
Urban Data Consistency in RDF:
A Case Study of Curitiba Transportation System

Mirian Halfeld-Ferrari1, Carmem S. Hara2, Nádia P. Kozievitch3, Flavio R. Uber2,4

1Université d’Orléans, INSA CVL, LIFO EA 4022 FR-45067, Orléans, France
2Universidade Federal do Paraná, Curitiba-PR, Brazil

3Universidade Tecnológica Federal do Paraná, Curitiba-PR, Brazil
4Universidade Estadual de Maringá, Maringá-PR, Brazil
mirian@univ-orleans.fr, carmem@inf.ufpr.br,
nadiap@utfpr.edu.br, flavio.uber@gmail.com

Abstract. Urban Computing has an important role in providing new tools for
urban mobility. In this paper, integrity constraints and blank nodes are used in
an RDF database to minimize extra updates (called side effects) to guarantee
consistency during required updates. A case study using a real scenario on Cu-
ritiba/Brazil transportation database is presented. Experimental results showed
that our approach performs better and produces more meaningful results when
compared to a similar strategy.

1. Introduction
The growth of urban centers sets several challenges to human well-being. Many of them
are associated to urban mobility, such as traffic jams, energy consumption, security, long
travel times, health issues due to emissions, and stress. New approaches are required to
provide tools for managing a city in order to better serve its inhabitants. In this scenario,
urban computing has emerged, to assist and improve the management of resources and
decision making. It explores data generated by a diversity of sources in urban spaces,
such as sensors, traffic devices, and vehicles.

Urban related data can come in different formats, and the problem of integrating these
multitude of heterogeneous data sources carries the challenges of traditional integration
applications. Moreover, there is a movement towards making urban data freely available
to the public. This is in line with the principles of Linked Data, which is a set of recom-
mended best practices for exposing, sharing, and connecting pieces of data, information,
and knowledge on the Semantic Web. RDF is the standard model of the Semantic Web.
The simplicity of the model, based on triples (subject, property, object), makes data in-
terpretable by machines and humans. Moreover, RDF may come along with ontological
information which associates semantics to the published information. In particular, the
ability to express equivalences using sameAs properties can be used to state that individ-
uals in distinct datasets refer to the same entity in the real world1. This ability allows one
to traverse across several data sources, which is an important and desirable feature in the
context of urban computing.

Linking data may result in huge datasets2. Keeping the consistency of such large
datasets is a challenge. One traditional approach for keeping data consistent is to al-
low users to define constraints that are checked whenever the database is updated. In

1https://www.w3.org/TR/owl-ref/
2The 2016 release of DBPedia contains more than 1 billion triples.

LADaS 2018 - Latin America Data Science Workshop

33



[Halfeld-Ferrari et al. 2017], we have proposed a system, called BNS, that detects RDF
constraint violations, and either refuses the update, or computes a set of compensation
actions in order to guarantee their satisfaction. In this paper, we show how BNS can be
applied on a urban setting, using transportation data of Curitiba, the capital of Paraná
State in Brazil, as a case study.

Curitiba has developed and implemented mass transport corridors and mobility solu-
tions using Bus Rapid Transit (BRT) systems in the 1970s, which have been featured
in the Scientific American magazine [Rabinovitch and Leitman 1996]. The complete sys-
tem, according to Curitiba’s Institute of Research and Urban Planning (IPPUC)3, includes
about 482 routes, distributed among 9940 bus stops, 23 bus terminals and 17 categories
of streets [Kozievitch et al. 2016]. There are different types of routes: express routes,
that defines the city spoke-shaped structural axes, inter-district and local lines, that fill the
space between spokes, besides feeder, worker’s routes and the city center line. Each type
of route is identified by buses of different colors. We are going to focus on express and
city center lines, which are illustrated in Figure 1. Express routes run in exclusive lanes
using high capacity bi-articulated buses (called Expresso, in Portuguese), which transport
up to 250 passengers per bus. They are identified by red vehicles. The city center line
circles the downtown area in two directions, providing easy access to commerce, services,
and points-of-interest, reducing the need for driving to the city and finding parking spots.
As opposed to the huge Expressos, these routes use white minibuses, that pass every 8
minutes and complete the circle in about 35 minutes. They also have a cheaper fare, and
only accept payment with the transportation card. In this scenario, this paper shows how
the Curitiba urban transportation database were exported in RDF format and how con-
straints were managed by the BNS system in order to maintain the database consistency
after insertion and deletion operations.

Figure 1. Corridors for BRT system (blue),

city center bus line (red), and bus stops

(black dots).

Figure 2. Expresso
bus and a tube

stop.

The rest of the paper is organized as follows. In section 2 we present the overall ar-
chitecture of the system, and an example of the application of constraints for keeping the
database consistency. Details of the BNS system are given in Section 3. In Section 4
we describe our new implementation of the system, which integrates the constraint man-

3http://www.ippuc.org.br/ – Last visited on Feb 10, 2017.

LADaS 2018 - Latin America Data Science Workshop

34



agement system with a database system, and present some experimental results. Related
work are discussed in Section 5, and Section 6 concludes the paper.

2. System Architecture
In this section we present the system components, the RDF database and the BNS system,
as well as a motivating example to illustrate our main ideas. The RDF database has
been generated by importing data from the Curitiba Urbanization Company (URBS). The
resulting database contains RDF schema properties (such as Class, Subclass, Domain,
Range, Property and Sub-property), as well as RDF triples. As an example, consider
tables Route and Stop, illustrated in Figures 3(a) and (b), respectively, extracted from
the URBS database. By joining these tables, we generated a set of triples, illustrated
in Figure 3(c), that associate an express route (such as 302) to a bus stop by property
ExpressLineStop4. We also store the class of each subject. For example, we keep
the information that 302 is an ExpressLine and that Estação Tubo Germânia
is a tube stop, as the one illustrated in Figure 2. The resulting RDF dataset contains
110,000 triples and 25,000 class instances using data from bus lines, bus stops and bus
line characterization.

(a)

(c)

(b)

Figure 3. From the URBS Database to RDF triples.

The BNS system allows the user to define constraints such as: “every express line stop
must be a fast boarding stop”. Suppose that there are 3 types of stops: tube, terminal stop,
and street stop, and that only the first two are considered as fast boarding. Consider now
an update to the system, including a new stop, s1 to the express line 302. According to
the constraint, s1 must be a fast boarding stop, and thus cannot be a street stop. However,
if s1 is already stored in the database as a street stop, either: (i) the update operation
is generating an inconsistency in the database, and thus should be rejected; or (ii) the
database is inconsistent and s1 is indeed a fast boarding stop. The BNS system can help
the detection of such inconsistencies because for every insertion or removal operation, it
computes all additional updates that need to be executed in order to satisfy the existing
constraints. In the above example, it will generate an operation to remove s1 from the
class of street stops. However, removal operations as side-effects of facts in the database
indicate potential sources of inconsistencies, which should be double checked by the user.

4For simplicity, the examples keep the same identifiers used in the original tables instead of IRIs.

LADaS 2018 - Latin America Data Science Workshop

35



Figure 4 illustrates the proposed process. Given an RDF database D, we consider
the existence of a set of application constraints (C) and RDF semantic constraints (A)
defined on D. The input to the BNS System is a set of update operations (upd). The
system computes the set of additional updates (side effects) US to keep the consistency
in D, according to A and C. It is possible that operations in US may be contradictory
among themselves. For example, one insertion operation in upd requires a stop to be fast
boarding, while another update in upd requires the same stop to be a street stop. Since the
update operations are contradictory, the BNS system automatically rejects the update set.
If US does not contain contradictory operations, then US is checked against facts in the
database. If there are side-effects that contradict facts already stored, user validation is
required before applying the updates on the database. Next section presents details on the
type of constraints considered by the BNS system, as well as the process for side-effects
computation.

upd U
s

Accept U
s

Reject U
s

upd 
reject

C A 

BNS
System

D

User 
Validation

URBS
Import in 

RDF format

Check 
Database

Inconsistent upd

Figure 4. BNS System Process.

3. The Blank Node System (BNS)
Traditionally, whenever a database is updated, if constraint violations are detected, either
the update is refused or compensation actions, which we call side-effects, must be exe-
cuted in order to guarantee their satisfaction. In this section, we present the main ideas
of the BNS system, which was proposed in [Halfeld-Ferrari et al. 2017]. It tackles the
problem of “active rules” for RDF and computes the side-effects required by update op-
erations. BNS is similar to the FKAC system [Flouris et al. 2013], but introduces blank
nodes as free nulls, which are used as placeholders for unknown required data. As we
will show in Section 4, this approach minimizes the number of side-effects and produce
more meaningful results than the FKAC system. These features are important to help and
reduce the burden of user validation.

The system considers application constraints (C), specific for each application domain,
and intrinsic RDF/S semantic constraints (A). When updates are submitted, these con-
straints are checked, generating additional updates required to restore the database con-
sistency. In this section, we use the following syntax. CI(e,c), where CI stands for class
instance, defines that an entity e is of class c, such as CI(302, ExpressLine). PI(s,o,p),
where PI stands for property instance, defines that subject s is linked to object o by prop-
erty p. An example is PI(302, Estação Tubo Germânia, ExpressLineStop). A constraint
is a logical rule r whose left-hand side is denoted as body(r), while the right-hand side is
denoted as head(r). Figure 5(b) presents some constraints in the context of the transporta-
tion system in Curitiba. In particular, constraints r4� r7 define the ones used as examples
in Section 2.
Application Constraint: Let c1, c2 be class labels, and p1, p2 be property labels. Appli-
cation constraints in C have the forms presented in Figure 5(a). As an example, constraint

LADaS 2018 - Latin America Data Science Workshop

36



r1 is of Type 1 and defines that minibuses are vehicles that accept only payment by trans-
portation cards. Constraints r2 and r3 are of Type 2 and requires every express route to
have a start stop and end stop (as opposed to the center city line, which has a closed
trajectory). Constraint r4 is of Type 3, and defines that all stops for express lines are fast
boarding stops. The following restrictions are imposed on C: (1) for constraints r0 of Type
2 there exists no constraint r00 2 C such that head(r0) and body(r00) are unifiable; (2) for
constraints r0 of Type 3 there exists no constraint r00 2 C such that body(r0) and head(r00)
are unifiable. They aim at avoiding null propagation and at guaranteeing deterministic
updates.

Type 1:
CI(X1, c1) ! CI(X1, c2)
CI(X1, c1) ! ¬CI(X1, c2)
PI(X1, X2, p1) ! PI(X1, X2, p2)
PI(X1, X2, p1) ! ¬PI(X1, X2, p2)
Type 2:
CI(X1, c1) ! PI(X1, X2, p1)
CI(X1, c1) ! ¬PI(X1, X2, p1)
CI(X2, c1) ! PI(X1, X2, p1)
CI(X2, c1) ! ¬PI(X1, X2, p1)
Type 3:
PI(X1, X2, p1) ! CI(X1, c1)
PI(X1, X2, p1) ! ¬CI(X1, c1)
PI(X1, X2, p1) ! CI(X2, c1)
PI(X1, X2, p1) ! ¬CI(X2, c1)

(a)

r1: CI(V,Minibus) ! CI(V,CardOnly)
r2: CI(L,ExpressLine) ! PI(S,L, StartStop)
r3: CI(L,ExpressLine) ! PI(S,L,EndStop)
r4: PI(S,L,ExpressLineStop) ! CI(S, FastBoarding)
r5: CI(S, Tube) ! CI(S, FastBoarding)
r6: CI(S, Terminal) ! CI(S, FastBoarding)
r7: CI(S, StreetStop) ! ¬CI(S, FastBoarding)
r8: PI(S,L,ExpressLineStop) ! CI(L,ExpressLine)
r9: PI(S,L,ExpressV ehicle) ! CI(L,ExpressLine)
r10: PI(S,L,ExpressLineStop) ! CI(S,ExpressStop)

(b)

Figure 5. Constraint types and definitions.

We now turn to the problem of side-effects computation. Consider the insertion of the
fact CI(LineA, ExpressLine). The simple addition of this fact in the database renders it
inconsistent because according to rules r2 and r3, every express line is required to have
a start and end stop. Thus, the following side effects are produced: (i) rule r2 generates
PI(Null1, LineA, StartStop), and (ii) rule r3 produces PI(Null2, LineA, EndStop). Null1
and Null2 are placeholders, indicating that LineA has a start and end stops, although it
is not yet known which ones.

Consider now the deletion of f = PI(Stop2, LineA, StartStop). To avoid the violation of
r2 we cannot just eliminate f from the database D. The solution proposed by the FKAC
system is to delete all facts that require the existence of f , which results in cascading
deletion operations. The application of constraint r2, generates the removal of CI(LineA,
LineExpress), which in turn produces the removal of all ExpressLineStops by r8. Such a
solution seems too radical. The BNS system adopts a different approach, which is similar
to the ”on delete set null” strategy, and generates a single side-effect operation, which
is the inclusion of a blank node the replaces LineA start stop. That is, the removal of
PI(Stop2, LineA, StartStop) generates as side-effect PI(Null1, LineA, StartStop).
RDF Intrinsic Semantic Constraint: Besides satisfying the application constraints, an
RDF database should also respect the intrinsic RDF schema semantic constraints (A).
Thus, following the same reasoning used for constraints in C, our approach proposes to
generate additional updates in order to maintain consistency w.r.t. A. Constraints in A are
those presented in Tables 1 and 2. Here, Cl(c) defines that c is a class, Pr(p) defines p as
a property, Csub(c1, c2) defines subclass relationships, Psub(p1, p2) defines sub-property
relationships, and Rng(p, c) and Dom(p, c) define the range and domain of properties.
Table 1 borrows from [Flouris et al. 2013] a subset of the RDF semantic constraints and
Table 2 presents the rules that have been modified and added in order to consider the

LADaS 2018 - Latin America Data Science Workshop

37



existence of nulls (blank nodes - BN).

Table 1. Subset of rules from

[Flouris et al. 2013]

m1: Cl(x) ^ Pr(y) ! (x 6= y)
m2: Cl(x) ! Csub(x, rdfs:Resource)
m3: Ind(x) ! CI(x, rdfs:Resource)
m4: Csub(x,y) ^ Csub(y,z) ! Csub(x,z)
m5: Pr(x) ! Dom(x,y) ^ Rng(x,z)
m6: CI(x,y) ! Ind(x)
m7: CI(x,y) ! Cl(y) _ (y=rdfs:Resource)
m8: PI(x,y,z) ! Pr(z)
m9: CI(x,y) ^ Csub(y,z) ! CI(x,z)
m10: PI(x,y,z) ^ Psub(z,w) ! PI(x,y,w)

Table 2. Rules that involve blank

nodes

b1: Pr(x) ^ BN(y) ! (x 6= y)
b2: Ind(x) ^ BN(y) ! (x 6= y)
b3: Cl(x) ^ BN(y) ! (x 6= y)
b4: PI(x,y,z) ^ ¬BN(x) ! Ind(x)
b5: PI(x,y,z) ^ ¬BN(y) ^ ¬Lit(y) ! Ind(y)
b6: PI (x,y,z) ^ Dom(z,w) ^ ¬BN(x) !

CI(x,w)
b7: PI(x,y,z) ^ Rng(z,w) ^ ¬BN(y) !

CI(y,w) _ (Lit(y) ^ (w=rdfs:Literal))

4. Experimental Study
In [Halfeld-Ferrari et al. 2017] we reported experiments of the BNS system implemented
with the Standard ML of New Jersey compiler, and constraints defined on Berlin and
LUBM benchmarks. While in the previous implementation data were stored on regular
files, we have re-engineered the system in SML# [Ohori and Ueno 2011] to access data
stored on a Postgres database, pushing some filter expressions to the DBMS. Although
not all DBMS optimizations were explored, the execution time of the system has im-
proved drastically. Moreover, here we consider a real urban dataset and constraints, as
exemplified in Section 2.

We report experimental results comparing the BNS and FKAC systems. As pointed out
in Section 3, one important difference between the FKAC and BNS systems concerns the
ability to generate and store null values. As the FKAC system does not consider nulls,
when an insertion imposes the existence of an unknown required data, it may arbitrarily
choose an entity to play the required role. As an example, consider again the insertion of
CI(LineA, ExpressLine). Since r2 requires LineA to have start and end stops, the system
may arbitrarily choose any ExpressLineStops s1, s2, and generate as side-effects PI(s1,
LineA, StartStop), and PI(s2, LineA, EndStop). Worse still, when in a later time, the real
start and end stops were inserted, it is up to the user to remove the previous arbitrary
ones. In contrast, BNS stores null values which can be automatically replaced by facts
introduced by the user in a later time. This strategy helps the user validation process
and produce operations that are semantically more meaningful. Besides, our experiments
results show that BNS reduces the number of side-effects.

(a) Insertion Set (b) Deletion Set (c) Mix (Insertion/Deletion) Set

Number of Side Effects (FKAC System) Execution Time (FKAC system)Execution Time (BNS System)Number of Side Effects (BNS System)

Figure 6. Results for URBS Database.

LADaS 2018 - Latin America Data Science Workshop

38



In Figure 6, the bars show the final update size with side-effects, while the lines present
the execution time. Each experiment setting has been executed 5 times. The first two were
for warm up and the reported results are the average values of the following 3 executions.5.
Figure 6(a) show results when considering only insertion operations. In this setting, the
number of side-effects in the BNS system is larger than in the FKAC system. This is
caused by the intrinsic semantic constraints concerning nulls in the BNS system. Consider
again the insertion of CI(LineA, ExpressLine). While FKAC generates as side-effects
PI(s1, LineA, StartStop), and PI(s2, LineA, EndStop), BNS generates PI(Null1, LineA,
StartStop), and PI(Null2, LineA, EndStop), and also CI(Null1,rdfs:resource), BN(Null1),
CI(Null2,rdfs:resource), and BN(Null2) to satisfy the constraints depicted in Table 2. Even
producing a larger set of side-effects, the BNS system is still faster because FKAC has
to search the database for a subject (or object) of the property domain (or range) type.
Figure 6(b) considers only deletions operations. In this case the BNS System is faster
and produces smaller sets of side-effects. Figure 6(c) shows the results when we mix
insertion and deletions operations. When there are a larger number of insertions, both the
execution time and amount of side-effects are similar for both systems. When the number
of deletion operations increases, both parameters grow faster for the FKAC system.

5. Related Work
Mechanisms to control frequent updates on RDF are desirable [Magiridou et al. 2005]
and have been proposed in several works such as [Flouris et al. 2013] and
[Frommhold et al. 2016]. RDF/S update and consistency maintenance approaches in
[Flouris et al. 2013, Magiridou et al. 2005, Solimando and Guerrini 2013] do not con-
sider blank nodes. In [Muñoz 2016] integrity constraints are used to extract infor-
mation about the RDF database. Blank nodes have been used in different con-
texts such as for version control [Völkel and Groza , Frommhold et al. 2016] and
ontology evolution [Faisal et al. 2016]. In [Mallea et al. 2011] blank node existen-
tial semantics in RDF/S and query languages is explored. Several works ex-
plore constraints on urban transportation scenarios, but in different contexts, such
as location modeling [Li and Tong 2017], optimization [Yang et al. 2000], complex
network metrics [da Silva et al. 2016, De Bona et al. 2016], and exploratory analy-
sis [Kozievitch et al. 2017].

6. Conclusion
The case study presented in this paper shows the application of constraints on an RDF
dataset containing Curitiba urban transportation data. These constraints assist the user
during insertion and deletion operations, generating side effects to keep the database con-
sistency. An experimental study showed that our system performs better and produces
smaller sets of side effects when compared to a similar strategy. Moreover, the resulting
operations are semantically more meaningful, since our strategy does not introduce ar-
bitrary facts in order to satisfy the application constraints. When applied to the Curitiba
urban transportation database, our strategy allows the user to validate the final update set,
reducing the chances of introducing inconsistencies.
Acknowledgments. We would like to thank the Municipality of Curitiba, IPPUC, CNPq
and EUBra-BIGSEA project (EC/MCTIC 3rd Coordinated Call).

5Updates used in this experiment are available at http://www.inf.ufpr.br/fruber/BNS.

LADaS 2018 - Latin America Data Science Workshop

39



References
da Silva, E. L. C., d. O. Rosa, M., Fonseca, K. V. O., Luders, R., and Kozievitch, N. P. (2016).

Combining k-means method and complex network analysis to evaluate city mobility. In 2016
IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pages 1666–
1671.

De Bona, A., Fonseca, K., Rosa, M., Lüders, R., and Delgado, M. (2016). Analysis of public bus
transportation of a brazilian city based on the theory of complex networks using the p-space.
Mathematical Problems in Engineering, 2016:1–12.

Faisal, S., Endris, K. M., Shekarpour, S., Auer, S., and Vidal, M.-E. (2016). Co-evolution of rdf
datasets. In Proc. of the 16th Int. Conf. on Web Engineering (ICWE), pages 225–243.

Flouris, G., Konstantinidis, G., Antoniou, G., and Christophides, V. (2013). Formal foundations
for RDF/S KB evolution. Knowl. Inf. Syst., 35(1):153–191.

Frommhold, M., Piris, R. N., Arndt, N., Tramp, S., Petersen, N., and Martin, M. (2016). Towards
Versioning of Arbitrary RDF Data. In Proc of the 12th Int. Conf. on Semantic Systems.

Halfeld-Ferrari, M., Hara, C. S., and Uber, F. R. (2017). RDF updates with constraints. In Knowl-
edge Engineering and Semantic Web, pages 229–245.

Kozievitch, N. P., Gadda, T. M. C., Fonseca, K. V. O., Rosa, M. O., Gomes-Jr, L. C., and Akbar,
M. (2016). Exploratory analysis of public transportation data in curitiba. In XXXVI CSBC,
pages 1656–1666. Sociedade Brasileira de Computação.

Kozievitch, N. P., Silva, T. H., Ziviani, A., Costa, G., and Lugo, G. (2017). Three decades of
business activity evolution in curitiba: A case study. Annals of Data Science, 4(3):307–327.

Li, R. and Tong, D. (2017). Incorporating activity space and trip chaining into facility siting for
accessibility maximization. Socio-Economic Planning Sciences, 60:1 – 14.

Magiridou, M., Sahtouris, S., Christophides, V., and Koubarakis, M. (2005). RUL: A declarative
update language for RDF. In Proc of the 4th Int Semantic Web Conference, pages 506–521.

Mallea, A., Arenas, M., Hogan, A., and Polleres, A. (2011). On blank nodes. In Proc of the 10th
Int Semantic Web Conference, pages 421–437.

Muñoz, E. (2016). On learnability of constraints from RDF data. In Proc. of the 13th Extended
Semantic Web Conference, pages 834–844.

Ohori, A. and Ueno, K. (2011). Making standard ml a practical database programming language.
SIGPLAN Not., 46(9):307–319.

Rabinovitch, J. and Leitman, J. (1996). Urban planning in curitiba. Scientific American,
274(3):46–53.

Solimando, A. and Guerrini, G. (2013). Ontology adaptation upon updates. In ESWC Satellite
Events, pages 34–45.

Völkel, M. and Groza, T. In Proc of the IADIS International Conf on WWW/Internet.

Yang, H., Bell, M. G., and Meng, Q. (2000). Modeling the capacity and level of service of urban
transportation networks. Transportation Research Part B: Methodological, 34(4):255 – 275.

LADaS 2018 - Latin America Data Science Workshop

40


