pdfs for interpreting the traces, may yield wrong
conclusions. In fact, to solve the interpretation problem, we resort to proba-
bilistic conditioning, that is a well-known paradigm used in the general context
of forcing integrity constraints over probabilistic databases where the assump-
tion of independence between tuples is originally used. In our case, applying the
conditioning paradigm means revising the a-priori pdf pa(〈σ,W 〉) over the inter-
pretations into pa(〈σ,W 〉 | CR). The latter returns either 0, if the interpretation
〈σ,W 〉 is invalid, or the ratio of its a-priori probability to the sum of the a-priori
probabilities of all the valid interpretations, otherwise.

The problem of conditioning a pdf is generally complex. In our scenario,
we could revise pa(〈σ,W 〉) into pa(〈σ,W 〉 | CR) by first enumerating all the in-
terpretations of Φ, then discarding those not satisfying the composition rules,
and finally revising the a-priori probabilities of the remaining ones. Unfortu-
nately, this approach is often infeasible, as the interpretations to deal with are
too many. For instance, if, for a trace of 50 event instances, two activities are
on average compatible with each event of the trace, we have to consider 250

sequence-interpretations.
Our main contribution is a framework for efficiently constructing a compact

representation (called cas-graph) of the interpretations of an input trace Φ that
are consistent with CR, and of the conditioned pdf pa(〈σ,W 〉 | CR).

2.1 Cas-graph

Figure 2 reports a simplified example of cas-graph, built over trace Φ2 = αβξξ
of our running example. The nodes of the cas-graph are of the form 〈i, Act,
W 〉, where i is the step of the trace over which the node has been built, Act is
the activity of which ei has been interpreted to be an execution, and W is the



process of which Φ2 has been interpreted to be an instance. The source nodes
of the cas-graph are not built over trace steps, but they are only used as the
nodes from which all the paths representing interpretations of Φ2 as instances
of a same process W start. This cas-graph represents the three interpretations
〈σa,W1〉, 〈σb,W1〉, 〈σc,W1〉 (encoded by the three source-to-target paths origi-
nating from the source node over W1), and the interpretation 〈σc,W2〉 (encoded
by the source-to-target path originating from the source node over W2). More-
over, each source node n is assigned the conditioned probability that Φ is an
instance of the process in n, whereas each edge 〈ni−1, ni〉 is assigned the condi-
tioned probability that event ei corresponds to an execution of the activity in
ni given that the event ei−1 corresponds to an execution of the activity in ni−1.
Basically, the probabilities of the two source nodes in Fig. 2 mean that Φ2 is
an execution of W1 (resp. W2) with probability 90% (resp. 10%). Moreover, the
probabilities assigned to the edges encode the conditioned probabilities of the
interpretations: the conditioned probabilities that 〈σa,W1〉, 〈σb,W1〉, 〈σc,W1〉
and 〈σc,W2〉 actually are the pairs 〈 activity sequence, process 〉 that generated
Φ2 can be obtained by multiplying the probabilities of the source nodes and of
all the edges appearing along the paths that encode each of these interpreta-
tions (that is, 15%(= 90% × 1 × 58.3% × 28.6% × 1), 37.5%, 37.5% and 10%,
respectively).

The nodes of a cas-graph are said to be activity nodes. Each activity node
n is defined over an event ei of Φ, and represents an interpretation of ei as an
instance of some activity A within the execution of some process W . In a cas-
graph, an activity node is the successor of activity nodes encoding alternative
interpretations of the previous event ei−1, and its successors are activity nodes
encoding alternative interpretations of the next event ei+1.

The construction of the cas-graph is performed by considering the steps of
Φ in order and, at each step, by progressively building the activity nodes over
the current step. Specifically, constructing an activity node n over the current
step requires checking whether the interpretation that it provides of the current
step is consistent (according to CR) with the interpretations of the past events
encoded by the predecessors of n. Hence, in order to efficiently support this
compatibility check, each activity node n also contains a compact description
of what the interpretations of the previous steps impose on the interpretations
of the future steps, due to the presence of CR (for the sake of simplicity, this
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Fig. 2. A (simplified) example of cas-graph built over trace Φ2 of our running example.



compact description was not reported in the nodes of the “simplified” cas-graph
in Fig. 2). For more detail, we kindly refer the reader to [7].

3 Conclusion

We discussed the framework for efficiently interpreting business process logs
composed of low-level events proposed in [7]. The proposed structure allows a
compact representation of all the interpretations compatible with the constraints
defined over the process models.
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