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Abstract: In this paper, we describe the participation of the team SCI2S in all the
Subtasks of the Task 4 of TASS 2018. We claim that the use of external emotional
knowledge is not required for the development of an emotional classification system.
Accordingly, we propose three Deep Learning models that are based on a sequence
encoding layer built on a Long Short-Term Memory gated-architecture of Recurrent
Neural Network. The results reached by the systems are over the average in the two
Subtasks, which shows that our claim holds.
Keywords: Deep Learning, Recurrent Neuronal Networks, LSTM, Emotion Clas-
sification

Resumen: En este art́ıculo se presenta la participación del equipo SCI2S en la
Tarea 4 de TASS 2018. Partiendo de la asunción de que no es necesario el uso
de caracteŕısticas emocionales para el desarrollo de un sismtema de clasificación de
emocoiones, se proponen tres modelos de redes neuronales basados en el uso de una
capa de Red Recurrente Neuronal de tipo Long Short-Term Memory. Los sistemas
han alcanzado una posición por encima de la media en las dos Subtareas en las que
se ha participado, lo cual ha permitido confirmar nuestra hipótesis.
Palabras clave: Redes Neuronales, Redes Neuronales Recurrentes, LSTM, Clasi-
ficación de Emociones

1 Introduction

People usually have a look at advertise-
ments when they read traditional newspa-
pers. These advertisements generally fit the
news that are in the same, previous or next
page, because the match of the news and
the ads are carefully decided during the edi-
tion time, which is before the printing of the
newspaper. Nowadays, online newspapers
are as read as traditional ones, hence compa-
nies also want to show their brands in online
newspapers, and they invest money to buy
ads in them. However, one of the differences
between traditional and on-line newspapers
is the moment when the correspondence be-
tween the news and the advertisements is
done, which is in reading time. Thus, the
news and the ads likely do not match.

The lack of correspondence between a
news and a advertisement means that the
topic of the news is not suitable for the ad-
vertisement, or the emotion that may elicit
from the reader is not positive. If the read-

ers are disgusted by the news, they may be
revolted by the advertisement too, which is
highly detrimental for the brand advertised.
The advertising spots in online newspapers
are fixed beforehand, and the advertisement
that appears in each spot does not depend
on the decision of the editor or the journal-
ist, but it depends on a automatic broad-
casting system of ads of an online marketing
company. Consequently, companies are not
able to control whether the reputation of its
brands may be damaged, which is known by
marketing experts as the brand safety issue.1

The Task 4 of TASS 2018 (Mart́ınez-
Cámara et al., 2018) is focused on the men-
tioned issue of brand safety, and it proposes
the classification if a news is sure for a brand
according to the emotion elicited from the
readers when they read the headline of a
news. The organization provided an anno-

1https://www.thedrum.com/opinion/2018/
07/09/brand-safety-the-importance-quality-
media-fake-news-and-staying-vigilant
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tated corpus of headlines of news of Spanish
written newspapers from around the world,
so the corpus SANSE is a global representa-
tion of the written Spanish language. In this
paper, we present the systems submitted by
the SCI2S team to the two Subtasks of Task
4 of TASS 2018.2

We claim that the emotional classification
can be tackled without the use of emotional
features or any other kind of handcrafted lin-
guistic feature. We thus propose the genera-
tion of dense high quality features following a
sentence encoding approach, and then the use
of a non lineal classifier. We submitted three
systems based on the encoding of the input
headline with a Recurrent Neural Network
(RNN) Long Short Term Memory (LSTM).
Our submitted systems are over the average
in the competition, hence this fact shows that
our claim holds.

2 Architecture of the models

The organization proposed two Subtasks, the
first one is defined in a monolingual context,
and the second in a multilingual one. The
first Subtask has two levels of evaluation,
which differ in the size of the evaluation set.
We designed the neural architecture without
taking into account the specific characteris-
tics of the Subtasks, because our aim was the
evaluation of our claim on the SANSE cor-
pus.

The architecture of the three systems sub-
mitted is composed of three modules: (1) lan-
guage representation, for the sake of simplic-
ity embeddings lookup module; (2) sequence
encoding module, in which the three architec-
tures differ; and (3) non lineal classification.
The details of each module are explained in
the following subsections.

2.1 Embeddings lookup layer

Regarding our claim, we defined a feature
vector space for the training and the eval-
uation that is composed of unsupervised vec-
tors of word embeddings. A set of vectors of
word embeddings is the representation of the
ideal semantic space of words in a real-valued
continuous vector space, hence the relation-
ships between vectors of words mirror the lin-
guistic relationships of the words. Vectors of
word embeddings are a dense representation
of the meaning of a word, thus each word is

2The details about the Task 4 of TASS 2018 are
in (Mart́ınez-Cámara et al., 2018).

linked to a real-valued continuous vector of
dimension demb.

There are different algorithms to build
vectors of word embeddings in the literature,
standing out C&W (Collobert et al., 2011),
word2vect (Mikolov et al., 2013) and Glove
(Pennington, Socher, and Manning, 2014).
Likewise, several sets of pre-trained vectors of
word embeddings built using the previous al-
gorithms are freely available. However, those
pre-trained sets were generated using docu-
ments written in English, thus they cannot
been used for representing Spanish words.

We used the pre-trained set of word em-
beddings SBW3 (Cardellino, 2016). SBW
was built upon several Spanish corpora, and
the most relevant characteristics of its de-
velopment were: (1) the capitalization of
the words were kept unchanged; (2) the
word2vect algorithm used was skip-gram;
(3) the minimum allowed word frequency was
5; and (4) the dimension or components of
the word vectors is 300 (demb = 300).

We tokenized the input headlines with
the default tokenizer of NLTK4 in order to
project them in the feature vector space de-
fined by the vector of word embeddings. Con-
sequently, each headline (h) is transformed in
a sequence of n words (w1:n = {w1, . . . , wn}).
The size of the input sequence (n) was de-
fined by the maximum length of the inputs
in the training data, hence sequences shorter
than n were truncated. After the tokeniza-
tion, the first layer of our architecture model
is an embedding lookup layer, which makes
the projection of the sequence of tokens into
the feature vector space. Therefore, the out-
put of the embeddings lookup layer is the ma-
trix WE ∈ IRd,n, WET

1:n = (we1, . . . ,wen),
where wei ∈ IRd. The parameters of the em-
bedding lookup layer are not updated during
the training.

2.2 Sequence encoding layer

The aim of the sequence encoding layer is the
generation of high level features, which con-
dense the semantic of the entire sentence. We
used an RNN layer because RNNs can rep-
resent sequential input in a fixed-size vector
and paying attention to the structured prop-
erties of the input (Goldberg, 2017). RNN is
defined as a recursive R function applied to

3https://crscardellino.github.io/SBWCE/
4https://www.nltk.org/api/nltk.tokenize.

html
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a input sequence. The input of the function
R is an state vector si−1 and an element of
the input sequence, in our case a word vector
(wei). The output of R is a new state vector
(si), which is transformed to the output vec-
tor yi by a deterministic function O. Equa-
tion 15 summarizes the former definition.

RNN(we1:n, s0) = y1:n

yi = O(si)

si = R(wei, si−1);

(1)

wei ∈ IRdin , si ∈ IRf(dout),yi ∈ IRdout

From a linguistic point of view, each
vector (yi) of the output sequence of an
RNN condenses the semantic information
of the word wi and the previous words
({w1, . . . , wi−1}). However, according to the
distributional hypothesis of language (Har-
ris, 1954), semantically similar words tend to
have similar contextual distributions, or in
other words, the meaning of a word is defined
by its contexts. An RNN can only encode the
previous context of a word when the input of
the RNN is the sequence we1:n. However, the
input of the RNN can be also the reverse of
the previous sequence (wen:1). Consequently,
we can elaborate a composition of two RNNs,
the first one encodes the sequence from the
beginning to the end (forward, f ), and a sec-
ond one from the end to the beginning (back-
ward, b), therefore the previous and the fol-
lowing context of a word is encoded. This
elaboration is known as bidirectional RNN
(biRNN), whose definition is in Equation 2.

biRNN(we1:n) = [RNNf (we1:n, s
f
0);

RNNb(wen:1, s
b
0)] (2)

The three systems submitted are based
on the use of a specific gated-architecture
of RNN, namely LSTM (Hochreiter and
Schmidhuber, 1997), which has reached
strong results in several Natural Language
Processing tasks (Tang, Qin, and Liu, 2015;
Kiperwasser and Goldberg, 2016; Mart́ınez-
Cámara et al., 2017). The specific details of
the sequence encoding layer of each submit-
ted system are described as what follows.

5The definition of RNN states that the dimension
of si is a function of the output dimension, but some
architectures as LSTM does not allow that flexibility.

Single LSTM (SLSTM). The layer is
composed of one LSTM, whose input is the
sequence we1:n, and its output is composed
of a single vector, namely the last output
vector (yn ∈ IRdout). In this case, the se-
mantic information of the entire headline is
condensed in the last vector of the LSTM,
which correspond to the last word.

Single biLSTM (SbLSTM). In order to
encoded the previous and forward context
of the words of the input sequence, the se-
quential encoding layer of this system is a
biLSTM. The output is the concatenation
of the last output vector of the two LSTMs
of the biLSTM (yn = [yf

n; yb
n] ∈ IR2×dout).

Sequence LSTM (SeLSTM). The encod-
ing is carried out by an LSTM, but the out-
put is composed of all output vectors of all
the words of the sequence, hence the out-
put is not a vector, but the sequence y1:n,
yi ∈ IRdout .

The semantic information returned by
SeLSTM is greater than the other two layers,
because it returns the output vector of each
word, therefore the subsequent layers receive
more semantic information from the sequence
encoding layer.

2.3 Non lineal classification layer

Since RNN and specifically LSTM has the
ability of encoding the semantic information
of the input sequence, the output of the se-
quence encoding layer is a high level repre-
sentation of the semantic information of the
input headline.

The sequence representation of the head-
line is then classified by three fully connected
layers with ReLU as activation function, and
additional layer activated by the softmax
function. The layers activated by ReLU have
different hidden units or output neurons (see
Table 1). The SeLSTM layer does not return
an output vector, but an output sequence
y1:n ∈ IRn,dout . Thus, after the second fully
connected layer, the sequence is flattened to
a single vector y ∈ IRn×dout . Since the task
is a binary classification task, the number of
hidden units of the softmax layer is 2.

In order to avoid overfitting, we add a
dropout layer after each fully connected layer
with a dropout rate value (dr). Besides, we
applied an L2 regularization function to the
output of each fully connected layer with a
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regularization value (r). Moreover, the train-
ing is stopped in case the loss value does not
improve in 5 epochs.

The training of the network was per-
formed by the minimization of the cross en-
tropy function, and the learning process was
optimized with the Adam algorithm (Kingma
and Ba, 2015) with its default learning rate.
The training was performed following the
minibatches approach with a batch size of 25,
and the number of epochs was 40.

For the sake of the replicability of the ex-
periments, Table 1 shows the values of the hy-
perparaments of the network, and the source
code of our experiments is publicly available.6

Hyper. value SLSTM biLSTM SeLSTM

n 20 20 20
demb 300 300 300
dout 512 256×2 512
dr1 0.35 0.35 0.35
dr2 0.35 0.35 0.5
dr3 0.5 0.5 0.5
L2 r1 0.0001 0.0001 0.0001
L2 r2 0.001 0.001 0.001
L2 r3 0.01 0.01 0.01

Table 1: Hyperparameter values of the sys-
tems submitted

3 Results and Analysis

The organization provided a development set
of the SANSE corpus with the aim that the
teams would use the same data to tune the
classification models. We participated in the
two levels of Subtasks 1 and in the Subtask
2, and we present in Tables 2, 3 and 4 the
results reached with the development set (de-
velopment time) and the official results with
the test set of SANSE (evaluation time).

The main differences among the submit-
ted systems are: (1) The semantic informa-
tion encoded; and (2) the number of pa-
rameters. SLSTM is the model with less
semantic information encoded, because the
LSTM is only run in one direction, and the
last output vector of the LSTM is only pro-
cessed by the subsequent layers. Although
SbLSTM encodes more semantic information
than SLSTM, they have the same number of
parameters, because SbLSTM only processes
the last output vector of the sequence encod-
ing layer as the SLSTM model. In contrast,

6https://github.com/rbnuria/TASS-2018

the SeLSTM is the model that uses more
parameters, because it processes the output
vectors of the sequence encoding layer of each
input word.

We expected that models with a higher
number of parameters and capacity of en-
coding semantic information, they will reach
higher results in the competition, or in other
words, they will have a higher capacity of
generalization. However, the comparison of
the results reached on the development and
test set shows a non expected performance.
Regarding the two main differences among
the models, we highlight the following two
facts:

Generalization capacity. The model that
reached a higher results in the two levels of
the Subtask 1 is SLSTM. The performance
of SLSTM stands out in the second level of
Subtask 1, because it is the second higher
ranked system. Since the test set of the
second level is larger than the level one,
it demands a higher generalization capac-
ity from the systems, thus the good perfor-
mance of SLSTM is more relevant. In con-
trast, SbLSTM and SeLSTM are in the fifth
and sixth position respectively in the second
level, and the sixth and seventh position in
the first level of Subtask 1, which was not
expected due to they have more parameters
and condense more semantic information.

Concerning the Subtask 2, the results
reached were the expected ones, be-
cause SeLSTM, which has more parameters
and condense more semantic information,
reached the best results among our three
systems. The generalization demand in this
task is high too, because the language or the
domain of the training and the test sets and
different, because the training set is com-
posed of headlines written in the Spanish
language used in America, and the test set
is written in the Spanish language used in
Spain.

Although the generalization capacity of our
systems is high, the different performance in
Subtask 1 and Subtask 2 allow us to con-
clude that to reach a good generalization
capacity, a balance between the number of
parameters and the complexity or depth of
the neural network is required as it is also
asserted in (Conneau et al., 2017).

Differences among datasets. SLSTM and
SbLSTM reached a value of Macro Recall
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Development Test (official)

System M. Prec. M. Recall M. F1 Acc. M. Prec. M. Recall M. F1 Acc.

SLSTM1 73.89 74.74 74.10 74.80 78.40 76.40 77.40 78.60
SbLSTM3 75.24 75.15 75.19 76.40 77.40 75.20 76.30 77.60
SeLSTM2 76.08 76.35 76.21 77.20 76.30 76.50 76.40 77.20

Table 2: The macro-average and accuracy values in % reached by the three systems on the
development and test sets in the Subtask 1, level 1. The superscript is the official rank (ranked
by the M. F1 value) among the three submitted systems in the official results

Development Test (official)

System M. Prec. M. Recall M. F1 Acc. M. Prec. M. Recall M. F1 Acc.

SLSTM1 73.89 74.74 74.10 74.80 88.80 86.70 87.30 88.80
SbLSTM2 75.24 75.15 75.19 76.40 86.80 85.70 86.30 87.80
SeLSTM3 76.08 76.35 76.21 77.20 83.80 87.00 85.30 85.30

Table 3: The macro-average and accuracy values in % reached by the three systems on the
development and test sets in the Subtask 1, level 2. The superscript is the official rank (ranked
by the M. F1 value) among the three submitted systems in the official results

Development Test (official)

System M. Prec. M. Recall M. F1 Acc. M. Prec. M. Recall M. F1 Acc.

SLSTM3 74.54 72.05 72.67 75.00 68.30 66.10 67.20 70.00
SbLSTM2 75.60 71.14 71.87 75.90 67.90 67.20 67.60 69.80
SeLSTM1 72.47 69.41 69.98 77.20 68.70 67.80 68.30 63.11

Table 4: The macro-average and accuracy values in % reached by the three systems on the
development and test sets in the Subtask 2. The superscript is the official rank (ranked by the
M. F1 value) among the three submitted systems in the official results

higher than the value of Macro-Precision in
the development set of Subtask 1 in the two
levels of evaluation. However, they reached
the inverse relation on the test set of both
levels of Subtask 1. In contrast, SeLSTM
had the same trend in both datasets, thus
the performance of SeLSTM shows a higher
stability. On the other hand, the three sys-
tems had the same performance in the de-
velopment and test sets in Subtask 2, that
it is to say, the value of Macro-Precision was
higher than the value of Macro-Recall in de-
velopment and evaluation time.

Regarding the differences between the
datasets, the performance of models with
more parameters and with more semantic
information is more stable, which means
that the results in development time follows
a similar trend to the results in evaluation
time that is an desirable characteristic of a
classification system.

Regarding the competition, the rank posi-
tion of our systems are in Table 5. In Subtask
1, the systems reached a rank position over
the average, and SLSTM stands out in Level
2 of Subtask 1. In Subtask 2, the systems are
on the average, and the performance is close
to their competitors. Regarding our claim
and the high results reached by the three sys-
tems, we conclude that our claim holds, hence
we can obtain strong results in the task of
emotion classification without the use of emo-
tional features.

4 Conclusions

We described the three systems submitted
to all the Subtasks of Task 4 of TASS 2018
by the team SCI2S. Our proposal is based
on the claim that emotional classification
can be performed without the use of emo-
tional external knowledge or handcrafted fea-
tures. The three systems are three neural
networks grounded in a sentence classifica-
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Rank

System Sub. 1, L1 Sub. 1, L2 Sub. 2

SLSTM 4/13 2/10 6/8
SbLSTM 7/13 5/10 5/8
SeLSTM 6/13 6/10 4/8

Table 5: Rank position of the submitted sys-
tems in the competition

tion approach, namely the use of an LSTM
and a biLSTM. The three systems reached
a rank position over the average in the two
Subtasks of Task 4, thus we conclude that
our claim holds.

Our future work will go in the direction
defined by the analysis of the results (see Sec-
tion 3), hence we are going to work in the
study of the balance between the depth and
the generalization capacity of our emotional
classification model. Likewise, we will work
in the addition of an Attention layer (Bah-
danau, Cho, and Bengio, 2015) to the model,
with the aim of automatically selecting the
most relevant features.

Acknowledgements

This work was partially supported by the
Spanish Ministry of Science and Technology
under the project TIN2017-89517-P, and a
grant from the Fondo Europeo de Desar-
rollo Regional (FEDER). Eugenio Mart́ınez
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