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Abstract

In this paper, we explore the problem of learning a policy
from non-expert human demonstrators. We use a consensus
algorithm to estimate consensus actions and learn worker
skill levels. We iteratively update the skill levels while train-
ing an RL agent using learned weights for demonstrations
over the entire training period. We perform our experiments
in the Atari Learning Environment (ALE) available on Ope-
nAI Gym and show initial results.

Introduction
Deep reinforcement learning has been shown to be very suc-
cessful in solving problems such as playing Atari games
(Mnih et al. 2013) and Go (Silver et al. 2016). However,
initial learning via reinforcement learning can be extremely
slow and requires a large amount of interactions with the en-
vironment to achieve substantial performance. Incorporat-
ing human knowledge can help accelerate the training for
reinforcement learning agents. Imitation learning allows an
agent to learn from human demonstrations by mimicking
their behaviour on a task.

Many algorithms have been proposed for Imitation Learn-
ing. However, most of the prior work, e.g. DAgger (Ross,
Gordon, and Bagnell 2011) and it’s extension AggreVaTe
(Ross and Bagnell 2014), use expert demonstrations to teach
an agent.In this paper, we look at the problem of learning
from non-expert human demonstrators. We model the hu-
mans’ skill levels and learn the consensus actions at the var-
ious states. By using learned weighting of various demon-
strations, we can perform better than by treating all demon-
strations equally. We also use demonstration data through-
out the training of the agent, rather than just a bootstrapping
method to improve initial performance. We base our work
upon demonstrations performed for Atari games by non-
expert volunteers. In crowdsourcing literature, several algo-
rithms have been proposed to obtain consensus labels from a
set of worker labels. EM-based approaches such as (Welin-
der and Perona 2010) have been quite popular to model both
worker skill levels as well as to obtain the consensus label.
Deep neural networks have also been used to obtain crowd
consensus (Albarqouni et al. 2016). We use an approach
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similar to Welinder and Perona, but modify the algorithm to
obtain workers’ action probability distributions at each state.

(Gao et al. 2018) comes the closest to our approach where
they learn from imperfect demonstrations throughout their
training. We differ from their approach, as we use an itera-
tive algorithm to learn the consensus policy across demon-
strations and use weighted demonstrations by modeling the
worker’s skill level. Our loss function and regularization
methods are also different.

Preliminaries
Reinforcement Learning
The Reinforcement Learning problem that we consider is
defined by a Markov Decision Process (MDP). A MDP is
characterized by a tuple < S,A,R, T, γ >, where S is the
set of states, A is the set of actions, R(s, a) is the reward
function, T (s, a, s′) = P (s′|s, a) is the transition probabil-
ity, and γ is the discount factor. An agent in a particular state,
interacts with the environment by taking an action, and re-
ceives the reward while transitioning to the next state.

The goal of the agent is to learn a policy π such that the
agent maximizes the future discounted reward:

π = argmax
π

∑
t

γtEst,at π[Rt]

Proximal Policy Optimization
In Policy Gradient Methods, the policy gradient is estimated
and is used in an stochastic gradient ascent algorithm. A
variant of the Policy Gradient Methods, Proximal Policy Op-
timization (Schulman et al. 2017), where the policy updates
are constrained by size while maximizing the clipped objec-
tive.

LCLIP (θ) = Et[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)]

argmax
θ

LCLIP (θ)

subject to

LKL = KL(πθold(· |st), πθ(· |st))] ≤ δ
where, KL is the Kullback Leibler Divergence. The con-
straint is applied by using a penalty as follows :

argmax
θ

LPPO = LCLIP − β LKL (1)



Method
Let S = {si} be the set of states observed. At each state sij
a worker that sees the state, takes an action zij . The work-
ers are asked to complete an episode, and every state-action
pair of the worker is recorded. Let πj be the policy of the
worker. If we have multiple annotations for each state, then
it is easy to setup a standard consensus algorithm and to es-
timate the consensus policy πcns to be use for guided ex-
ploration. However, in most practical cases, it is infeasible
to assume that every state has even a single annotation, let
alone multiple. Hence we need to extrapolate πj to the states
not seen by the worker to arrive at a consensus. We make
use of Deep Neural Networks for this generalization of the
policy to unseen states. We used a convolutional neural net-
work with three convolutional layers, similar to the Deep
Q-Network in (Mnih et al. 2015).

Parameterized Policy and Distillation
We consider the parameterized policy of our agent πθ, where
θ are the parameters, such as the weights and biases of our
network. We want to make use of the confidence values of
each action, produced by the network for better estimates of
the skill and difficulty parameters. Hence, the policy is learnt
in conjunction with the other parameters.

(Hinton, Vinyals, and Dean 2015) introduced Knowledge
Distillation, wherein a small student network accurately
learns from a large teacher network by matching soft la-
bels. Inspired by this, our primary contribution in Eq. (2)
make use of the consensus policy to guide the exploration of
the parameterized policy by adding a regularization loss to
match the soft actions of pθ and πcns.

LD(θ) = Ês[(πθ(·|s)− πcns(·|s))2] (2)
We scale the distillation loss by α. We reduce α over time,
since the optimal policy need not match the crowd policy.
We estimate the distillation loss by a number of random sam-
ples from the observed states.

Worker Skill and Difficulty
Let wj be the parameters encoding the skill level of the
worker j. The skill level should represent the confidence
of the workers actions. For example, an expert should have
a high skill level near compared to a non-expert. For each
worker, we estimate their skill level. The action probabili-
ties of a state are weighted according to the skill levels of
the workers annotating the state and the inherent difficulty
of the state i, encoded by di.

We model the worker skill as 0 ≤ wj ≤ 1, where a highly
skilled worker has wj near to 1. We assume a prior of mixed
Beta Distributions to model different types of workers (high
skill, low skill, spammers).We model 0 ≤ di ≤ 1 denoting
the difficulty level of the state i. Further parameterization of
the worker and difficulty based on the time elapsed, so as
to take into account the improvement of the worker is being
considered as a part of future work.

Parameter Estimation
Let A = {ak} be that set of all possible actions. We de-
fine the joint probability distribution over the observed states

S = {si}, worker annotations Z = {zij}, policy parameters
θ, worker parameters W = {wj} and difficulty parameters,
D = {di} as

p(Z,W,D, θ|S) = p(θ)
∏
i

(p(di)
∏
k

p(ak|si, θ))∏
j

p(wj)
∏
i,j

p(zij |si, di, wj) (3)

We now estimate the parameters by alternating maximiza-
tion algorithms (Branson, Van Horn, and Perona 2017) :

π̂cns(ak|si) = p(ak|si, θ̂)
∏
j

p(zij |ak, d̂i, ŵj) (4)

âi = argmax
ak

π̂cns(ak|si) (5)

d̂i = argmax
di

p(di)
∏
j

p(zij |âi, di, ŵj) (6)

ŵj = argmax
wj

p(wj)
∏
i

p(zij |âi, d̂i, wj) (7)

θ̂ = argmax
θ

(LPPO(θ)− αLD(θ)) (8)

where p(ak|si, θ̂) is the confidence output from the agent,
and p(di), p(wj) are priors, p(zij |a, d̂i, ŵj) is probability of
worker j taking action zij given that a is the optimal action,
(8) is solved by stochastic gradient ascent.

p(zij |a, d̂i, ŵj) =
if zij = a : wj(1− di)

else :
1− wj(1− dj)
|A| − 1

Experiment Setup and Results
For our preliminary experiment, we wanted to choose three
types of Atari games: one where humans were better than
RL agents, one where the agent was significantly better,
and one where both were performing similarly. We ob-
tained the scores from (McKenzie et al. 2017) for hu-
man performance and from (Salimans et al. 2017) for
the agent performance . Based on the ratio of human to
agent score, we chose Bowling(ratio=5.35) Seaquest(ratio=
11.44), Bankheist(ratio= 1.01) and Breakout(ratio= 0.08)
which were available on OpenAI Gym (Brockman et al.
2016). Bowling and Seaquest have a high ratio, indicating
that humans can perform better than machines on this game.
Hence, there is room to imitate humans to better train our
agent. Bankheist having a ratio close to one, we do not ex-
pect much difference between pure reinforcement learning
and our algorithm. For Breakout, our algorithm does worse
due the fact that human performance is below the RL perfor-
mance.

We invited 21 participants to volunteer and stored their
gameplay data, including actions performed, states and re-
wards generated by the environment. The volunteers con-
sisted of our colleagues, family and friends. We only ex-
plained the controls of the game to the players and did not



Figure 1: Scores of various training configurations after 50 iterations (200 epochs) on (in clockwise direction) Bowling,
Seaquest, Bankheist and Breakout

elaborate on the specific game mechanics. This was done
to ensure that they explored the game’s reward mechanisms
and would improve during the course of their episode.

After collecting the demonstration data, we trained the
agent in four configurations. In the first configuration, we
didn’t incorporate the distillation loss during training to sim-
ulate the vanilla RL training without demonstration data.
Next, we set equal skill levels to all the workers, and didn’t
update them during training. This was a baseline to under-
stand how the algorithm performed if the worker skill level
wasn’t modeled and all demonstrations were treated as ora-
cle demonstrations. Finally we ran two configurations where
we updated the worker skill levels at a low frequency (an
update every 10 iterations) and high frequency (an update
every iteration). We train all configurations for 50 iterations,
each iteration being 4 epochs.

In situations where, human knowledge is useful for im-
itation, as seen in Figure 1, updating the worker parame-
ters with a low frequency gave us the fastest training im-
provement and highest average score.In the case where hu-
man and RL performance was similar (Bankheist), we do
not see a significant difference between our algorithms and
pure Reinforcement learning. Whereas, in situations where
human performance is significantly worse that RL perfor-
mance (like Breakout), our algorithm takes a hit since the
incorporated human skills worsens the performance.

However, treating all workers as experts (equal high skill)
lead to the worst performance in all cases, thus proving that
worker modeling is necessary for high performance levels.

Discussion and Limitations
The number of observed states were very high in number.
Hence, while updating the worker and difficulty parameters,
it was unfeasible to run over all observed states due to mem-
ory constraints. Instead, we sampled all states where we had
multiple crowd inputs and matched those with an equal num-
ber of randomly sampled states which totaled to 600 states.

The frequency of the parameter updates have an impact
on the learning time and also the performance of the agent,
and this relationship is not monotonic. Too low frequencies
(Equal Skill Worker) and too high frequencies (High Fre-
quency Skill Update), both do not produce the best results.
An adaptive method of updates might boost the performance
significantly.

In this paper, we have introduced a novel formulation for
continuous use of non-expert demonstration data for RL.
We have shown that modeling the worker skill levels, and
using weighted demonstrations during training helps speed
up the training significantly. In the future, we plan to scale
up our experiments, by optimizing our web system and get-
ting more demonstrations from a public crowd. We also plan
on exploring more ways of modeling worker behaviour, e.g.
learning in-game, shared worker parameters across games
and modeling the interference created by the game delivery
system like lag, jitter, etc.

References
Albarqouni, S.; Baur, C.; Achilles, F.; Belagiannis, V.;
Demirci, S.; and Navab, N. 2016. Aggnet: deep learning



from crowds for mitosis detection in breast cancer histology
images. IEEE transactions on medical imaging 35(5):1313–
1321.
Branson, S.; Van Horn, G.; and Perona, P. 2017. Lean
crowdsourcing: Combining humans and machines in an on-
line system. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 7474–7483.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai gym.
arXiv preprint arXiv:1606.01540.
Gao, Y.; Lin, J.; Yu, F.; Levine, S.; Darrell, T.; et al.
2018. Reinforcement learning from imperfect demonstra-
tions. arXiv preprint arXiv:1802.05313.
Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531.
McKenzie, M.; Loxley, P.; Billingsley, W.; and Wong, S.
2017. Competitive reinforcement learning in atari games.
In Australasian Joint Conference on Artificial Intelligence,
14–26. Springer.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. Nature
518(7540):529.
Ross, S., and Bagnell, J. A. 2014. Reinforcement and
imitation learning via interactive no-regret learning. arXiv
preprint arXiv:1406.5979.
Ross, S.; Gordon, G.; and Bagnell, D. 2011. A reduction of
imitation learning and structured prediction to no-regret on-
line learning. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, 627–635.
Salimans, T.; Ho, J.; Chen, X.; and Sutskever, I. 2017. Evo-
lution strategies as a scalable alternative to reinforcement
learning. arXiv preprint arXiv:1703.03864.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering
the game of go with deep neural networks and tree search.
nature 529(7587):484–489.
Welinder, P., and Perona, P. 2010. Online crowdsourcing:
rating annotators and obtaining cost-effective labels.


