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ABSTRACT:	The	analysis	of	multimodal	data	in	learning	is	a	growing	field	of	research,	which	
has	 led	 to	 the	 development	 of	 different	 analytics	 solutions.	 However,	 there	 is	 no	
standardised	approach	to	handle	multimodal	data.	 In	this	paper,	we	describe	and	outline	a	
solution	for	five	recurrent	challenges	in	the	analysis	of	multimodal	data:	the	data	collection,	
storing,	annotation,	processing	and	exploitation.	For	each	of	 these	challenges,	we	envision	
possible	 solutions.	 The	 prototypes	 for	 some	 of	 the	 proposed	 solutions	 will	 be	 discussed	
during	the	Multimodal	Challenge	of	the	fourth	Learning	Analytics	&	Knowledge	Hackathon,	a	
two-day	 hands-on	 workshop	 in	 which	 the	 authors	 will	 open	 up	 the	 prototypes	 for	 trials,	
validation	and	feedback.		

Keywords:	multimodal	learning	analytics,	wearables,	CrossMMLA,	sensor-based	learning	

1 BACKGROUND 

The	Learning	Analytics	&	Knowledge	(LAK)	community	has	acknowledged	the	necessity	of	taking	into	
account	 physical	 and	 co-located	 learning	 activities	 as	 much	 as	 practice-based	 skills	 training;	 it	 is	
undeniable	that	 in	the	classroom	and	at	the	workplace	these	“offline	moments”	still	 represent	the	
bulkiest	set	of	learning	activities.	Bringing	these	moments	into	account	requires	extending	the	data	
collection	to	additional	data	sources	which	go	beyond	the	conventional	ones,	such	as	online	learning	
systems,	Massive	Online	Open	Courses	(MOOCs)	platforms	or	student	information	systems.	With	the	
term	multimodal	 data,	 we	 refer	 to	 the	 learning	 data	 sources	 collected	 “beyond	 user-computer	
interaction”,	 i.e.	 those	 data	 sources	 collected	 during	 learning	 moments	 alternative	 to	 the	 classic	
desktop-based	 learning	 scenario.	 Although	 user-computer	 interaction	 data	 could	 still	 hold	 some	
relevant	information,	they	can	be	complemented	by	additional	multimodal	data;	these	data	can	be	
classified	into	1)	data	describing	the	learner’s	behaviour:	including	motoric	and	physiological	data;	2)	
data	 regarding	 the	 learning	 situation,	 including	 social	 context,	 learning	 environment	 and	 learning	
activity.	Most	of	these	aspects	can	be	monitored	through	wearable	sensors,	cameras	or	Internet	of	
Things	(IoT)	devices.	These	tools	can	capture	only	what	is	“visible”	by	a	generic	sensor,	meaning	they	
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generally	 do	 not	 have	 the	 ability	 to	 reason	 on	 the	 meaning	 behind	 the	 collected	 data.	 The	
observability	 line	–	 i.e.	what	 is	visible	by	sensors	and	what	not,	conceptually	separates	multimodal	
data	 by	 human-driven	 qualitative	 interpretations,	 like	 expert	 reports	 or	 teacher	 assessments.	 The	
latter,	 that	 are	more	 qualitative	 and	 human-driven,	 describe	 dimensions	 that	 the	 sensors	 cannot	
directly	observe,	such	as	learning	outcomes,	cognitive	aspects	or	affective	states.		

Bridging	the	gap	between	learner’s	complex	behavioural	patterns	with	 learning	theories	and	other	
unobservable	dimensions	 is	the	paramount	challenge	for	multimodal	analysis	of	 learning	(Worsley,	
2014).	Multimodal	data	can	be	used	as	historical	evidence	for	the	analysis	and	the	description	of	the	
learning	process:	this	field	of	research	is	called	Multimodal	Learning	Analytics	(Blikstein,	2013).	The	
related	 literature	 shows	 the	 potential	 to	 apply	 a	 multimodal	 approach	 in	 a	 variety	 of	 learning	
settings	 including	 dialogic	 learning	 in	 teacher-student	 discourse	 (D’mello	 et	 al.,	 2015);	 computer-
supported	 collaborative	 learning	 during	 knowledge-sharing	 and	 group	 discussions	 (Martinez-
maldonado	 et	 al.,	 2017;	 Schneider	 &	 Blikstein,	 2015);	 in	 practice-based	 and	 open-ended	 learning	
tasks,	when	understanding	and	executing	a	practical	learning	tasks	(Ochoa	et	al.,	2013).		

The	 potential	 benefits	 of	 multimodal	 data	 are	 not	 only	 limited	 to	 analytics,	 e.g.	 human	
interpretation	of	dashboards	or	other	visual	metaphors.	If	multimodal	data	are	reliable	and	correctly	
addressed	 and	exploited,	 they	 can	be	used	 as	 the	base	 to	drive	machine	 intelligence	 and	 achieve	
better	personalisation	and	adaptation	during	learning.	Multimodal	data	is	expanding	the	horizon	of	
the	Learning	Analytics	community	and	 its	moving	towards	the	 intelligent	 tutoring	and	the	artificial	
intelligence	 in	 education	 communities.	 For	 decades	 the	 long-term	 goal	 of	 these	 communities	
consisted	 in	 designing	 intelligent	 computer	 agents	 empathic	 to	 the	 learners	 which	 work	 as	 an	
instructor	 in	 the	box,	and	that	can	 implement	strategies	to	reduce	the	difference	between	experts	
and	 student	 performance	 (Polson,	 Richardson,	 &	 Soloway,	 1988).	 Multimodal	 data	 can	 facilitate	
achieving	this	goal,	by	equipping	 intelligent	tutors	with	action-based	recognition	and	reasoning,	so	
that	they	can	deal	with	open-ended	learning	tasks	in	uncontrolled	environments.	

2 MULTIMODAL CHALLENGES  

The	analysis	of	multimodal	data	in	learning	is	a	fairly	new	but	a	steadily	growing	field	of	research.	As	
the	interest	tracing	learning	through	the	use	of	multimodal	data	grows,	the	opportunities	stemming	
from	 it	 become	more	evident.	As	 some	authors	have	pointed	out,	 the	 field	of	MLA	 faces	 a	 set	of	
open	 challenges	 that	 create	 research	 gaps	 that	 need	 to	 be	 filled	 (Blikstein	&	Worsley,	 2016).	 For	
instance,	the	LAK	community	(and	its	CrossMMLA	interests	group)	still	lacks	a	standardised	approach	
for	modelling	of	the	evidence	extracted	from	the	learning	process	and	producing	valuable	feedback	
with	multimodal	data.	In	contrast,	multiple	tailored	ad-hoc	solutions	have	been	developed	in	related	
researches.	 A	 standardised	 approach	 to	MMLA,	 in	 our	 understanding,	 should	 help	 researchers	 in	
setting-up	 their	 multimodal	 experiments	 by	 clarifying	 how	 the	 collection,	 storage,	 analysis	 and	
exploitation	 of	 the	multimodal	 data	 takes	 place	 in	 a	 pragmatic	 and	 scalable	manner	 that	 can	 be	
adopted	into	real-life	educational	settings.	To	contribute	filling	this	gap,	in	this	paper,	we	outline	five	
main	 challenges	 stemming	 from	 the	 feedback	 loop	 empowered	 by	multimodal	 data	 and	 learning	
analytics.	 For	 each	 of	 these	 challenges,	 we	 describe	 possible	 solutions	 or	 approaches.	 The	
prototyping,	 testing	 and	 validation	 of	 the	 proposed	 solutions,	 coincide	 with	 the	 agenda	 of	 the	
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multimodal	 challenge	 proposed	 for	 the	 Fourth	 Learning	 Analytics	 Hackathon1.	 In	 these	 two-days,	
hands-on,	 pre-conference	 event,	 we	will	 roll-out	 the	 first	 prototypes	 like	 the	 LearningHub	 or	 the	
Visual	 Inspection	 Tool;	 we	 will	 test	 their	 usability	 and	 validity	 and	 we	 will	 open	 them	 up	 for	
discussion	with	experts	in	the	field.	

2.1 Data	collection		

The	 first	 step	 of	 the	 journey	 is	 the	 data	 collection,	 that	 being	 the	 creation	 of	 datasets	 through	
multiple	sensors	and	external	data	sources.	The	sensors	employed	are	most	likely	to	be	produced	by	
different	vendors,	hence	 to	have	different	 specifications	and	support.	The	approach	used	 for	data	
collection	must	be	flexible	and	extensible	to	different	sensors,	it	should	allow	the	collection	of	data	
at	 different	 frequencies	 and	 formats.	 Strongly	 connected	 to	 the	 collection	 is	 the	 data	
synchronisation.		

Proposed	solution:	 to	address	this	challenge,	we	introduce	the	LearningHub,	a	software	prototype	
whose	purpose	 is	 to	 synchronise	 and	 fuse	different	 streams	of	multimodal	data	 generated	by	 the	
multiple	sensor-applications.	The	LearningHub’s	main	role	is	to	deal	with	the	low-level	specifications	
of	every	sensor	offering	a	customisable	interface	to	start	and	stop	the	capturing	of	a	meaningful	part	
of	a	learning	task,	i.e.	moments	clearly	definable	by	atomic	actions;	we	call	this	an	Action	Recording.	
The	LearningHub	is	responsible	to	collect	the	updates	for	every	sensor,	organising	and	synchronising	
them	chronologically.	

2.2 Data	storing	

The	second	step	is	the	data	storing	that	encompasses	the	serialisation,	storing	and	logic	for	retrieval	
of	the	action	recordings.	This	step	is	crucial	to	organise	the	complexity	of	multimodal	data	which	has	
multiple	formats	and	big	sizes.		

Proposed	 solution:	 The	 LearningHub	 channels	 the	 data	 from	 multiple	 sensors	 and	 provides	 as	
output	 multiple	 JSON	 files,	 which	 serialise	 and	 synchronise	 the	 sensor	 values	 for	 each	 sensor	
application.	 The	 JSON	 files	 allow	 for	 sensors	 having	 multiple	 attributes	 with	 different	 time	
frequencies	and	 formats;	 they	work	as	exchange	 format	documents	and	provides	also	 the	 logic	 to	
facilitate	the	action	recording	for	storing	and	later	retrieval.	

2.3 Data	annotation		

The	data	annotation	challenge	consists	in	finding	a	seamless	and	unobtrusive	approach	for	labelling	
the	 learning	 process,	 i.e.	 triangulating	 the	 multimodal	 action	 recordings	 with	 the	 evidence	 (e.g.	
video	clips)	of	the	learning	activities.	The	annotation	step	is	rather	crucial,	as	most	of	the	time	the	
meaning	of	a	recording	is	not	trivial	to	derive	just	by	looking	at	the	sensor	values.	The	format	chosen	
for	assigning	the	semantics	to	the	action	recordings	is	also	a	relevant	issue.		

																																																													

1	LAK	Hackathon	2018,	Sydney,	Australia,	March	5-6,	2018,	https://lakhackathon.wordpress.com/		
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Proposed	solution:	to	address	this	challenge,	we	propose	the	Visual	Inspection	Tool	(VIT).		The	VIT	is	
a	web-application	 prototype	 for	 the	 retrospectively	 analysis	 and	 annotation	 of	multimodal	 action	
recordings.	 The	 VIT	 allows	 to	 load	multimodal	 datasets,	 plot	 them	 on	 a	 common	 time	 scale	 and	
triangulate	 them	 with	 video	 recordings	 of	 the	 learning	 activity.	 It	 allows	 to	 select	 a	 particular	
timeframe	and	annotate	the	multimodal	data	slice	with	an	Experience	API	(xAPI)	triplet,	assigning	an	
actor,	a	verb	and	an	object.	The	VIT	offers	a	human-computer	interface	which	helps	to	deal	with	the	
complexity	of	multimodal	data.		

2.4 Data	processing		

The	data	processing	steps	consist	 in	extracting	and	aligning	the	relevant	attributes	 from	the	“raw”	
multimodal	 data	 and	 transforming	 them	 into	 a	 new	data	 representation	 suitable	 for	 exploitation.	
The	data	processing	steps	depend	tightly	on	the	data	exploitation	which	is	discussed	in	next	section.	
Common	steps	 for	data	processing	 include	data	 cleaning	 (e.g.	handling	missing	values,	 resampling	
and	realigning	the	time	series),	feature	extraction,	dimensionality	reduction	and	normalisation.	The	
challenging	side	of	 the	data	processing	 for	multimodal	data	 is	given	by	 the	size	of	 the	multimodal	
datasets,	 the	 need	 to	 process	 them	 periodically	 and	 the	 need	 to	 process	 as	 close	 to	 real-time	 as	
possible,	a	relevant	aspect	especially	in	the	case	of	immersive	feedback	generation.		

Proposed	solution:	 	 the	 idea	 is	 to	have	a	Pipeline	 for	multimodal	data	 for	 learning,	a	 cloud-based	
application	 which	 allows	 to	 plan	 and	 execute	 data	 processing	 routines	 (e.g.	 Spark	 jobs).	 These	
routines	should	query	the	Learning	Record	Store	and	fetch	the	all	recent/relevant	xAPI	statements	
and	 load	 into	memory	all	 the	action	recordings	connected	to	each	xAPI	statement.	The	raw	action	
recordings	 will	 be	 transformed	 according	 to	 the	 set	 of	 operations	 specified	 which	 will	 output	 a	
transformed	action	recording	which	is	saved	and	ready	to	be	fed	into	a	data	mining	algorithm.		

2.5 Data	exploitation	

Through	an	analysis	of	 the	 related	experiments	 in	 the	 literature	using	multimodal	data	 in	 learning	
settings,	 we	 concluded	 that	 there	 are	 different	 use	 cases	 generally	 used	 for	 enhancing	 and	
facilitating	the	learning	process	with	multimodal	data.	

Proposed	solution:	we	classify	the	different	use	cases	into	five	exploitation	strategies:	

1. light-weight	feedback:	hardcoded	rules	and	feedback	based	on	heuristics	of	the	form	“if	sensor	
value	is	x	then	y”;	

2. replica:	replays	of	the	action	recordings,	e.g.	ghost-tracks	of	motoric	sensors	data;	
3. historical	 reports:	 aggregated	 visualisations	 in	 forms	 of	 analytics	 dashboard,	 a	 group	 of	 data	

visualisations	that	show	the	historical	progress	of	the	sensor	recordings	in	condensed	form;		
4. frequent	patterns:	mining	of	recurrent	sensor	values	occurrences	within	one	or	multiple	sensor	

recordings;			
5. predictions:	estimation	of	the	human	annotated	labels	during	similar	action	recordings.		

The	strategies	can	be	used	 for	different	purposes	and	applications.	They	differ	 in	 the	 level	of	data	
processing	used	and	consequently	by	the	methods	used	for	data	analysis;	these	include	descriptive	
statistics,	supervised	or	unsupervised	machine	learning.	For	example,	light-weight	feedback	requires	
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simple	hardcoded	 rules;	historical	 reports	 require	visualisations	 that	 can	be	grouped	 into	analytics	
dashboard;	 frequent	patterns	or	predictions	require	training	either	machine	 learning	models,	store	
them	into	memory,	and	use	them	to	estimate	the	value	or	the	class	of	a	particular	target	attribute.	
Historical	reports	also	differ	by	the	effort	required	by	human	experts,	for	example	in	collecting	the	
labels	 or	 for	 interpreting	 the	 visualisations;	 in	 a	 similar	 way,	 the	 strategies	 differ	 by	 the	 level	 of	
machine	reasoning,	e.g.	between	those	using	machine	learning	and	those	which	use	heuristics.		

3 CONCLUSIONS  

In	this	paper,	we	have	introduced	five	main	challenges	connected	to	the	use	of	multimodal	data	in	
learning.	 These	 challenges	 deal	 with	 the	 data	 collection,	 storing,	 annotation,	 processing	 and	
exploitation	and	constitute	 important	research	questions	for	all	the	CrossMMLA	community.	Along	
with	these	challenges,	we	briefly	explained	some	practical	solutions.	Being	these	ideas	preliminary,	
we	 use	 them	 as	 agenda	 points	 and	 research	 questions	 to	 the	 Multimodal	 Challenge	 of	 the	 LAK	
Hackathon,	 a	 hands-on	 workshop	 which	 will	 take	 place	 during	 the	 eight	 Learning	 Analytics	 &	
Knowledge	Conference	in	Sydney.	We	hope	that	pointing	out	these	challenges	can	raise	interest	and	
awareness	in	the	current	research	endeavours	in	the	area	of	multimodal	learning	analytics.		
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