
Computing without Servers, V8, Rocket Ships,
and Other Batsh*t Crazy Ideas in Data Systems

Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada
jimmylin@uwaterloo.ca

1 TWO TRENDS
Computing is simultaneously becoming more centralized and more
distributed. A relatively small handful of companies are building
increasingly-large datacenters to power centralized cloud services
at mind-boggling scales. At the other end of the spectrum, per-
sonal computing devices continue to proliferate: Although mobile
phones and tablets are reaching saturation, smart personal devices
and home gadgets, not to mention other devices falling under the
Internet of Things umbrella, are increasingly ubiquitous.

My talk discusses these two trends in the context of information
retrieval systems, andmore broadly, data systems that store, process,
analyze, search, and manipulate large amounts of data. I share
some research by my colleagues, students, and myself exploring
implications of these trends that are “unconventional”, “off the
beaten path”, or simply batsh*t crazy.

2 TO THE CLOUD!
The idea that the “datacenter is the computer” is about a decade
old [2, 17] but today there remains no consensus on what the “dat-
acenter operating system” should look like or what the “basic unit
of computing” should be. In the beginning, clouds provided the
abstraction of virtual machines, from which a customer could “wire
together” clusters for various tasks—massively-parallel data process-
ing using Hadoop was the first killer application. Over time, other
abstractions emerged: containers are replacing virtual machines as
the basic building block, and we are witnessing a proliferation of
“everything as a service”. Just a few examples include storage as a
service, database as a service, search as a service, messaging as a
service, logging as a service, analytics as a service, and machine
learning as a service. We even see examples of meta-services, for
example, configuration as a service, scaling as a service, and my
favorite: service fabric as a service. Microservice architectures are
all the rage these days!

One way to think about the proliferation of these cloud ser-
vices is in terms of the disaggregation of computing capabilities.
Of course, after provisioning one or more virtual machines (or con-
tainers), I can deploy anything I want, say, Lucene/Solr or MySQL.
However, if my ultimate goal is to enjoy the capabilities offered by
these applications (full-text search and SQL querying, respectively),
then the virtual machine (or container, even) is too low level an ab-
straction. I don’t want to worry about scaling out and partitioning
data across multiple nodes, installing software updates, patching

DESIRES 2018, August 2018, Bertinoro, Italy
© 2018 Copyright held by the author(s).

security vulnerabilities, and dealing with a host of other administra-
tive headaches. Instead, I’ll take advantage of higher-level offerings
(and willingly pay a premium over raw virtual machines): this is
the value proposition of search as a service or database as a service.
Taking this idea to one extreme, we arrive at serverless comput-
ing [1, 18]. Specifically, so-called “function as a service” offerings
such as AWS Lambda and Azure Functions allow developers to
write blocks of code with well-defined entry and exit points, del-
egating all aspects of execution to the cloud provider. Typically,
these blocks of code are stateless, reading from and writing to var-
ious “state as a service” abstractions (databases, message queues,
persistent stores, etc.).

Think of “disembodied” functions as the basic unit of computa-
tion: I just want to run this block of code and not have to worry
about anything else. Behind the curtain, the cloud provider is or-
chestrating the provisioning of containers, load balancing across a
fleet of servers as requests pile up, etc. but as the developer, none of
this is my concern. Standard serverless deployments are character-
ized by asynchronous, loosely-coupled, and event-driven processes
that touch relatively small amounts of data [8]. Consider a canonical
example that Amazon describes: an image processing pipeline such
that when the user uploads an image to a website, it is placed in
an S3 bucket, which then triggers a Lambda to perform thumbnail
generation. The Lambda may then enqueue a message that triggers
further downstream processing.

What does this have to do with information retrieval and data
systems? We have prototyped and explored a few unconventional
applications of serverless architectures. For example, it is possi-
ble to build a serverless search engine [4]: “state” in this context
comprises the postings lists, and query evaluation (i.e., traversal
of the postings) become “stateless” functions. A serverless deploy-
ment of neural networks for inference [20] is also possible, fol-
lowing a similar design pattern. Most recently, we’ve ported the
distributed Spark analytics platform to a serverless architecture in
a system called Flint [10], which is a PySpark-compatible execution
engine. With Flint, the analytics experience is indistinguishable
from that of cluster-based Spark—the developer fires up a Python
shell (appropriately configured) and begins doing data science. We
have demonstrated serverless data analytics for simple scan-and-
aggregate queries on hundreds of gigabytes of data. There are, of
course, shortcomings with each of these prototypes, but they repre-
sent novel ways of decomposing monolithic systems in this brave,
new, everything-as-a-service world.

In a nutshell, serverless architectures enable computing without
servers in the sense that they raise the level of abstraction to compu-
tations, isolating the developer from mundane details of execution



DESIRES 2018, August 2018, Bertinoro, Italy Jimmy Lin

on physical machines. The developer doesn’t need to manage server
instances as load scales up or down.

3 TO THE EDGE!
Although computing resources are increasingly centralized in the
cloud, end users ultimately access the rich capabilities it provides
though personal devices. For convenience, I’ll collectively refer to
these as “the edge”. These devices are heterogeneous both in terms
of hardware and software, and increasingly not the user’s laptop.
Most of the companies building clouds would like to keep these
personal devices as dumb as possible because their business models
revolve around gathering user data, and local devices potentially
“obscure the view”.

The truth, however, is that personal devices pack a non-trivial
amount of computing power these days.What are interesting things
that we can do with this power?

Let’s start with the web browser, which is the focal point of
convergence in terms of accessing cloud capabilities: email, docu-
ments, spreadsheets, presentations, and tons of other applications
are routinely accessed by hundreds of millions of users all around
the world via web browsers. The vision of Chrome OS is that the
browser is the operating system. With the advent of browser-based
IDEs, notebooks for data science (e.g., Jupyter), and online collabo-
ration tools, it is increasingly viable that even a software developer
or a data scientist may never need to leave the browser. However,
in nearly all deployments, the browser is relegated to a relatively-
dumb rendering endpoint—computations related to user interface
elements may be handled on device, but all non-trivial processing,
storage, and data manipulation occurs in the cloud.

This approach vastly under-utilizes the tremendous processing
capabilities available at the edge: web browsers today embed pow-
erful JavaScript engines capable of powering online multi-player
games, rendering impressive 3D scenes, supporting complex, inter-
active visualizations, and even running first-person shooters. These
applications take advantage of HTML5 standards such as WebGL,
WebSocket, and IndexedDB, and therefore do not require additional
plug-ins (unlike, for example, Flash).

Can JavaScript engines in the browser be applied in interest-
ing ways? Indeed, yes! I’ve shown that it is possible to build a
JavaScript search engine that runs completely self-contained in
the browser [12]—this includes parsing documents, building the in-
verted index, gathering terms statistics for scoring, and performing
query evaluation. Once a collection has been downloaded, all subse-
quent interactions (searching, browsing, etc.) no longer require an
internet connection. Of course, performance and scalability lags far
behind a “real” search engine running natively, but the prototype
is certainly usable.

Next up, we developed Afterburner [6], a prototype analytical
RDBMS implemented in JavaScript that runs completely in the
browser. In other words, your webpage has the SQL engine embed-
ded inside it! A few clever (at least in my opinion) technical tricks
were necessary to make everything work: in-memory columnar
storage using typed arrays and query compilation into asm.js [7],
but the upshot is that the performance of our prototype approaches
the performance of an existing columnar database and modern
query compilation techniques running natively.

Search engine in JavaScript? Check. Database in JavaScript?
Check. The next obvious question: What about neural networks? Of
course! In fact, others have long had this idea, the most recent incar-
nation of which is TensorFlow.js,1 a JavaScript library for training
and deploying ML models in the browser and on Node.js. For text
processing applications, there was one more detail we had to iron
out related to storing word embedding vectors2 [11], but otherwise
it works as expected. As our demo application, we run inference on
a simple convolutional neural network for sentiment analysis [9]
in the browser.

These three applications are technically interesting since they
illustrate how far we can push JavaScript, but I argue that they are
more than curiosities. Take the in-browser search engine example:
Nervous about search engine companies mining your query logs
for potential illnesses you (or your loved ones) might have? For
example, the work of White and Horvitz [22] does exactly that.
It’s a scary prospect that companies have the technology to build
demographic profiles (for ad targeting) that include features such
as “gender”, “age”, “interest” (the obvious ones) ... and now, “may
have lung cancer”. What about potential data leakage (or even
outright selling of data) to insurance companies? One can combat
this by downloading a pre-packaged, curated collection of health
information, and then searching it locally. There are no query logs
for any corporation to collect and no one would know what you
were searching for. The same selling point applies to neural network
inference—no one needs to know what you fed into the neural
network... could be your deepest, darkest secrets.

An immediate and obvious objection to this line of thinking
is that local execution doesn’t actually require JavaScript—any
downloadable executable will do. However, JavaScript-based de-
ployments have the advantage of seamless integration in a browser-
centric world: your self-contained search engine, database, neural
network... they’re all just webpages.3 The ubiquity of JavaScript is
its greatest strength—it’s probably defensible to argue that JavaScript
is the most widely-deployed and easily-accessible platform in the
world. Targeting JavaScript means that an application will run any-
where with a browser: a mobile phone, a tablet, even the connected
toaster of tomorrow. For example, in Liang et al. [11] we compared
neural network inference performance with several configurations:
PyTorch on Linux, a browser on Linux, and the same browser on
iPads, iPhones, and Android phones. In fact, at the conferences
where we demonstrated our prototypes, we used tablets as a more
convenient form factor.

Beyond privacy, JavaScript deployments open up opportunities
for new execution models in unifying, and then blurring, the dis-
tinction between client-side and server-side processing. In fact, that
was one of the original motivation for Node.js—developers were
writing piles of JavaScript code running in the browser (since there
were no viable alternatives), so why not just run JavaScript on the
server side also? For databases, the idea of split execution (running
part of the query plan on the client side) goes back decades [5],
but JavaScript allows for some interesting new possibilities [7]. For

1https://js.tensorflow.org/
2Which can be quite large, and hence not directly embeddable in a webpage.
3As an aside, those up-to-date with web technologies might bring up WebAssembly.
JavaScript and WebAssembly are tightly integrated and designed to interoperate in a
way that I don’t think the latter fundamentally alters any of my arguments.

https://js.tensorflow.org/


Batsh*t Crazy Ideas in Data Systems DESIRES 2018, August 2018, Bertinoro, Italy

neural networks, it would make sense to run latency-sensitive infer-
ence (for example, typeahead prediction with smart keyboard apps)
on the client side, rather than to depend on shuttling everything to
the cloud and trying to hide latency in other ways. Or better yet,
some neural networks are quite deep, right? Let’s run some of the
layers locally and some of the layers in the cloud [19], and we can
decide when to quit if the predicted accuracy is good enough. Wait,
that’s just like early exits in multi-stage ranking architectures? (I’ll
let Shane tell you all about them in his talk.)

So, the future is. . . JavaScript? Once we get beyond the fact that
JavaScript is an undeniably shitty language on which to build an
interlingual execution platform, there is at least some so-crazy-
it-might-actually-work appeal to this idea. Or at least, why not,
and worth looking into. Additional musings along these lines are
provided in a column [15] for interested readers.

4 TO MARS!
The tension between centralized and distributed organizations of
computation manifests in the tug of war between what happens
in the cloud and what happens at the edge. Google’s vision, for
example, is that everything happens in the cloud, as operationalized
in Chrome OS. The business model of most internet companies
aligns most closely with this viewpoint, since they want to gather
asmuch behavioral data about users as possible. Interestingly, Apple
is perhaps the exception here, since it wants you to spend a fortune
buying their physical devices, and that requires convincing you
of cool things you can do directly on those devices. Regardless,
the cloud-centric vision seems pretty clear, but what might the
edge-centric end of the spectrum look like?

Our (initial and incomplete) exploration along these lines is
a system called Prizm [16], a prototype lifelogging device that
comprehensively records a user’s web activity. The physical device
is a wireless access point deployed on a Raspberry Pi that provides a
substitute for the user’s normal wireless access point. Prizm proxies
all HTTP(S) requests from devices connected to it and records all
activity it observes. The original intent of the system was to provide
users with an overview of their “information diet”, in the same way
that apps help users track what they eat. With Prizm, the user can
answer questions such as: Howmuch time have I spent on Facebook
today? How many YouTube videos have I watched this week? How
many Google queries have I issued last month?

In short, Prizm is a gatekeeper sitting between a user’s edge
devices and the outside world. The yet-to-be-realized vision is that
this gatekeeper would manage traffic in an intelligent way. In ad-
dition to metadata about all web activity, the device could store
the actual content—providing a means of personal web archiving.
Think of browsing histories on steroids.

Why? Previous studies have shown that a significant fraction of
users’ search behavior on the web consists of “refinding” [21], or
searching for pages they had encountered before—in which case,
why not simply return the previously-stored content? Storage is
cheap and plentiful, even on small devices: so why not store a
copy of Wikipedia [13], or even a local web collection? If the proxy
believes that the user’s query can be answered locally without going
to the outside world, why not? In other words, Prizm becomes the
user’s intelligent agent for mediating interactions with the cloud—it

could even, at the user’s request, generate fake requests to confuse
various internet services (call it “log stuffing”).

Let’s push this idea of cloud/edge separation even further... and
imagine the edge on Mars! While Martian colonies may be a decade
or more in the future, plans are being actively developed with the
public support of luminaries such as Elon Musk, Jeff Bezos, and
Edwin “Buzz” Aldrin (the second person to walk on the Moon). As
opposed to a traditional Apollo-style there-and-back-again mission,
many are planning for permanent settlement, with colonists po-
tentially living out the remainder of their lives on Mars. While the
idea of permanent settlement may seem like science fiction to some,
there are substantial cost savings from permanent colonization
since fuel and other resources for immediate return would not be
required. According to proponents, becoming a multi-planet species
is an inevitable development in the history of our civilization.

In this context, we explored a simple question [3, 14]: Howwould
we provide a high-quality search experience on Mars, where the
fundamental physical limit is speed-of-light propagation delays
on the order of tens of minutes? On Earth, users are accustomed
to nearly instantaneous responses from web services. Is it possi-
ble to overcome orders-of-magnitude longer latency to provide
a tolerable user experience on Mars? This scenario shares many
similarities with the Prizm concept—the fundamental tradeoff is be-
tween latency (waiting for Earth-based responses) and bandwidth
(pre-fetching or caching data on Mars). We imagine starting the
process with a big sneakernet delivery of a cache of the web to Mars
on a cargo rocket (petabytes literally hurtling through space). Once
the colonists arrive, a central proxy (i.e., an intelligent agent) would
manage precious bandwidth in Earth-bound transmissions, quite
similar to what Prizm might do (albeit with different tradeoffs).

Is search from Mars idle “blue sky” (or shall we say, “red sky”)
thinking?We intended for this research problem to be inspirational—
even if one is not convinced by the premise of Mars colonization,
there are Earth-based scenarios such as searching from rural vil-
lages in India or from the Canadian high arctic that share similar
constraints, and thus solutions to these challenges can have impact
much closer on Earth.

5 TO THE FUTURE!
Thomas Henry Huxley famously said, “It is the customary fate
of new truths to begin as heresies and to end as superstitions.”
That is, ideas that seem crazy today might become self-evident and
unquestioned in the future. However, Carl Sagan quipped, “They
laughed at Columbus, they laughed at Fulton, they laughed at the
Wright Brothers.” Following up: “But they also laughed at Bozo the
Clown. Being laughed at does not mean you are right.” Perhaps I’m
Bozo the Clown, and these ideas are just plain stupid. I don’t know.
I think not, but only time will tell!

ACKNOWLEDGMENTS
I am grateful for all the wonderful colleagues and amazing students
and postdocs I’ve been fortunate enough to have collaborated with
on the research described here. None of this work would have been
possible without the generous support of many organizations over
the years, and the freedom afforded by an academic position to
pursue batsh*t crazy ideas.



DESIRES 2018, August 2018, Bertinoro, Italy Jimmy Lin

REFERENCES
[1] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche

Ishakian, NickMitchell, VinodMuthusamy, Rodric Rabbah, Aleksander Slominski,
and Philippe Suter. 2017. Serverless Computing: Current Trends and Open
Problems. arXiv:1706.03178v1.

[2] Luiz André Barroso and Urs Hölzle. 2009. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Morgan & Claypool
Publishers.

[3] Charles L. A. Clarke, Gordon V. Cormack, Jimmy Lin, and Adam Roegiest. 2017.
Ten Blue Links on Mars. In Proceedings of the 26th International World Wide Web
Conference (WWW 2017). Perth, Australia, 273–281.

[4] Matt Crane and Jimmy Lin. 2017. An Exploration of Serverless Architectures for
Information Retrieval. In Proceedings of the 3rd ACM International Conference on
the Theory of Information Retrieval (ICTIR 2017). Amsterdam, The Netherlands,
241–244.

[5] Michael J. Franklin, Björn Thór Jónsson, and Donald Kossmann. 1996. Per-
formance Tradeoffs for Client-Server Query Processing. In Proceedings of the
1996 ACM SIGMOD International Conference on Management of Data. Montreal,
Quebec, Canada, 149–160.

[6] Kareem El Gebaly and Jimmy Lin. 2017. In-Browser Interactive SQL Analytics
with Afterburner. In Proceedings of the 2017 ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD 2017). Chicago, Illinois, 1623–1626.

[7] Kareem El Gebaly and Jimmy Lin. 2018. In-Browser Split-Execution Support for
Interactive Analytics in the Cloud. arXiv:1804.08822v1.

[8] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran Venkatara-
mani, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2016. Serverless
Computation with OpenLambda. In Proceedings of the 8th USENIX Conference on
Hot Topics in Cloud Computing (HotCloud’16).

[9] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP 2014). Doha, Qatar, 1746–1751.

[10] Youngbin Kim and Jimmy Lin. 2018. Serverless Data Analytics with Flint. In
Proceedings of the Third International Workshop on Serverless Computing (WoSC
2018). San Francisco, California.

[11] Yiyun Liang, Zhucheng Tu, Laetitia Huang, and Jimmy Lin. 2018. CNNs for
NLP in the Browser: Client-Side Deployment and Visualization Opportunities. In
Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Demonstrations. New Orleans, Louisiana, 61–65.

[12] Jimmy Lin. 2015. Building a Self-Contained Search Engine in the Browser. In
Proceedings of the ACM International Conference on the Theory of Information
Retrieval (ICTIR 2015). Northampton, Massachusetts, 309–312.

[13] Jimmy Lin. 2015. The Sum of All Human Knowledge in Your Pocket: Full-Text
Searchable Wikipedia on a Raspberry Pi. In Proceedings of the 15th ACM/IEEE-CS
Joint Conference on Digital Libraries (JCDL 2015). Knoxville, Tennessee, 85–86.

[14] Jimmy Lin, Charles L.A. Clarke, and Gaurav Baruah. 2016. Searching from Mars.
IEEE Internet Computing 20, 1 (2016), 78–82.

[15] Jimmy Lin and Kareem El Gebaly. 2016. The Future of Big Data Is... JavaScript?
IEEE Internet Computing 20, 5 (2016), 82–88.

[16] Jimmy Lin, Zhucheng Tu, Michael Rose, and Patrick White. 2016. Prizm: A
Wireless Access Point for Proxy-Based Web Lifelogging. In Proceedings of the
First Workshop on Lifelogging Tools and Applications (LTA 2016). Amsterdam, The
Netherlands, 19–25.

[17] David A. Patterson. 2008. The Data Center is the Computer. Commun. ACM 52,
1 (2008), 105.

[18] Neil Savage. 2018. Going Serverless. Commun. ACM 61, 2 (2018), 15–16.
[19] Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. 2017. Distributed Deep

Neural Networks over the Cloud, the Edge and End Devices. In Proceedings of
the 37th IEEE International Conference on Distributed Computing Systems (ICDCS
2017). Atlanta, Georgia, 328–339.

[20] Zhucheng Tu,Mengping Li, and Jimmy Lin. 2018. Pay-Per-Request Deployment of
Neural Network Models Using Serverless Architectures. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Demonstrations. New Orleans, Louisiana, 6–10.

[21] Sarah K. Tyler and Jaime Teevan. 2010. Large Scale Query Log Analysis of Re-
Finding. In Proceedings of the Third ACM International Conference on Web Search
and Data Mining (WSDM 2010). New York, New York, 191–200.

[22] Ryen W. White and Eric Horvitz. 2017. Evaluation of the Feasibility of Screening
Patients for Early Signs of Lung Carcinoma in Web Search Logs. JAMA Oncology
3, 3 (2017), 398–401.


	1 Two Trends
	2 To the Cloud!
	3 To the Edge!
	4 To Mars!
	5 To the Future!
	References

