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Abstract. We present the Data Harmonization module from the Data
Factory pipeline of the Human Brain Project which makes all the data
transformations that are necessary to conform the local hospital datasets
into a global schema and import them in the Medical Informatics Plat-
form. To that scope, we encountered several challenging problems mostly
due to the syntactic and semantic heterogeneities of the hospitals data.
We elaborate on these data integration issues and present our imple-
mented solutions.
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1 Introduction

In the last decades there has been a growing demand for integrating medical
data deriving from scattered sources [28]. Research in various fields of medicine,
like Neuroscience or Genome medicine, often requires the process and analy-
sis of large amounts of possibly highly heterogeneous data scattered in differ-
ent sources, like hospitals or scientific laboratories. By correlating such data,
researchers are able to extract new knowledge related to their field of study,
that are not able to obtain when working with each data source independently.
Therefore, data integration technologies are often employed to enhance scientific
research. In general, the goal of data integration is to provide a uniform access
over a set of data sources that have been created and stored autonomously [8].
The use of such technologies in order to gather the disparate clinical data has
been studied in the literature [18, 16, 17] resulting in practical systems [14, 4, 3]

In order to fully exploit the integrated clinical data it is important to be
able to reveal the semantic relationships among them. Therefore, it is important
that data integration is not limited to structural integration. For example, in
order to translate patients data describing dementia symptoms into effective
Alzheimer’s disease diagnosis, it is important that these data are related to
additional patients information, such as genetic data, as well as to biological
markers, such as proteins and electroencephalography. The semantic description
of the relations between the clinical presentation of patients and the biological
markers can lead to more accurate diagnosis and possibly to the identification of
new such relations that characterize the Alzheimer’s disease. Furthermore, the
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semantic data integration provides means to increase the expressive power of the
queries that are posed over the integrated data [17].

In our setting, we are interested in integrating clinical data related to the
human brain. Our work has been developed to meet the needs of the Medical
Informatics Platform (MIP) of the Human Brain Project (HBP). The Human
Brain Project aims to develop technologies that enhance the scientific research
related to human brain. Towards this effort, the MIP provides a data integration
mechanism to collect clinical data, such as Electronic Health Records (EHR) and
imaging features that are stored in hospitals local databases. The data collected
from the hospitals are mapped to the MIP schema and can be exploited by so-
phisticated Data Mining algorithms and techniques in order to identify biological
signatures of diseases and predict features of the brain. The analytic function-
alities of the platform along with the integrated data will be made available for
re-use, further analysis and research without compromising the sensitive patient
information.

In this paper we present our work on the data integration system we de-
veloped for the MIP. In particular, we present our work concerning the Data
Mapping and Harmonization process which applies all the necessary transfor-
mations on the hospital data so that it is imported into the platform.

2 The process of data integration in MIP hospitals

2.1 MIP’s Architecture and Basics

MIP is roughly composed of three different layers. Following a top-down ap-
proach, the first one is the Web Portal which, as the user interface of the platform,
it provides access to the platform’s analytic functionalities. The second layer is
the Federation Layer which is responsible for federating the queries posed over
the Web Portal to queries that are executed over the hospitals’ datasets. Addi-
tionally, it is responsible for collecting and merging the relevant queries’ answers.
The third layer is the Local Layer and it exposes to the platform hospital data
that are mapped into a common schema. This schema is populated by a set of
(currently 168) common variables, namely the Common Data Elements (CDEs),
that describe the knowledge about patients’ brain structure, diagnosis, clinical
tests results, genetic and demographic information (derived from EHR data).
MIP users are able to design models and perform experiments based on these
variables. The design of the common schema is based on the I2B21 data mart
star schema which is widely used for implementing clinical data warehouses as
well as research data warehouses. The star schema is consisted by the central
fact table OBSERVATION FACT surrounded by five dimension tables [Figure 1].
In health-care, a logical fact is an observation on a patient, thus in the case
of the MIP, a CDE is considered as such. The OBSERVATION FACT is filled with
the basic attributes about each CDE, such as patient and provider numbers, a

1 https://www.i2b2.org
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Fig. 1. I2B2 star schema.

concept code for the CDE observed and other parameters. Dimension tables con-
tain further descriptive and analytical information about attributes in the fact
table. For example, the CONCEPT DIMENSION table contains information about
how CDE variables are organized, the hierarchy they might belong to and other
types of categorizations related to the data structure.

2.2 MIP Local Layer

The Local Layer of the MIP is deployed locally in each hospital that participates
in the MIP. This is the layer where the data integration process takes place. In
general, this layer is responsible for transforming the values of the local variables
stored in the hospital’s EHR and Picture Archiving and Communication Sys-
tems (PACS) into the CDE variables and then populate the common schema.
More specifically, the Local Layer consists of three major components: the Data
Capture, the Data Factory and the Feature Data Store Sub-system [Figure 2]. In
the Data Capture component, the hospital EHR and PACS data is anonymized
by the Gnubila FedEHR Anonymizer2, a third party solution which is developed
using Apache Camel framework. Afterwards, the anonymized data is processed
in the Data Factory ETL pipeline. Finally, the integrated data is stored in the
Feature Data Store module and they is made accessible to the Federation Layer.

The Data Factory has two separate inputs, the anonymized EHR and the
PACS data. Therefore, the ETL pipeline has two initial branches which are
then merged into a single path. Brain morphometric features are extracted from

2 https://www.gnubila.fr
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Fig. 2. MIP Local Layer.

the PACS data and are stored into an intermediate database having an I2B2
schema. This database, which is called Unharmonized, is the conjunction node
where the two branches of the pipeline meet. For the case of the EHR data, a
process of schema mapping is performed by using MIPMap [25]. Through this
step the initial EHR hospital variables are also stored in the Unharmonized I2B2
database. At this point, the data is ready to be transformed into the correspond-
ing CDE variables following the predefined harmonization rules implemented in
MIPMap. These rules are specifically defined for each hospital by a team of
hospital’s clinicians and the MIP’s special committee. By executing the harmo-
nization mapping task the Harmonized I2B2 database is populated with CDEs
values and the Data Factory pipeline is ended.

3 MIPMap overview

MIPMap is a schema mapping and data exchange tool [26]. MIPMap offers a
GUI that allows the user to define correspondences between the source and the
target schema, as well as join conditions, possible constraints and functional
transformations. Users can simply draw arrow lines between the elements of two
tree-form representations of the schemata.

Despite the progress in automated and semi-automated schema mapping,
such techniques usually come with an error percentage which is inversely pro-
portional to the level of the automation [8]. The requirements of the Human
Brain Project leave absolutely no room for errors when processing sensitive
medical data from hospitals. However, in order to facilitate the MIPMap users,
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WebMIPMap’s supports collaboration features that enable the reuse of other
experts’ mappings (Section 5).

MIPMap is based on the open source mapping tool ++Spicy[20] which it ex-
tended so as to meet HBP’s needs. One key difference between MIPMap and its
predecessor is the approach of translating instances. MIPMap is equally focused
on data exchange as well as schema mapping. ++Spicy offered high performance
during the data exchange process when the source schema had a few instances,
however in cases when the data was increased to some thousand rows per table
the time and memory requirements grew exponentially. Thus, this all-in-memory
approach was not suitable for our use cases. Instead of this, our tool uses tem-
porary tables in a local Postgres database to eliminate the need for immense
memory size.

Mappings are expressed in Tuple Generating Dependencies (TGDs)[2]. The
target to-populate data is the outcome of the TGD rules’ implementation on
the source data. Producing the ”optimal” solution during the data exchange
procedure translates into discarding the redundant produced tuples while at
the same time merging tuples that correspond to the same instance. Possible
redundant target tuples, called homomorphisms[5], are recognized already in
the TGD level and since the number of TGDs is considerably smaller than the
number of instances, the computing procedure is much more efficient.

Taking into account the provided correspondences, constant assignments and
the constraints declared, the original algorithm of the Clio[1] system is used to
generate the candidate TGDs. Next, the rewriting algorithm recognizes possible
cases of homomorphism among these rules. After potential generation of redun-
dant tuples has been detected, the candidate TGDs are rewritten to take those
into account and hence produce the optimal results.

4 Problems faced with while integrating clinical data
from heterogeneous sources

Before we started accessing hospital servers and conforming local data to the
global MIP schema we were aware of the existing several types of heterogene-
ity [27] that may be encountered and which are related to structural, naming,
semantic, content or other differences. Our initial impression was that following
the data harmonization rules and implementing them in the mapping tasks con-
figurations would be a straight forward task. We soon realized that was not the
case.

4.1 Unpivoting

Since we use the generic I2B2 star schema and do not have a custom made
global schema for the MIP variables, there is no 1:1 correspondence between the
local and the global variables. I2B2’s fact table, named OBSERVATION FACT, is
designed to store information about patients’ visits in a self-explanatory way i.e.
each tuple is an observation whose nature is defined in the concept cd column
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and value in the tval char or nval num if it is string or numerical respectively.
In order to map the hospitals’ local variables to it we firstly had to generate an
unpivoted version of some of the local datasets’ tables and then designed the
correspondences. Otherwise, an alternative would be to duplicate each target
table for each ”folding” element which clearly is too confusing and would mess
up visually the configuration on the GUI. When unpivoting a table we select
some stable key columns and ”fold” the rest ones in an attribute-value duo of
variables. An example of this preprocessing unpivoting procedure is shown in
Figures 3 and 4 for Niguarda-Milano’s table Episode. When configuring map-

Fig. 3. Columns of Table Episode

Fig. 4. Columns of Table Episode’s unpiv-
oted version

pings for an unpivoted source table, MIPMap user has to keep in mind that the
transformations she sets address to all folded variables, therefore these have to
be valid for all of them. If any folded variable is in need of special treatment
then the condition function has to take action.

4.2 Efficient Mapping Plan

Given a source and a target schema along with their semantic equivalences and
transformation rules there are many ways the MIPMap user can implement
them and configure the mapping task, specially when the source information is
dispersed in many tables which have to be joined. Even though many mapping
configurations may have the same semantically correct result, not all of them are
optimal. In case a non-optimal solution is designed major delays will occur in
the execution of the mapping task when dealing with large volumes of data. To
avoid that, the MIPMap user has to have in mind the TGDs and the query plan3

her GUI configurations are translated to. MIPMap as a tool is not responsible
for these delays since it translates visual correspondences and joins to SQL on

3 Actually we do not have to think constantly of the exact query plan; it is supposed
to be intuitive for an database engineer which operations are more expensive than
others
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the fly; Postgres executing them and populating the target data is obviously
what needs time.

Towards configuring efficient mapping tasks, MIPMap supports natural and
outer joins (Figure 5) so the user can choose the most appropriate type. It
also gives the option the joined values to be substrings of each other instead of
matching the whole string. It is up to the MIPMap user, though, to configure
mappings efficiently. One mapping efficiency rule is to prefer Selection Condition
instead of If Condition function when we want to isolate some specific tuples,
meaning select directly the tuples with the certain criteria instead of selecting
all table’s tuples and browsing one-by-one to check whether the criteria are true
or not. Another tip is to avoid joins with unpivoted tables when possible. The
reason is that from an original tuple many unpivoted tuples are generated; in
fact they are as many as the selected variables to ”fold”. So when joining with
an unpivoted version of a table we join with a multiple amount of the real tuples.

Fig. 5. Columns of Table Episode’s unpivoted version

4.3 Data Clean(s)ing

As we have been examining local hospital data along with their semantics we
witnessed an non-negligible amount of typos and value errors. Hospital IT de-
partments seem to still have error-prone procedures when it comes to export
data from their local EHR information system. In the meantime, batches of in-
coming (to the MIP) data tend to differentiate their initial local schema which
leads to the conclusion that the information exported by the hospitals has not
been finally standardized. In an environment like this, the need for efficient and
accurate data cleansing[19] seems prominent.

Currently, there is no separate cleansing module in the pipeline since we do
it manually with the use of MIPMap. When configuring the mapping tasks we
exclude or correct faulty values via the mapping transformations. A separate,
integratable to MIPMap, robust data cleansing module is in our plans. Until it
is implemented and tested, we continue to correct errors in the input data using
MIPMap’s typical transformation functionalities.

7



5 Crowdsourcing semantic mapping

MIPMap’s anti-proposal to automation is collaboration. WebMIPMap[25], an
online version of MIPMap, allows users to create, share mappings as well as
view, edit and evaluate other users’ mappings. When a user loads another one’s
mapping she decides whether to accept or reject the correspondences one-by-one.
A public mapping-task when firstly loaded by another user has all its correspon-
dences green (Figure 6) until the user decides what to accept and what not
(Figure 7). From that evaluation the mappings’ owner credibility is updated
accordingly. We aim at making WebMIPMap’s basics known to HBP hospitals
IT departments so as to actually use it. We believe this collaborativeness will
benefit people’s understanding for the clinical variables’ semantics of our interest
and the process of describing and importing data from new coming hospitals will
flow in an easier way.

In case more than one users have shared the same mapping task but have
differences between them, WebMIPMap can make recommendations. A weight is
given to each correspondence and the one with the highest is selected. The corre-
spondences’ weights are computed taking into account the user’s PageRank[23],
her credibility, the connection’s credibility and the user’s total connections.

Fig. 6. Milano-Niguarda Public Mapping-task ready to get accepts/deletes on its
proposing mappings

6 Mappings implementation and evaluation

The pipeline for MIP Local has been fully deployed in CHRU Lille4 and Milano-
Niguarda ICT5 hospitals. The deployment is done in docker[22] containers mak-

4 http://www.chru-lille.fr/
5 https://comitatoeticoareac.ospedaleniguarda.it/
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Fig. 7. Lille Accepted Mapping-task

ing it easier to transfer and setup our software components in diverse hospital
operating system environments. The project’s goal for the next phase is to re-
cruit and setup MIP in a total of 30 hospitals setting the bar to collect data
for more than 30.000 patients with brain diseases. From the 2 hospitals up until
now we have processed and imported data for 1599 patients.

6.1 Incremental Data Integration

Clinical data from hospitals that are intended to be imported to MIP arrive
in small batches and on a regular basis. In the stable version of MIPMap, the
schema mapping process does not take into account the information about the
frequency and load of this data integration workflow. To be more precise, the
SQL-script that is produced by MIPMap could be of subpar performance if ex-
ecuted on a regular basis because it may execute all TGDs of the schema map-
ping plan from scratch every time. We examine whether an equivalent schema
mapping that allows us to compute only the incremental changes to the target
relations of MIP, as new batches of data arrive.

To tackle this problem, one could view the relations of the target-schema
of MIP as a set of materialized views of the source-schema relations and take
advantage of an established line of work, the theory of Incremental View Main-
tenance. The challenge for us is to apply this theory to a Data Exchange setting,
the setting of MIPMap. To the best of our knowledge, it is the first time this
type of approach is attempted. We present a brief outline of our work and our
proposed approach.

The maintenance of materialized views of relations has been a topic of interest
of the Databases community for more than thirty years. By precomputing and
storing the contents of (traditionally) virtual views, e.g. in relational DBMS,
the user can benefit from better query performance. However, as the data of the
underlying source schema relations is modified, the goal is to compute and apply
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only the incremental changes to the materialized view and avoid recomputing its
contents from scratch. Different techniques have been developed as the problem
of maintaining materialized views turns out to be quite multidimensional[13].

MIPMap’s schema mapping engine is based on ++Spicy[20] which can be
viewed as the next-generation extension of +Spicy[21]. This family of schema
mapping tools was among the first to implement algorithms that attain the
important formalism in the theory of data exchange called the core[10]. The
core is, in some sense, the optimal solution to a data exchange problem. The
core schema mapping, is the smallest set of TGDs that preserves the semantics
of the data exchange. These tools implement a TGD rewriting algorithm that,
given a schema mapping, outputs a core schema mapping, as described in [21],
in polynomial time.

When we are given a schema mapping scenario (a set of tuple-generating de-
pendencies) we first transform each TGD describing a source-schema to target-
schema correspondence to its ”incremental” version according to the rules de-
scribed in [24, 12]. We then feed the TGD rewriting algorithm of MIPMap with
the ”incremental” version of the TGDs.

The transformations of relational expressions we employ from [24, 12] to ob-
tain the incremental version of the TGDs guarantee that no redundant compu-
tations are performed when each TGD is run independently. Moreover, we have
shown that the core schema mapping with the incremental TGDs coincides with
the core of the non-incremental TGDs that MIPMap produced previously. There-
fore, this new schema mapping is in fact equivalent to the one that consists of
non-incremental TGDs in terms of the semantics of the data exchange. However,
we expect this data integration task to be superior in terms of performance.

7 Related work

Integrating clinical and biomedical data from multiple sources has been a goal for
many other projects and initiatives in the bioinformatics community. A platform
with major similarities to MIP is GAAIN[28], a federation platform for searching
and integrating data about Alzheimer. It is a shared network of data and analysis
tools that prompts scientists to join and share their repositories of relevant data
while still keeping ownership rights to them. Part of GAAIN’s architecture is
GEM (GAAIN Entity Mapper)[3] which is a tool that maps pairs of schemas
in an automated way. GEM identifies the name, description, type and range of
each element and calculates the pairs’ similarity scores.

As far as the architecture is concerned, data integration systems have two ap-
proaches: i)Data Warehouses and ii)Virtual Integration Systems. In Data Ware-
houses all the volume of data is consolidated into a single database using a unique
global schema. The Human Genome Project has been an international research
mega-project that built genes warehouses trying to identify and map all the
genes of the human genome. Between others, the UCSC Genome Browser[11]
and Ensembl[15] were two of the products developed in the project. Another
warehousing system is DataFoundry[7] which is mainly designed for bioinfor-
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matics data but its infrastructure has the ability to run on other scientific do-
mains’ data as well. It combines features of a typical warehouse and a federated
database. On the other hand, in Virtual Integration data is scattered across
sources and does not conform to a global schema. Wrappers have the mission to
translate queries and return results. In this category, we have TAMBIS[4] which
uses ontologies and Description Logic. It is based on a biological knowledge
database that covers aspects associated with proteins and nucleic acids, biolog-
ical processes, tissues and taxonomy. BioMediator[9] has a similar approach as
it has a knowledge database and uses a query language of its own, called PQL.
Finally, IBM’s DiscoveryLink[14] is a classic federation database for biomedical
data which -between many others- was influenced by the Stanford-IBM Manager
of Multiple Information Sources (TSIMMIS)[6]. SQL is the language in which
queries are submitted and wrappers are defined. For a wrapper to access a data
source, it has to register and be configured accordingly.
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