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Abstract. The TPTP world is a well established infrastructure that
supports research, development, and deployment of Automated Theo-
rem Proving systems for classical logics. The TPTP language is one of
the keys to the success of the TPTP world. Originally the TPTP world
supported only first-order clause normal form (CNF). Over the years sup-
port for full first-order form (FOF), monomorphic typed first-order form
(TF0), rank-1 polymorphic typed first-order form (TF1), monomorphic
typed higher-order form (TH0), and rank-1 polymorphic typed higher-
order form (TH1), have been added. TF0 and TF1 together form the TFF
language family; TH0 and TH1 together form the THF language fam-
ily. This paper introduces the eXtended Typed First-order form (TFX),
which extends TFF to include boolean terms, tuples, conditional expres-
sions, and let expressions.

1 Introduction

The TPTP world [12] is a well established infrastructure that supports research,
development, and deployment of Automated Theorem Proving (ATP) systems
for classical logics. The TPTP world includes the TPTP problem library, the
TSTP solution library, standards for writing ATP problems and reporting ATP
solutions, tools and services for processing ATP problems and solutions, and
it supports the CADE ATP System Competition (CASC). Various parts of the
TPTP world have been deployed in a range of applications, in both academia and
industry. The web page http://www.tptp.org provides access to all components.

The TPTP language is one of the keys to the success of the TPTP world. The
language is used for writing both TPTP problems and TSTP solutions, which
enables convenient communication between different systems and researchers.
Originally the TPTP world supported only first-order clause normal form (CNF)
[16]. Over the years support for full first-order form (FOF) [11], monomorphic
typed first-order form (TF0) [15], rank-1 polymorphic typed first-order form
(TF1) [2], monomorphic typed higher-order form (TH0) [14], and rank-1 poly-
morphic typed higher-order form (TH1) [4], have been added. TF0 and TF1
together form the TFF language family; TH0 and TH1 together form the THF
language family. See [13] for a recent review of the TPTP.

Since the inception of TFF there have been some features that have received
little use, and hence little attention. In particular, tuples, conditional expressions



(if-then-else), and let expressions (let-defn-in) were neglected, and the latter two
were horribly formulated with variants to distinguish between their use as for-
mulae and terms. Recently, conditional expressions and let expressions have be-
come more important because of their use in software verification applications.
In an independent development, Evgenii Kotelnikov et al. introduced FOOL [7],
an extension of many-sorted first-order logic. FOOL contains (i) an interpreted
boolean type, which allows boolean variables to be used as formulae, and al-
lows all formulae to be used as boolean terms, (ii) conditional expressions, and
(iii) let expressions. FOOL can be straightforwardly extended with the polymor-
phic theory of tuples that defines first class tuple types and terms [8]. Features
of FOOL can be used to concisely express problems coming from program anal-
ysis [8] or translated from more expressive logics. The conditional expressions
and let expressions of FOOL resemble those of the SMT-LIB language version
2 [1].

The TPTP’s new eXtended Typed First-order form (TFX) language remedies
the old weaknesses of TFF, and incorporates the features of FOOL. This has been
achieved by conflating (with some exceptions) formulae and terms, removing
tuples from plain TFF, including fully expressive tuples in TFX, removing the
old conditional expressions and let expressions from TFF, and including new
elegant forms of conditional expressions and let expressions as part of TFX.
(These more elegant forms have been mirrored in THF, but that is not a topic
of this paper.) TFX is a superset of the revised TFF language. This paper
describes the extensions to the TFF language form that define the TFX language.
The remainder of this paper is organized as follows: Section 2 reviews the TFF
language, and describes FOOL. Section 3 provides technical and syntax details
of the new features of TFX. Section 4 describes the evolving software support for
TFX, and provides some examples that illustrate its use. Section 5 concludes.

2 The TFF Language and FOOL

The TPTP language is a human-readable, easily machine-parsable, flexible and
extensible language, suitable for writing both ATP problems and solutions. The
top level building blocks of the TPTP language are annotated formulae. An
annotated formula has the form language(name, role, formula, source, use-
ful_info). The languages supported are clause normal form (cnf), first-order
form (fof), typed first-order form (tff), and typed higher-order form (thf).
The role, e.g., axiom, lemma, conjecture, defines the use of the formula in an
ATP system. In the formula, terms and atoms follow Prolog conventions, i.e.,
functions and predicates start with a lowercase letter or are ’single quoted’,
variables start with an uppercase letter, and all contain only alphanumeric char-
acters and underscore. The TPTP language also supports interpreted symbols,
which either start with a $, or are composed of non-alphanumeric characters,
e.g., the truth constants $true and $false, and integer/rational/real numbers
such as 27, 43/92, −99.66. The logical connectives are !, ?, ~, |, &, =>, <=, <=>,
and <~>, for ∀, ∃, ¬, ∨, ∧,⇒,⇐,⇔, and ⊕ respectively. Equality and inequality
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are expressed as the infix operators = and !=. The following is an example of an
annotated first-order formula, supplied from a file.

fof(union,axiom,
! [X,A,B] :

( member(X,union(A,B))
<=> ( member(X,A)

| member(X,B) ) ),
file(’SET006+0.ax’,union),
[description(’Definition of union’),relevance(0.9)]).

2.1 The Typed First-order Form TFF

TFF extends the FOF language with types and type declarations. The TF0 vari-
ant is monomorphic, and the TF1 variant is rank-1 polymorphic. Every function
and predicate symbol is declared before its use with a type signature that specifies
the types of the symbol’s arguments and result. Each TF0 type is one of

– the predefined types $i for ι (individuals) and $o for o (booleans);
– the predefined arithmetic types $int (integers), $rat (rationals), and $real

(reals); or
– user-defined types (constants).

User defined types are declared before their use to be of the kind $tType, in
annotated formulae with the type role - see Figure 1 for examples. Each TF0
type signature declares either

– an individual type τ ; or
– a function type (τ1 * · · · * τn) > τ̃ for n > 0, where τi are the argument

types, and τ̃ is the result type.

The type signatures of uninterpreted symbols are declared like types, in an-
notated formulae with the type role - see Figure 1 for examples. The type of =
and != is ad hoc polymorphic over all types except $o (this restriction is lifted
in TFX), with both arguments having the same type and the result type being
$o. The types of arithmetic predicates and functions are ad hoc polymorphic
over the arithmetic types; see [15] for details. Figure 1 illustrates some TF0 for-
mulae whose conjecture can be proved from the axioms (it’s the TPTP problem
PUZ130_1.p).

The polymorphic TF1 extends TF0 with (user-defined) type constructors,
type variables, polymorphic symbols, and a new binder. Each TF1 type is one of

– the predefined types $i and $o;
– the predefined arithmetic types $int, $rat, and $real;
– user-defined n-ary type constructors applied to n type arguments; or
– type variables, which must be quantified by !> - see the type signature forms

below.
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Type constructors are declared in annotated formulae with a type role before
their use, to be of the kind ($tType * · · · * $tType) > $tType. Each TF1 type
signature declares either
– an individual type τ ;
– a function type (τ1 * · · · * τn) > τ̃ for n > 0, where τi are the argument

types and τ̃ is the result type; or
– a polymorphic type !>[α1: $tType, . . . ,αn: $tType]: ς for n > 0, where
α1, . . . , αn are distinct type variables and ς is a TF0 type signature.

The !> binder in the last form denotes universal quantification in the style
of λΠ calculi. It is used only at the top level in polymorphic type signatures. All
type variables must be of type $tType; more complex type variables are beyond
rank-1 polymorphism. An example of TF1 formulae can be found in [4].

%------------------------------------------------------------------------
tff(animal_type,type, animal: $tType ).
tff(cat_type,type, cat: $tType ).
tff(dog_type,type, dog: $tType ).
tff(human_type,type, human: $tType ).
tff(cat_to_animal_type,type, cat_to_animal: cat > animal ).
tff(dog_to_animal_type,type, dog_to_animal: dog > animal ).
tff(garfield_type,type, garfield: cat ).
tff(odie_type,type, odie: dog ).
tff(jon_type,type, jon: human ).
tff(owner_of_type,type, owner_of: animal > human ).
tff(chased_type,type, chased: ( dog * cat ) > $o ).
tff(hates_type,type, hates: ( human * human ) > $o ).

tff(human_owner,axiom, ! [A: animal] : ? [H: human] : H = owner_of(A) ).
tff(jon_owns_garfield,axiom, jon = owner_of(cat_to_animal(garfield)) ).
tff(jon_owns_odie,axiom, jon = owner_of(dog_to_animal(odie)) ).
tff(jon_owns_only,axiom,

! [A: animal] :
( jon = owner_of(A)

=> ( A = cat_to_animal(garfield) | A = dog_to_animal(odie) ) ) ).

tff(dog_chase_cat,axiom,
! [C: cat,D: dog] :

( chased(D,C)
=> hates(owner_of(cat_to_animal(C)),owner_of(dog_to_animal(D))) ) ).

tff(odie_chased_garfield,axiom, chased(odie,garfield) ).

tff(jon_hates_jon,conjecture, hates(jon,jon) ).
%------------------------------------------------------------------------

Fig. 1. TF0 Formulae
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2.2 FOOL

FOOL [7], standing for First-Order Logic (FOL) + bOoleans, is an extension of
many-sorted first-order logic. FOOL contains (i) an interpreted boolean type,
which allows boolean variables to be used as formulae, and allows all formulae
to be used as boolean terms, (ii) conditional expressions, and (iii) let expres-
sions. FOOL can be straightforwardly extended with the polymorphic theory of
tuples that defines first class tuple types and terms [8]. In what follows we con-
sider that extension, and tuples are part of TFX. There is a model-preserving
transformation of FOOL formulae to many-sorted first-order logic [7], so that an
implementation of the transformation makes it possible to reason in FOOL using
an existing ATP system for many-sorted first-order logic. Formulae of FOOL can
also be efficiently translated to first-order clause normal form [6]. The following
describes these features of FOOL, illustrating them using examples taken from
[5] and [8]. The complete formal semantics of FOOL is given in [7].

Boolean Terms and Formulae
FOOL contains an interpreted two-element boolean type bool , allows quantifica-
tion over variables of type bool , and considers formulae to be terms of type bool .
This allows boolean variables to be used as formulae, and all formulae to be used
as boolean terms. For example, Formula 1 is a syntactically correct tautology in
FOOL.

(∀x : bool)(x ∨ ¬x) (1)

Logical implication can be defined as a binary function imply of the type bool ×
bool → bool using the axiom

(∀x : bool)(∀y : bool)(imply(x, y)⇔ ¬x ∨ y). (2)

A graph P of a (partial) function of the type σ → τ can be expressed as

(∀x : σ)(∀y : τ)(∀z : τ)imply(P (x, y) ∧ P (x, z), y = z) (3)

Formula 2 can be equivalently written with = instead of ⇔.

Tuples
FOOL extended with the theory of tuples contains a type (σ1, . . . , σn) of the n-
ary tuple for all types σ1, . . . , σn, n > 0. Each type (σ1, . . . , σn) is first class, that
is, it can be used in the type of a function or predicate symbol, and in a quan-
tifier. An expression (t1, . . . , tn), where t1, . . . , tn are terms of types σ1, . . . , σn,
respectively, is a tuple term of type (σ1, . . . , σn). Each tuple term is first class
and can be used as an argument to a function symbol, a predicate symbol, or
equality.

Tuples are ubiquitous in mathematics and programming languages. For ex-
ample, one can use the tuple type (R,R) as the type of complex numbers. Thus
the term (2, 3) represents the complex number 2+3i. A function symbol plus that
represents addition of complex numbers has the type (R,R)× (R,R)→ (R,R).
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Conditional Expressions
FOOL contains conditional expressions of the form if ψ then s else t, where
ψ is a formula, and s and t are terms of the same type. The semantics of such
expressions mirrors the semantics of conditional expressions in programming
languages, and they are therefore convenient for expressing formulae coming
from program analysis. For example, consider the max function of the type
Z × Z → Z that returns the maximum of its arguments. Its definition can be
expressed in FOOL as

(∀x : Z)(∀y : Z)(max (x, y) = if x ≥ y then x else y). (4)

FOOL allows conditional expressions to occur as formulae, as in the following
valid property of max .

(∀x : Z)(∀y : Z)(if max (x, y) = x then x ≥ y else y ≥ x) (5)

Let Expressions
FOOL contains let expressions of the form let D1; . . . ;Dk in t, where k > 0,
t is either a term or a formula, and D1, . . . , Dk are simultaneous non-recursive
definitions. FOOL allows definitions of function symbols, predicate symbols, and
tuples.

The definition of a function symbol f : σ1 × . . . × σn → τ has the form
f(x1 : σ1, . . . , xn : σn) = s, where n ≥ 0, x1, . . . , xn are distinct variables, and
s is a term of the type τ . For example, the following denotes the maximum of
three integer constants a, b, and c, using a local definition of the function symbol
max .

let max (x : Z, y : Z) = if x ≥ y then x else y

in max (max (a, b), c)
(6)

The definition of a predicate symbol p : σ1 × . . . × σn → bool has the form
p(x1 : σ1, . . . , xn : σn) = ϕ, where n ≥ 0, x1, . . . , xn are distinct variables, and
ϕ is a formula. For example, the following denotes equivalence of two boolean
constants A and B, using a local definition of the predicate symbol imply .

let imply(x : bool , y : bool) = ¬x ∨ y
in imply(A,B) ∧ imply(B,A)

(7)

The definition of a tuple has the form (c1, . . . , cn) = s, where n > 1, c1, . . . , cn
are distinct constant symbols of the types σ1, . . . , σn, respectively, and s is a term
of the type (σ1, . . . , σn). For example, the following defines addition for complex
numbers using two simultaneous local definition of tuples.

(∀x : (R,R))(∀y : (R,R))

(plus(x, y) = let (a, b) = x; (c, d) = y in (a+ c, b+ d))
(8)

The semantics of let expressions in FOOL mirrors the semantics of simulta-
neous non-recursive local definitions in programming languages. That is, none
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of the definitions D1, . . . , Dn uses function or predicate symbols created by any
other definition. In the following example, constants a and b are swapped by a
let expression, and the formula is equivalent to P (b, a).

let a = b ; b = a in P (a, b) (9)

Formula 9 can be equivalently expressed by the following let expression with
a definition of a tuple.

let (a, b) = (b, a) in P (a, b) (10)

Let expressions with tuple definitions are convenient for expressing problems
coming from program analysis, namely modelling of assignments [8]. The left
hand side of Figure 2 shows an example of an imperative if statement containing
assignments to integer variables, and an assert statement. This can be encoded
in FOOL as shown on the right hand side, using let expressions with definitions
of tuples that capture the assignments.

if (x > y) {
t := x;
x := y;
y := t;

}
assert x <= y;

let (x, y, t) = if x > y

then let t = x in

let x = y in

let y = t in

(x, y, t)

else (x, y, t)

in x ≤ y

Fig. 2. FOOL encoding of an if statement

3 The TFX Syntax

The TPTP TFX syntax extends the TFF syntax to provide the features of
FOOL, and at the same time some of the previous weaknesses of plain TFF
have been remedied. Formulae and terms have been conflated (with some excep-
tions). Tuples have been removed from TFF, and fully expressive tuples included
in TFX. The old conditional expressions and let expressions have been removed
from TFF, and new elegant forms have been included as part of TFX. The gram-
mar of TFX is captured in version v7.1.0.2 of the TPTP syntax, available online
at http://www.tptp.org/TPTP/SyntaxBNF.html. In the subsections below, the
relevant excerpts of the BNF are provided, with examples and commentary.
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3.1 Boolean Terms and Formulae

Variables of type $o can be used as formulae, and formulae can be used as terms.
The following is the relevant BNF excerpt. Formulae and terms are conflated by
including logic/atomic formulae as options for terms/unitary terms. The distinc-
tion between formulae and terms is maintained for plain TFF.

<tff_logic_formula> ::= <tff_unitary_formula> | <tff_unary_formula> |
<tff_binary_formula> | <tff_defined_infix>

<tff_unitary_formula> ::= <tff_quantified_formula> | <tff_atomic_formula> |
<tfx_unitary_formula> | (<tff_logic_formula>)

<tfx_unitary_formula> ::= <variable>
<tff_term> ::= <tff_logic_formula> | <defined_term> | <tfx_tuple>
<tff_unitary_term> ::= <tff_atomic_formula> | <defined_term> |

<tfx_tuple> | <variable> | (<tff_logic_formula>)

The FOOL tautology in Formula 1 can be written in TFX as

tff(tautology,conjecture, ! [X: $o]: (X | ~X) ).

The imply predicate in Formula 2 can be written in TFX as

tff(imply_type,type,imply: ($o * $o) > $o ).
tff(imply_defn,axiom,

! [X: $o,Y: $o]: (imply(X,Y) <=> (~X | Y)) ).

The definition of a graph of a function in Formula 3 can be written in TFX
as

tff(s,type,s: $tType).
tff(t,type,t: $tType).
tff(p,type,p: (s * t) > $o ).
tff(graph,axiom,

! [X: s,Y: t,Z: s] : imply(p(X,Y) & p(X,Z),Y = Z) ).

A consequence of allowing formulae as terms is that the default typing of
functions and predicates supported in plain TFF (functions default to ($i *
...* $i) > $i and predicates default to ($i * ...* $i) > $o) is not sup-
ported in TFX.

Note that not all terms can be used as formulae. Tuples, numbers, and “dis-
tinct objects” cannot be used as formulae.

3.2 Tuples

Tuples in TFX are written in [] brackets, and can contain any type of term,
including formulae and variables of type $o. Signatures can contain tuple types.
The following is the relevant BNF excerpt.

<tfx_tuple_type> ::= [<tff_type_list>]
<tff_type_list> ::= <tff_top_level_type> |

<tff_top_level_type>,<tff_type_list>
<tfx_tuple> ::= [] | [<tff_arguments>]
<tff_arguments> ::= <tff_term> | <tff_term>,<tff_arguments>
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The tuple type (R,R) can be written in the TFX syntax as [$real,$real]
and the type of addition for complex numbers (R,R)× (R,R)→ (R,R) can be
written as ([$real,$real] * [$real,$real]) > [$real,$real]. The tuple
term (2, 3) can be written as [2,3]. Tuples can occur only as non-boolean terms
(i.e., they cannot be formulae), anywhere they are well-typed. In the following
example the predicate p takes a tuple (Z, ι, o) as the first argument.

tff(p_type,type,p: ([$int,$i,$o] * $o * $int) > $o ).
tff(q_type,type,q: ($int * $i) > $o ).
tff(me_type,type,me: $i ).
tff(tuples_1,axiom,

! [X: $int] : p([33,me,$true],! [Y: $i] : q(X,Y),27) ).

While product types and tuple types are semantically equivalent, the two
separate syntaxes make it easy to distinguish between the following cases.

tff(n_type,type,n: [$int,$int]).
tff(f_type,type,f: [$int,$int] > $int).
tff(g_type,type,g: ($int * $int) > $int).
tff(h_type,type,h: ([$int,$int] * $int) > $int).

The first case defines n to be a tuple of two integers. The second case defines f
to be a function from a tuple of two integers to an integer. The third case defines
g to be a function from two integers to an integer. The last case defines h to be
a function from a tuple of two integers and an integer, to an integer.

The tuple syntax cannot be used to simultaneously declare types of multiple
constants in an annotated formula with the type role. For example, the following
expression is not valid.

tff(ab_type,type,[a,b]: [$int,$int]).

Instead, one must declare the type of each constant separately.

tff(a_type,type,a: $int).
tff(b_type,type,b: $int).

3.3 Conditional Expressions

Conditional expressions are polymorphic, taking a formula as the first argument,
then two formulae or terms of the same type as the second and third arguments.
The type of the conditional expression is the type of its second and third argu-
ments. The following is the relevant BNF excerpt.

<tfx_conditional> ::= $ite(<tff_logic_formula>,<tff_term>,<tff_term>)

The keyword $ite is used for conditional expressions occurring both as terms
and formulae, which is different from the old TFF syntax of if-then-else that
contained two separate keywords $ite_t and $ite_f.

The definition and a property of the max function in Formulae 4 and 5 can
be expressed in TFX as
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tff(max_type,type,max: ($int * $int) > $int).
tff(max_defn,axiom,

! [X: $int,Y: $int]: max(X,Y) = $ite($greatereq(X,Y),X,Y) ).
tff(max_property,conjecture,

! [X: $int,Y: $int]:
$ite(max(X,Y) = X,$greatereq(X,Y),$greatereq(Y,X)) ).

3.4 Let Expressions

Let expressions in TFX contain (i) the type signatures of locally defined symbols;
(ii) the definitions of the symbols; and (iii) the term or formula in which the
definitions are used. The syntax of type signatures in let expressions is the same
as for top-level type declrations. The definitions specify how the locally defined
symbols are expanded in the term or formulae where they are used. The type
signature must include the types for all the local defined symbols. The following
is the relevant BNF excerpt.

<tfx_let> ::= $let(<tfx_let_types>,<tfx_let_defns>,<tff_term>)
<tfx_let_types> ::= <tff_atom_typing> | [<tff_atom_typing_list>]
<tff_atom_typing_list> ::= <tff_atom_typing> |

<tff_atom_typing>,<tff_atom_typing_list>
<tfx_let_defns> ::= <tfx_let_defn> | [<tfx_let_defn_list>]
<tfx_let_defn> ::= <tfx_let_LHS> <assignment> <tff_term>
<tfx_let_LHS> ::= <tff_plain_atomic> | <tfx_tuple>
<tfx_let_defn_list> ::= <tfx_let_defn> | <tfx_let_defn>,<tfx_let_defn_list>

The keyword $let is used for let expressions defining both function and
predicate symbols, regardless of whether the let expression occurs as a term or
a formula. This is different from the old TFF syntax of let expressions that
contained four separate keywords $let_tt, $let_tf, $let_ft, and $let_ff.

In the following example an integer constant c is defined in a let expression.

tff(p_type,type,p: ($int * $int) > $o ).
tff(let_1,axiom,$let(c: $int,c:= $sum(2,3),p(c,c)) ).

The left hand side of a definition may contain pairwise distinct variables as
top-level arguments of the defined symbol, and the variables can (typically do)
also appear in the right hand side of the definition. Such variables are implicitly
universally quantified, and are of the type defined by the symbol’s type signature.
The variables’ values are supplied by unification in the defined symbol’s use. For
example, the let expression for the maximum of three integers in Formula 4 can
be expressed in TFX as

tff(a_type,type,a: $int).
tff(b_type,type,b: $int).
tff(c_type,type,c: $int).
tff(p_type,type,p: $int > $o ).
tff(max_max,axiom,

$let(max: ($int * $int) > $int,
max(X,Y):= $ite($greatereq(X,Y),X,Y),
p(max(max(a,b),c)) ) ).
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and the let expression for the equivalence of two boolean constants in Formula 7
can be expressed in TFX as

tff(p,type,p: $o).
tff(q,type,q: $o).
tff(p_eq_q,axiom,

$let(imply: ($o * $o) > $o,
imply(X,Y):= ~X | Y,
imply(p,q) & imply(q,p)) ).

Let expressions can use definitions of tuples. Formula 8 can be written in
TFX as follows. Notice that the let expression’s type declarations contain the
elements of both tuples in the simultaneous definition.

tff(plus,type,
plus: ([$real,$real] * [$real,$real]) > [$real,$real]).

tff(plus_def,axiom,
! [X: [$real,$real],Y: [$real$,$real]] :

( plus(X,Y)
= $let([a: $real,b: $real,c: $real,d: $real],

[[a,b]:= X, [c,d]:= Y],
[$sum(a,c),$sum(b,d)]) ).

Sequential let expressions (let*) can be implemented by nesting let expres-
sions. In the following example ff and gg are defined in sequence, and the let
expression is equivalent to p(f(i,i,i,i)).

tff(i_type,type,i: $int).
tff(f_type,type,f: ($int * $int * $int * $int) > $int).
tff(p_type,type,p: $int > $o ).
tff(let_tuple_3,axiom,

$let(ff: ($int * $int) > $int,
ff(X,Y):= f(X,X,Y,Y),
$let(gg: $int > $int,

gg(Z):= ff(Z,Z),
p(gg(i)) ) ) ).

Let expressions can have simultaneous local definitions with the type dec-
larations and the definitions given in []s (they look like tuples of declarations
and definitions, but are specified independently of tuples in the syntax). The
symbols must have distinct signatures. For example, the let expression to swap
two constants in Formula 9 can be expressed in TFX as

tff(a,type,a: $i).
tff(b,type,b: $i).
tff(p,type,p: ($i * $i) > $o).
tff(pba,axiom,

$let([a: $i,b: $i],
[a:= b, b:= a],
p(a,b))).
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and the equivalent let expression using a tuple in Formula 10 can be expressed
in TFX as

tff(a,type,a: $i).
tff(b,type,b: $i).
tff(p,type,p: ($i * $i) > $o).
tff(pba,axiom,

$let([a: $i,b: $i],
[a,b]:= [b,a],
p(a,b))).

In the following example two function symbols are defined simultaneously,
and the let expression is equivalent to p(f(i,i,f(i,i,i,i),f(i,i,i,i))).

tff(i_type,type,i: $int).
tff(f_type,type,f: ($int * $int * $int * $int) > $int).
tff(p_type,type,p: $int > $o ).
tff(let_tuple_2,axiom,

$let([ff: ($int * $int) > $int, gg: $int > $int],
[ff(X,Y):= f(X,X,Y,Y), gg(Z):= f(Z,Z,Z,Z)],
p(ff(i,gg(i)))) ).

The defined symbols of a let expression have scope over the formula or term
in which the definitions are applied, shadowing any definition outside the let
expression. The right hand side of a definition can have symbols with the same
name as the defined symbol, but refer to symbols defined outside the let expres-
sion. In the following example the local definition of the array function symbol
shadows the global declaration.

tff(array_type,type,array: $int > $real).
tff(p_type,type,p: $real > $o).
tff(let_3,axiom,

$let(array: $int > $real,
array(I):= $ite(I = 3,5.2,array(I)),
p($sum(array(2),array(3))) ) ).

4 Software Support and Examples

4.1 Software for TFX

The BNF that defines TFX (and all the TPTP languages) provides the basis
for the BNFParser family of automatically generated lex/yacc parsers for TPTP
files. The parsers are available through the SystemB4TPTP online interface at
http://www.tptp.org/cgi-bin/SystemB4TPTP. At the time of writing this pa-
per, the TPTP4X utility is being upgraded to support TFX.

The Vampire theorem prover [9] supports all features of FOOL. Vampire
transforms FOOL formulae into a set of first-order clauses using the VCNF
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algorithm [6], and then reasons with these clauses using its usual resolution
calculi for first-order logic. At the time of writing this paper the latest released
version of Vampire, 4.2.2, uses a syntax for FOOL that differs slightly from TFX.
Full support for the TFX syntax has been implemented in a recent revision of
the Vampire source code3, and will be available in the next release of Vampire.

TFX has been used by the program verification tools BLT [3] and Voogie [8].
BLT and Voogie read programs written in a subset of the Boogie intermediate
verification language and generate their partial correctness properties written in
the TFX syntax. BLT and Voogie generate formulae differently, but both rely on
features of FOOL, namely conditional expressions, let expressions, and tuples.

4.2 Examples

Figures 3–5 show longer TFX examples using features of FOOL. Figure 3 shows
how tuples, conditional expressions, and let expressions can be mixed, here to
place two integer values in descending order as arguments in an atom. Figure 4
shows the TFX encoding of the FOOL formula in Figure 2, which expresses a
partial correctness property of an imperative program with an if statement.
Figure 5 shows an example that uses formulae as terms, in the second ar-
guments of the says predicate. The problem is to find a model from which
it is possible to determine which of a, b, or c is the only truthteller on this
Smullyanesque island [10]. More TFX examples are available from the TPTP
web site http://www.tptp.org/TPTP/Proposals/TFXExamples.tgz.

%-----------------------------------------------------------------------
tff(v1_type,type,v1: $int).
tff(v2_type,type,v2: $int).
tff(ordered_p,axiom,

$let([large: $int,small: $int],
[large,small]:= $ite($greater(v1,v2),[v1,v2],[v2,v1]),
p(large,small)) ).

%-----------------------------------------------------------------------

Fig. 3. Mixing tuples, conditional and let expressions

5 Conclusion

This paper has introduced the eXtended Typed First-order form (TFX) of the
TPTP’s TFF language. TFX includes boolean variables as formulae, formulae
as terms, tuple types and terms, conditional expressions, and let expressions.

3 https://github.com/vprover/vampire
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%-----------------------------------------------------------------------
tff(x,type,x:$int).
tff(y,type,y:$int).
tff(t,type,t:$int).
tff(x_leq_y,conjecture,

$let([x: $int,y: $int,t: $int],
[x,y,t] := $ite($greater(x,y),

$let(t: $int,
t := x,
$let(x: $int,

x := y,
$let(y:$int,

y := t,
[x,y,t]))),

[x,y,t]),
$lesseq(x,y))).

%-----------------------------------------------------------------------

Fig. 4. A TFX encoding of the program analysis problem in Figure 2

%-----------------------------------------------------------------------
tff(a_type,type, a: $i ).
tff(b_type,type, b: $i ).
tff(c_type,type, c: $i ).
tff(exactly_one_truthteller_type,type, exactly_one_truthteller: $o ).
tff(says,type, says: ( $i * $o ) > $o ).

%----Each person is either a truthteller or a liar
tff(island,axiom, ! [P: $i] : ( says(P,$true) <~> says(P,$false) ) ).
tff(exactly_one_truthteller,axiom,

( exactly_one_truthteller
<=> ( ? [P: $i] : says(P,$true)

& ! [P1: $i,P2: $i] :
( ( says(P1,$true) & says(P2,$true) )

=> P1 = P2 ) ) )).

%----B said that A said that there is exactly one truthteller
tff(b_says,hypothesis, says(b,says(a,exactly_one_truthteller)) ).

%----C said that what B said is false
tff(c_says,hypothesis, says(c,says(b,$false)) ).
%-----------------------------------------------------------------------

Fig. 5. Who is the truthteller?
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TFX is useful for (at least) concisely expressing problems coming from program
analysis, and translated from more expressive logics.

Now that the syntax is settled, ATP system developers will be able to imple-
ment the new language features. It is already apparent from the SMT community
that these are useful features, and systems that can already parse and reason us-
ing the SMT version 2 language need only new parsers to implement the features
of TFX. In parallel, version v8.0.0 of the TPTP will include problems that use
TFX, and the automated reasoning community is invited to submit problems
for inclusion in the TPTP.
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