
Preferences using Answer Sets

Mauricio Osorio
Universidad de las Américas - Puebla

CENTIA, Sta. Catarina Mártir,
Cholula, Puebla, 72820 México

osoriomauri@gmail.com

Claudia Zepeda
Universidad Tecnológica de la Mixteca

División de Estudios de Posgrado
Huajuapan de Leon, Oaxaca, 69000 México

claudiaz@mixteco.utm.mx

Abstract

We introduce the semantics for preference logic pro-
grams. These programs are in terms of preference rules.
Apreference rule allows us to specify preferences as an or-
dering among the possible solutions of a problem. More-
over, our approach permits expressing preferences and
desires for general theories.We useAnswer Set Program-
ming as the formalism to develop our work.

1. Introduction

Preferences can be used to compare feasible so-
lutions of a given problem, in order to establish if
there is an order among these solutions or to estab-
lish whether such solutions are equivalents w.r.t. some
requirements. Currently there are several approaches
in non monotonic reasoning dealing with preferences
[5]. In this paper we introduce preference logic (PL)
programs which permit represent preferences and de-
sires. The formalism used to develop our work is An-
swer Set Programming (ASP) [6]. ASP is a declarative
knowledge representation and logic programming lan-
guage. ASP represents a new paradigm for logic pro-
gramming that allows us, using the concept of nega-
tion as failure, to handle problems with default knowl-
edge and produce non-monotonic reasoning. Two pop-
ular software implementations to compute answer sets
are DLV1 and SMODELS2. The efficiency of such pro-
grams allowed to increase the list of practical applica-
tions in the areas of planning, logical agents and arti-
ficial intelligence.

Most research on ASP and in particular about pref-
erences in ASP supposes syntactically simple rules (see
for example [2, 1, 13]). This is justified since, most of

1 http://www.dbai.tuwien.ac.at/proj/dlv/

2 http://www.tcs.hut.fi/Software/smodels/

the times, those restricted syntaxes are enough to rep-
resent a wide class of interesting and relevant prob-
lems. It could seem unnecessary to generalize the no-
tion of answer sets to some more complicated formu-
las. However, a broader syntax for rules could bring
some benefits. For example, the use of nested expres-
sions could simplify the task of writing logic programs
and improve their readability. Hence, PL programs is
an approach about preferences and desires to general
theories.

A PL program is a set of well formed formulas joined
to a set of preference rules. The set of well formed for-
mulas of a PL program allows us to obtain the differ-
ent answer sets representing the solutions of a problem.
For instance, {ice cream∨(coffee∧cake) ← . } repre-
sent two solutions, ice-cream and coffee with cake. The
set of preference rules of a PL program express the pref-
erences and desires of somebody. Preference rules use a
new connective, ∗, called preference operator to repre-
sent an ordering among the preference options. For in-
stance, ice cream ∗ cake

pr← . indicates preference for
ice-cream over cakes. If a preference rule has only one
preference option, then it represents a desire. For in-
stance, coffee

pr← . indicates the desire of drinking cof-
fee. The complete PL program is:

ice cream ∨ (coffee ∧ cake) ← . %To obtain the solutions

ice cream ∗ cake
pr← . %a preference rule (1)

coffee
pr← . %a desire

Currently, there are some answer set approaches
that suggest a broader syntax [8, 10, 4]. In particular
the authors of [4] describe an approach for preferences
called Answer Set Optimization (ASO) programs. ASO
programs have two parts. The generating program and
the preference program. The first one produce answer
sets representing the solutions, and the second one ex-
presses user preferences. The body of a rule represent-
ing preferences is defined as a conjunction of literals,



and its head is defined as an ordering among the prefer-
ence options. The preference options are particular for-
mulas called boolean combinations. A boolean combi-
nation is a formula built of atoms by means of disjunc-
tion, conjunction, strong and default negation, with
the restriction that strong negation is allowed to ap-
pear only in front of atoms, and default negation only
in front of literals.

At this point, we could think that PL programs and
ASO programs [4] could be similar approaches to rep-
resent preferences. These idea could come from the fact
that both approaches have two parts (one to get the an-
swer sets and one to express preferences), and both ap-
proaches allow us a broader syntax to express prefer-
ences. However, ASO programs and PL programs dif-
fer considerably in syntax and semantics.

As we mentioned, the first difference is related to
syntax. Specifically, the parts of both approaches to
get the answer sets and their parts to express prefer-
ences have different syntax. ASO programs allow us to
get the answer sets from any type of logic program (for
instance, normal, extended, disjunctive, etc). PL pro-
grams allows us to get the answer sets from a set of
well formed formulas. Additionally, the part of ASO
programs to express preferences uses boolean combi-
nations which have a restricted syntax. The part of PL
programs to express preferences uses well formed for-
mulas. So, PL programs allow us a broader syntax than
ASO programs. The idea of permitting a broader syn-
tax of PL programs comes from [10]. In [10] the authors
propose a broader syntax for logic programs with or-
dered disjunction (LPOD) and its semantics. LPOD’s
are introduced in [2].

The second difference between ASO programs and
PL programs is their semantics. For instance, we shall
see in Section 3 that {ice cream} and {coffee, cake}
are the preferred answer sets of the PL program (1).
However, if we represent the two parts of the PL pro-
gram (1) as an ASO program then, we can verify that
{ice cream} is its only preferred answer set. Addition-
ally, there is only one criterion to get the preferred an-
swer sets from an ASO program; and there are three
different criteria to get the preferred answer sets from
a PL program. Finally, in [4] is not defined whether
ASO programs can have preferences with only one op-
tion or not. PL programs allow us to have preferences
with only one option and they are called desires. We
want to mention that, the semantics of PL programs is
inspired by the semantics of LPOD’s introduced in [2],
the extended semantics for LPOD’s proposed in [10],
and the work about preferences in [14]. It is worth men-
tioning that the authors of [14] indicate that their work
arose from the necessity to model a real problem. The

real problem is related to represent preferences about
the evacuation plans in a risk zone.

Our paper is structured as follows. In Section 2 we
introduce the general syntax of the logic programs used
in this paper. We also provide the definition of answer
sets in terms of logic G3. In Section 3 we present the
semantics for preference logic programs. In Section 4
we present how our approach is related to extended
LPOD’s. Finally in Section 5 we present some conclu-
sions.

2. Background

In this section we review some fundamental concepts
and definitions that will be used along this work. We
introduce first the syntax of formulas and programs
based on the language of propositional logic. We also
present the definition of answer sets in terms of logic
G3. In this paper, logic programs are understood as
propositional theories. We shall use the language of
propositional logic in the usual way, using propositional
symbols: p, q, . . . , propositional connectives ∧,∨,→,⊥
and auxiliary symbols: (, ). The well formed proposi-
tional formula f ← g is just another way of writing
g → f . We assume that for any well formed proposi-
tional formula f , ¬f is just an abbreviation of f → ⊥
and > is an abbreviation of ⊥ → ⊥. We point out that
¬ is the only negation used in this work. An atom is
a propositional symbol. A literal is either an atom a
(a positive literal) or the negation of an atom ¬a (a
negative literal). A negated literal is the negation sign
¬ followed by any literal, i.e. ¬a or ¬¬a. In particu-
lar, f → ⊥ is called constraint and it is also denoted
as ← f . Given a set of well formed formulas F , we de-
fine ¬F = {¬f | f ∈ F}. Sometimes we may use not
instead of ¬ and a, b instead of a∧ b, following the tra-
ditional notation of logic programming. A regular the-
ory or logic program is just a finite set of well formed
formulas or rules, it can be called just theory or pro-
gram where no ambiguity arises. We shall define as a
rule any well formed formula of the form: f ← g. The
parts on the left and on the right of “ ← ” are called
the head and the body of the rule, respectively. The sig-
nature of a logic program P , denoted as LP , is the set
of atoms that occur in P . We want to stress the fact
that in our approach, a logic program is interpreted as
a propositional theory. For readers not familiar with
this approach, we recommend [12, 9] for further read-
ing. We will restrict our discussion to propositional pro-
grams.

Some logics can be defined in terms of truth values
and evaluation functions. Gödel defined the multival-
ued logics Gi, with i truth values. In particular, G2 co-



incides with classical C. We briefly describe in the fol-
lowing lines the 3-valued logic G3 since our work uses
the logical characterization of answer sets based on this
logic presented in [9]. Gödel defined the logic G3, with
3 values, with the following evaluation function I:
• I(B ← A) = 2 if I(A) ≤ I(B) and I(B) otherwise.
• I(A ∨B) = max(I(A), I(B)).
• I(A ∧B) = min(I(A), I(B)).
• I(⊥) = 0.

An interpretation is a function I : L → {0, 1, 2} that as-
signs a truth value to each atom in the language. The
interpretation of an arbitrary formula is obtained by
propagating the evaluation of each connective as de-
fined above. Recall that ¬ and > were introduced as
abbreviations of other connectives. For a given inter-
pretation I and a formula F we say that I is a model
of F if I(F ) = 2. Similarly I is a model of a program
P if it is a model of each formula contained in P . If
F is modeled by every possible interpretation we say
that F is a tautology. For instance, we can verify that
¬¬a → a is not a tautology in G3, and a → ¬¬a is a
tautology in G3. For a given set of atoms M and a pro-
gram P we will write P `G3 M to abbreviate P `G3 a
for all a ∈ M , and P °G3 M to denote the fact that
P `G3 M and P is consistent w.r.t. logic G3 (i.e. there
is no formula A such that P `G3 A and P `G3 ¬A).

2.1. Answer sets

As usual in ASP, we take for granted that programs
with predicate symbols are only an abbreviation of the
ground program. We shall define answer sets of logic
programs. The answer sets semantics was first defined
in terms of the so called Gelfond-Lifschitz reduction [6]
and it is usually studied in the context of syntax de-
pendent transformations on programs. We follow an
alternative approach started by Pearce [12] and also
studied by Osorio et.al. [9]. This approach character-
izes the answer sets for a propositional theory in terms
of logic G3 and it is presented in the following defini-
tion. There are several nice reasons to follow this ap-
proach. One of these reasons is that it is possible to
use logic G3 to provide a definition of ASP for arbi-
trary propositional theories, and at the same time to
use the logic framework in an explicit way [9]. More-
over, this approach provides a natural way to extend
the notion of answer sets in other logics [9]. The nota-
tion is based on [9]. We point out that ¬ denotes default
negation and it is the only type of negation considered
in this paper. However, it is worth mentioning that we
always can handle the other negation called classical or
even strong negation, denoted by −, by transforming
the atoms with classical negation [7]. Each atom with
classical negation , −a, that occurs in a formula of a

logic program should be replaced by a new atom, a′,
and the rule ¬(a∧a′) should be added to the logic pro-
gram. Rule ¬(a∧a′) can also be written as (a∧a′) → ⊥.

Definition 1 [9] Let P be a program and M a set of
atoms. M is an answer set of P iff P ∪ ¬(LP \ M) ∪
¬¬M °G3 M .

For instance, the answer sets of

ice cream ∨ (coffee ∧ cake) ← .

are {ice cream} and {coffee, cake} because,
P ∪ {¬coffee,¬cake} ∪ {¬¬ice cream} °G3 {ice cream}, and
P ∪ {¬ice cream} ∪ {¬¬coffee,¬¬cake} °G3 {coffee, cake}.

3. Syntax and semantics for preferences

In order to specify preferences we introduce a new
connective, ∗, called preference operator. A preference
rule specifies the preferences for something. Its head
corresponds to an ordered list of well formed formu-
las connected using the operator ∗, where each well
formed formula represents a preference option.

Definition 2 Apreference rule is a formula of the form:
f1∗· · ·∗fn

pr← g where f1, . . . , fn, g arewell formed propo-
sitional formulas. A preference logic (PL) program is a
finite set of preference rules and an arbitrary set of well
formed formulas. If n = 1 the preference rule is called de-
sire.

If g = > the preference rule can be written as f1 ∗ · · · ∗
fn

pr←. The formulas f1 . . . fn are called the options of
a preference rule.

Example 1 A restaurant has two options for dessert,
ice-cream or coffee with cake. Peter wants ice cream
rather than cake and if possible he desires coffee. Hence,
restaurant’s options, and Peter’s preferences and desires
can be simply represented as the PL program (1), i.e.,

ice cream ∨ (coffee ∧ cake) ← .

ice cream ∗ cake
pr← .

coffee
pr← .

Let r1 and r2 be the preference rule ice cream∗cake
pr← .

and the desire coffee
pr← . respectively.

The answer sets of a PL program are the answer sets
of the logic program obtained by removing the prefer-
ence rules from the original PL program.

Definition 3 Let Pref be the set of preference rules of
a PL program P . Let M be a set of atoms. M is an answer
set of P iff M is an answer set3 of P \ Pref .

3 Note that since we are not considering strong negation, there
is no possibility of having inconsistent answer sets.



So, the answer sets of the PL program of Example 1
are {ice cream} and {coffee, cake}.

Part of the semantics of PL programs was inspired
by the semantics of LPOD’s [2]. Due to lack of space
we do not present the semantics of LPOD’s, but read-
ers not familiar with this approach can review [2]. The
semantics of PL programs is based on a function called
satisfaction degree. The satisfaction degree with respect
of an answer set of a preference rule indicates how well
is this preference rule satisfied by the answer set. A sat-
isfaction degree equal to 1 is better than all others. The
lower is a satisfaction degree, the better is this satisfac-
tion degree. Our definition of satisfaction degree is in
terms of logic G3, however since logic programs (or the-
ories) used in this work are complete (i.e. for any for-
mula A of a program P , either P `G3 A or P `G3 ¬A),
we could use classic logic too 4.

Definition 4 Let M be an answer set of a PL pro-
gram P . Let r := f1 ∗ · · · ∗ fn

pr← g be a preference
rule of P . Let m be the max{n | f1 ∗ · · · ∗ fn

pr←
g is a preference rule of P}. We define the satisfaction
degree of r in M , denoted by degM (r), as a correspon-
dence rule that defines the following function:

1. 1 if M ∪ ¬(LP \M) 6`G3 g.

2. min {i | M ∪ ¬(LP \M) `G3 fi} if M ∪ ¬(LP \
M) `G3 g.

3. m + 1 if M ∪¬(LP \M) `G3 g and there is not 1 ≤
i ≤ n such that M ∪ ¬(LP \M) `G3 fi.

The part (1) of Definition 4 indicates that rule r has
a satisfaction degree equal to 1 in the answer set be-
cause, the rule r does not apply and this fact makes
rule r irrelevant to prefer the answer set. The part (2)
of Definition 4 indicates that rule r is satisfied in the
answer set to some degree. Finally, the part (3) of Def-
inition 4 indicates that the rule r has the largest value
of satisfaction degree in the answer set because none
of the options of the preference rule r holds. Accord-
ing to our intuition, this part (3) of Definition 4 will be
useful in case that none of the options of each prefer-
ence rule in P holds in all the answer sets of P. So, in
this case all the answer sets of the PL program should
be preferred. For instance, let us suppose that I have a
preference for fruit over cookies and orange juice over
milk for breakfast. Additionally, I have only two op-
tions for breakfast, salad or eggs. In this case both op-
tions are incomparable with respect to my preferences
and both of them should be preferred.

Example 2 Let P be the PL program of Example 1. By
Definition 3we know that programP has two answer sets:

4 For complete theories, logic G3 is equivalent to classic logic [9].

M1 = {ice cream} and M2 = {coffee, cake}. Accord-
ing to Definition 4 we can verify that m = 2 and that,

degM1 (r1) = 1, degM2 (r1) = 2,
degM1 (r2) = 3, degM2 (r2) = 1.

It is interesting to mention that degM1(r2) is equal to 3
because, non of the options of r2 holds in M1 (see part (3)
of Definition 4). So, degM1(r2) = m + 1.

The following theorems and definitions are about the
preferred answer sets of a PL program. All of them are
similar to the definitions given in [2]. However we do
not have to forget that they are defined for general the-
ories (see Definition 2) and are based on our own defi-
nition of satisfaction degree.

Theorem 1 Let Pref be the set of preference rules of a
PL program P . If M is an answer set of P then M satis-
fies all the rules in Pref to some degree.

The satisfaction degree of each preference rule of a
PL program allows us to define the set of preference
rules with the same satisfaction degree. We use these
sets to obtain the preferred answer sets of the PL pro-
gram according to some criterion.

Definition 5 Let P be a PL program and let Pref be the
set of preference rules of P . Let M an answer set of P .
We define Si

M (P ) = {r ∈ Pref | degM (r) = i}.
Example 3 Let P be the PL program of Example 1. Let
us consider the satisfaction degree of rules r1 and r2 in
Example 2. Then we can verify that,

S1
M1

(P ) = {r1}, S2
M1

(P ) = {}, S3
M1

(P ) = {r2},
S1

M2
(P ) = {r2}, S2

M2
(P ) = {r1}, S3

M2
(P ) = {}.

The following definitions indicate how to apply dif-
ferent criteria to the sets of preference rules Si

M (P ) of a
PL program, in order to know if one answer set is pre-
ferred to another answer set and to obtain the most
preferred answer sets. The criteria used are set inclu-
sion, set cardinality or pareto criterion. We start de-
scribing how to apply the set inclusion criterion.

Definition 6 Let M and N be answer sets of a PL
program P . M is inclusion preferred to N , denoted as
M >i N , iff there is an k such that Sk

N (P ) ⊂ Sk
M (P ) and

for all j < k, Sj
M (P ) = Sj

N (P ).

Definition 7 A set of atoms M is an inclusion-
preferred answer set of a PL program P , if M is an an-
swer set of P and there is not answer set M ′ of P ,
M 6= M ′, such that M ′ >i M .

Example 4 Let P be the PL program of Example 1. If
we consider the results of Example 3 then, we can ver-
ify that M1 is not inclusion-preferred to M2 or vice versa
since S1

M1
(P ) is not a subset of S1

M2
(P ) or vice versa. We



also can see that there is not M answer set of P , M 6= M1

and M 6= M2, such that M >i M1 or M >i M2. Hence
M1 and M2 are both the inclusion-preferred answer sets
of P .
Discussion about the results: If M1 and M2 are
inclusion-preferred answer sets of P then, it means that
Peter could have ice-creamor coffee with cakes for break-
fast. This result agrees with our intuition because accord-
ing to Peter’s preferences and desires: M1 includes ice-
cream that is one of the options with the highest prefer-
ence, andM2 includes coffee that is a desire with the high-
est preference too.

The following two definitions indicate how to use
set cardinality criterion to prefer an answer set to an-
other answer set, and to obtain the most preferred an-
swer sets. Before presenting these definitions, we have
to mention that this criterion was particularly useful to
specify preferences for evacuation plans using ASP ap-
proaches in [14]. One of the criteria used to prefer the
evacuation paths in [14] was the number of segments of
roads in each evacuation path. In this case, the paths
with the minimum number of segments of road were
the preferred paths. So, the idea of using the cardinal-
ity set criterion resulted very natural and easy in this
case.

Definition 8 Let M and N be answer sets of a PL pro-
gram P . M is cardinality preferred to N , denoted as
M >c N , iff there is an i such that |Si

M (P )| > |Si
N (P )|

and for all j < i, |Sj
M (P )| = |Sj

N (P )|.
Definition 9 A set of atoms M is a cardinality-
preferred answer set of a PL program P , if M is an an-
swer set of P and there is not answer set M ′ of P ,
M 6= M ′, such that M ′ >c M .

Example 5 Let P be the PL program of Example 1. If
we consider the results of Example 3 then, we can verify
that M2 is cardinality-preferred to M1 since |S2

M2
(P )| >

|S2
M1

(P )| and |S1
M2

(P )| = |S1
M1

(P )|. We also can see
that there is not answer set M ′ of P , M ′ 6= M2, such that
M ′ >c M2. Hence M2 is the cardinality-preferred an-
swer set of P .
Discussion about the results: If the criterion to pre-
fer one of the menu options for breakfast is the num-
ber of things that the option includes then, we agree that
M2 := {coffee, cakes} is a better option than M1 :=
{ice cream} because M2 has two things to eat and M1

has only one.

Finally, we describe the pareto criterion. As it is de-
scribed in [2], in some cases the result of adding not
achievable options to preference rules does not agrees
with what we could expect. For instance, let us extend
the problem specification of Example 1 as follows: the

restaurant also can offer gelatine in the mornings, Pe-
ter prefers gelatine to ice cream, and Peter can’t have
gelatine because he always arrives at the restaurant at
night. So, restaurant’s options and Peter’s preferences
can be represented as the following PL program,

gelatine ∨ ice cream ∨ (coffee ∧ cake) ← .
← gelatine.

gelatine ∗ ice cream ∗ cake
pr← .

coffee
pr← .

Our intuition indicates that this program should have
the same two inclusion-preferred answer sets of Exam-
ple 4, however we can verify that {coffee, cake} is the
only inclusion preferred-answer set of this PL program.
In order to avoid effects of this kind we can use the
pareto criterion:

Definition 10 Let M and N be answer sets of a PL pro-
gram P . Let Pref be the set of preference rules of P . M
is pareto preferred to N , denoted as M >p N , iff there
is an r ∈ Pref , such that degM (r) < degN (r), and for
no r′ ∈ Pref degN (r′) < degM (r′).

Definition 11 A set of atoms M is a pareto-preferred
answer set of a PL program P , if M is an answer set of P
and there is not answer set M ′ of P , M 6= M ′, such that
M ′ >p M .

Example 6 Let P be the PL program of Example 1. Let
us consider the results of Example 2. We can verify that
degM1(r1) < degM2(r1) and degM2(r2) < degM1(r1).
So, M1 is not pareto-preferred to M2. In a similar way we
can verify that M2 is not pareto-preferred to M1. We also
can see that there is not M answer set of P , M 6= M1 and
M 6= M2, such that M >p M1 or M >p M2. Hence M1

and M2 are both the pareto-preferred answer sets of P .

4. Related work

Currently there are several approaches in non
monotonic reasoning dealing with preferences [5]. Bal-
duccini et al. relate ASP with preferences introducing
CR-programs with preferences in [1]. Work that re-
lates Answer Set Planning with preferences using
language PP can be found in [13]. Work that re-
lates ASP with preferences as an LPOD can be found
in [2]. LPOD’s are a useful extension of ASP, pro-
viding more natural modeling and easier solutions
to many problems. Currently it is possible to com-
pute the preferred answer sets under the ordered
disjunction semantics using Psmodels [3]. Psmod-
els is a modification of SMODELS to compute the
preferred answer sets of LPOD’s. In [10] a broader syn-
tax for LPOD’s and its semantics is proposed. This
approach was called extended logic programs with or-
dered disjunction (ELPOD). In [11] are presented two



semantics for preferences based on ASP. The approach
presented in this paper follows the approaches given
in [2, 10, 11]. In spite of ELPOD’s [10] and PL pro-
grams have a similar broader syntax and use the three
criteria (set inclusion, set cardinality and pareto cri-
terion) to get the preferred answer sets, both ap-
proaches are different. Specifically, PL programs differ
from ELPOD’s in two main features. The first dif-
ference between PL programs and ELPOD’s is their
semantics. ELPOD’s represent a particular priori-
tized form of disjunction over the preference options
and PL programs represent preference over the pref-
erence options. For instance, if we represent the two
parts of the PL program of Example 1 as an EL-
POD then, we can verify that {ice cream, coffee} and
{ice cream, coffee, cake} are the preferred answer
sets using the three criteria: set inclusion, set cardinal-
ity and pareto criterion. Clearly, this result does not
agree with our intuition, results and discussions pre-
sented in Example 4, Example 5, and Example 6.
The second difference between PL programs and EL-
POD’s is the form to represent a problem with prefer-
ences. A PL program represents this kind of problems
as a set of well formed formulas joined to a set of pref-
erence rules. So a PL program has two parts, one to
generate the answer sets and one to express the pref-
erences. In ELPOD’s this does not occur. An ELPOD
represents a problem with preferences as a set of ex-
tended ordered disjunction rules.

On the other hand, in [15] the authors define the con-
cept of maximal answer sets of a program w.r.t. a set
of atoms. Moreover, in [15] is described how this con-
cept could be useful in a real application related to ar-
gumentation in the domain of organ transplantation.
The idea in [15] is to get the maximal answer sets from
a particular program such that, these maximal answer
sets correspond to the preferred extensions of an argu-
ment framework. It is easy to verify that PL programs
can be used to obtain the maximal answer sets of a
logic program P w.r.t. a set of atoms A. The PL pro-
gram used is obtained by adding to P a set of desires
(see Definition 2).

5. Conclusions

We provide two semantics for PL programs. We pro-
pose the only ASP approach about preferences that al-
lows us to express preference rules for general theories.

References

[1] M. Balduccini and V. S. Mellarkod. A-prolog with cr-
rules and ordered disjunction. In International Confer-

ence on Intelligent Sensing and Information Processing,
pages 1–6, 2004.

[2] G. Brewka. Logic Programming with Ordered Disjunc-
tion. In Proceedings of the 18th National Conference on
Artificial Intelligence, AAAI-2002. Morgan Kaufmann,
2002.

[3] G. Brewka, I. Niemelä, and T. Syrjänen. Implement-
ing Ordered Disjunction Using Answer Set Solvers for
Normal Programs. In Proceedings of the 8th European
Workshop Logic in Artificial Inteligence JELIA 2002.
Springer, 2002.

[4] G.Brewka, I. Niemela, andM.Truszczynski. AnswerSet
Optimization. In IJCAI-03, pages 867–872, 2003.

[5] J. Delgrande, T. Schaub, H. Tompits, and K. Wang.
A classification and survey of preference handling ap-
proaches in nonmonotonic reasoning. Computational
Intelligence, 2004.

[6] M. Gelfond and V. Lifschitz. The Stable Model Se-
mantics for Logic Programming. In R. Kowalski and
K. Bowen, editors, 5th Conference on Logic Program-
ming, pages 1070–1080. MIT Press, 1988.

[7] M. Gelfond and V. Lifschitz. Logic Program with Clas-
sical Negation. In D. H. D. Warren and P. Szeredi, edi-
tors, Proceedings of the 7th Int. Conf. on Logic Program-
ming, pages 579–597, Jerusalem, Israel, June 1990.MIT.

[8] N. Leone and S. Perri. Parametric Connectives in Dis-
junctive Logic Programming. In ASP03 Answer Set
Programming:Advances inTheory and Implementation,
Messina, Sicily, Sept. 2003.

[9] M. Osorio, J. A. Navarro, and J. Arrazola. Applications
of IntuitionisticLogic inAnswerSetProgramming. The-
ory and Practice of Logic Programming (TPLP), 4:325–
354, May 2004.

[10] M. Osorio, M. Ortiz, and C. Zepeda. Using CR-rules for
evacuation planning. InG.D. I. Luna,O. F.Chaves, and
M. O. Galindo, editors, IX Ibero-american Workshops
on Artificial Inteligence, pages 56–63, 2004.

[11] M. Osorio and C. Zepeda. Preferences for general the-
ories in answer sets. In Preferences and their Appli-
cations in Logic Programming Systems(PREFS 2006),
pages 76–90, August 2006.

[12] D. Pearce. Stable Inference as Intuitionistic Validity.
Logic Programming, 38:79–91, 1999.

[13] T. C. Son and E. Pontelli. Planning with preferences
using logic programming. In LPNMR, pages 247–260,
2004.

[14] C. Zepeda. Evacuation Planning using Answer
Sets. PhD thesis, Universidad de las Amer-
icas, Puebla and Institut National des Sci-
ences Appliquées de Lyon. http://docinsa.insa-
lyon.fr/these/2005/zepeda cortes/tesis.pdf, 2005.

[15] C. Zepeda, M. Osorio, J. C. Nieves, C. Solnon, and
D. Sol. Applications of preferences using answer set
programming. In Proceedings of the 3rd Intl.Answer
Set Programming: Advances in Theory and Implemen-
tation(ASP’05), pages 318–332, September Bath, UK,
2005.


