

Towards a Human-in-the-Loop Library for Tracking
Hyperparameter Tuning in Deep Learning Development

Renan Souza1,2, Liliane Neves1, Leonardo Azeredo1,
 Ricardo Luiz1, Elaine Tady1, Paulo Cavalin2, Marta Mattoso1

1COPPE/Federal University of Rio de Janeiro
2IBM Research

Abstract. The development lifecycle of Deep Learning (DL) models requires
humans (the model trainers) to analyze and steer the training evolution. They
analyze intermediate data, fine-tune hyperparameters, and stop when a
resulting model is satisfying. The problem is that existing solutions for DL do
not track the trainer actions. There are no explicit data relationship between
trainer action with the input data and hyperparameters to the output
performance results, throughout the training process. This jeopardizes online
training data analyses and post-hoc results reproducibility, reusability, and
understanding. This paper presents DL-Steer, our first prototype to aid trainers
to fine-tune hyperparameters and for tracking trainer steering actions. Tracked
data are stored in a relational database for online and post-hoc data analyses.

1. Introduction
Training Deep Learning (DL) models is an iterative process that can last for weeks. The
training can be seen as a workflow with chaining activities like loading input data,
combining hyperparameter variations to train several models, tuning hyperparameters for
model fitting, and evaluating resulting models. Based on hyperparameters (e.g., number
of layers and neurons, loss functions, dropout rates, learning rate, number of epochs, etc.)
and model performance, the training workflow iterates until performance is good enough.
Users (DL trainers) need to steer the workflow, for example by incrementally fine-tuning
the model hyperparameters. User steering decisions are based on the intermediate data
analysis and the model performance. Users often work in a time-consuming trial-and-
error manner following the DL training evolution via monitoring tools that plot model
performance results. Basic monitoring is limited for user steering. There should be
interactive tools to put the DL trainers active in the training execution loop (“Human-in-
the-Loop”) [Kumar et al. 2016].

 There are some “Human-in-the-Loop” approaches for DL trainers, but we did not
find any work that tracks user steering actions. In a survey, Kumar et al. define an
architecture for Model Selection Management Systems (MSMS) to iterate on three
activities: feature engineering, algorithm selection, and parameter tuning [Kumar et al.
2016]. They propose declarative interfaces for the users to interact with MSMS, and
consider provenance data management an import direction and a challenge to represent
which and how training data should be captured. Xin et al. discuss user steering
challenges, such as intermediate results reuse, analysis of the impact of changes,
automated recommendations for the user, and reduced feedback between user action and
its effect [Xin et al. 2018]. They propose HELIX as a declarative system aimed at
addressing the challenge for intermediate results reuse. Miao et al. also highlight several

LADaS 2018 - Latin America Data Science Workshop

84

research challenges addressing data management in deep learning, such as understanding
and comparing models, model tuning, model versioning, and parameter archiving. They
propose ModelHub to address some of these challenges, particularly it has a versioning
system and a declarative language to enable users to fine-tune hyperparameters [Miao et
al. 2017]. These works highlight that resulting data analysis jointly with user fine-tunings
is a challenge. None of them keeps the track of user-steered actions for online analysis
with an explicit data relationship with their results, intermediate data and input
hyperparameters throughout the whole training process. Keeping these data available for
online and post-hoc data analyses is important for training as well as for post-hoc results
reproducibility, reusability, and understanding of the user steering actions.

 We present a first prototype of DL-Steer, a library that has three main features.
First, it collects input values for deep learning model hyperparameters and relates them
to the trained model performance output results (e.g., accuracy and others). These input
and output values can be monitored and queried by the user during the training. Second,
based on this online data analysis, DL-Steer enables users to steer the training by fine-
tuning hyperparameter values. Third, during the training, it captures the user steering
actions and correlates them with intermediate data, input hyperparameters, and resulting
model metadata and stores them in a relational DBMS, as they are being generated. These
three features allow for joint analysis of steering actions, input and output; and facilitates
understanding the impacts of specific user-steered model fine-tunes on the results during
and after the training. All these data are stored and related in a provenance database that
extends W3C PROV concepts. In our case study, DL-Steer supports users to fine-tune the
model and evaluate the impact of steering actions during the training. Queries show the
impact on the trained models with the tunings of specific DL hyperparameters.

2. DL-Steer: a steering library for hyperparameter tuning in DL
DL-Steer follows the concepts of Computational Steering, which have been under
investigation by multidisciplinary research fields for years [Bauer et al. 2016, Mulder et
al. 1999]. The two fundamental concepts of Computational Steering are monitoring of
evolution of a computational process; and user-steered dynamic adaptations of the
computational process. In addition to these two concepts, in past works we have shown
the importance of provenance data management for Computational Steering in: online
data analyses to aid users in understanding the intermediate data being generated to help
on dynamic adaptation decisions; and for keeping track with online evaluation of user
steering actions [Souza et al. 2017, Souza and Mattoso 2018]. DL-Steer builds on these
directions to support DL training workflows, particularly for fine-tuning hyperparameters
during model training. We introduce DL-Steer through three main steer steps, as follows.

 (i) Instrumentation of scripts. In this first prototype, we aim at users that write
Python scripts with function calls to TensorFlow [Abadi et al. 2016], a highly parallel and
widely used library for machine learning, particularly for DL. Python scripts with
TensorFlow are largely found in open source code repositories. Initially, the users insert
function calls to DL-Steer library in strategic points of their script. Inserting calls in
scripts is the main approach in Computational Steering [Bauer et al. 2016], because users
do not want to wrap they code in a new specific system for steering. Users add function
calls to DL-Steer at strategic points of the script. In GitHub
(https://github.com/hpcdb/DL-Steer), we show an exemplary pseudocode instrumented
using DL-Steer library. The strategic points serve for data capture and steering.

LADaS 2018 - Latin America Data Science Workshop

85

 (ii) Data capture and steerable points. Data capture points identify where to
capture the intermediate training results during the workflow execution. DL-Steer
captures the training data and correlates them to input hyperparameter values and models
results, and inserts all of them in a provenance database online during the training. The
provenance database is managed by MonetDB, a relational column-oriented DBMS,
efficient for data analytics. Data steerable points determine where the user can
dynamically fine-tune hyperparameter values that will be used for training. They are
implemented as a queue data structure. The queue interfaces to Redis, a Key/Value
lightweight in-memory store. The queue data managed in Redis are accessible both by
the running script and by external steering actions. Each item in the queue contains a
combination of hyperparameter variations that is iteratively evaluated (while there are
items in the queue to evaluate) as a model fit. During the training, the user can modify
how hyperparameters should vary inside an item. To prevent inconsistencies, DL-Steer
guarantees that only the items that have not been evaluated yet can be modified by the
user. When the user decides to modify the queue, the steering action takes place only in
the next iteration. Provenance data of the steering action are captured, related to current
training data being generated, and stored in the provenance database in MonetDB. The
DL-Steer data schema follows W3C PROV provenance data model specializations, such
as our previous works [Souza et al. 2017, Souza and Mattoso 2018]. Online data analyses
over the training data are driven by provenance-based queries.

 (iii) Data steering during training. During the DL training workflow execution,
the user can either run ad-hoc analytical queries on MonetDB directly (via its SQL query
interface) or use a graphical interface that queries it at specified time intervals and plots
evolution of training results. DL-Steer has a graphical interface and a command line
interface for steering actions like modifying queue items. Hyperparameters in each item
are represented as keys and values, where the keys are hyperparameters to be evaluated
in the training and the values represent how they vary. In case of numeric lists of
variations, the user specifies the initial and final interval values and the incremental step.
For example, the key/value structure {"learning_rate": [0.1, 1.0, 0.1], "epochs": [10,
50, 10]}, sets the values of the hyperparameters learning rate and number of epochs.

3. Case Study
In this preliminary DL-Steer case study, the user identifies data capture and steerable
points to instrument a Python script that uses TensorFlow for parallel Deep Learning
training of an image classifier in GPU. The data capture points are given by a queue of
hyperparameter variations with initial values defined by the user and by the trained model
performance results. The performance function is defined by the user as a "Gain"
function. The steerable point is the queue of hyperparameter variations. At each iteration,
an item in this queue is processed in a model fitting and DL-Steer captures the input
values used and model output results generated. Moreover, at each iteration, DL-Steer’s
dashboard queries the provenance database to plot performance results, as shown in
Figure 1. In this case study, at iteration 20, the user observes that the Gain function
moving average (i.e., the average of the last k iterations) is 0.28 and the hyperparameter
learning rate is varying in the interval [0.01, 0.05] with step 0.01. Then, at iteration 21,
the user does the first steering action to modify the learning rate interval to [0.03, 0.07],
with the same step 0.01. This action impacts the gain, as observed in the moving average
at 10 iterations later: 0.48 (an improvement of 0.2). At the iteration 54, the moving
average is 0.51 and the hyperparameter batch size is 100. Then, the user decides for

LADaS 2018 - Latin America Data Science Workshop

86

another action at iteration 55 to modify the batch size to 1000. This also impacts the gain,
as the moving average 10 iterations later increased to 0.55 (improvement of 0.04). Finally,
after 75 iterations, the user observes that the iteration 67 generated a model with a
satisfying gain function value of 0.84. The user then decides to stop the training. Input
hyperparameters and performance model results of all models, including the best model,
and the related user steering data are all stored in the DL-Steer’s provenance database.

Figure 1. DL training results with user steering visualization.

4. Concluding Remarks
We presented DL-Steer, our first prototype of a library for tracking user-steered
hyperparameter tuning during the DL training workflow. It keeps track of steering actions
in the models with an explicit data relationship with their results, intermediate data, and
input hyperparameters, throughout the training process, all related in a provenance
database. This not only contributes for experiment reproducibility, but also helps the user
to understand the impact of steering actions in the results. For future work, we plan to
explore our solution to analyze variations of different network architectures, loss
functions, dropout rates, and other hyperparameters in a large-scale dataset.

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., et al., (2016),

"TensorFlow: a system for large-scale machine learning". In: OSDI, p. 265–283.
Bauer, A. C., H., A., Ahrens J., Childs H., Geveci B., Klasky S., Moreland K., O’Leary P., Vishwanath V., et al.,

(2016), "In situ methods, infrastructures, and applications on high performance computing platforms", C. Graphics
Forum, v. 35, n. 3, p. 577–597.

Kumar, A., McCann, R., Naughton, J., Patel, J. M., (2016), "Model selection management systems: the next frontier of
advanced analytics", SIGMOD Record, v. 44, n. 4, p. 17–22.

Miao, H., Li, A., Davis, L. S., Deshpande, A., (2017), "Towards unified data and lifecycle management for deep
learning". In: ICDE, p. 571–582.

Mulder, J. D., van Wijk, J. J., van Liere, R., (1999), "A survey of computational steering environments", FGCS, v. 15,
n. 1, p. 119–129.

Souza, R., Mattoso, M., (2018), "Provenance of dynamic adaptations in user-steered dataflows". In: IPAW, p. 1–12.
Souza, R., Silva, V., Coutinho, A. L. G. A., Valduriez, P., Mattoso, M., (2017), "Data reduction in scientific workflows

using provenance monitoring and user steering", FGCS, v. online, p. 1–34.
Xin, D., Ma, L., Liu, J., Macke, S., Song, S., Parameswaran, A., (2018), "Accelerating human-in-the-loop machine

learning: challenges and opportunities". In: SIGMOD Workshop on Data Management for End-to-End Machine
Learning.

LADaS 2018 - Latin America Data Science Workshop

87

