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ABSTRACT

Violations of integrity constraints (ICs) usually indicate that
data are not consistent with a valid representation of real-
world entities, and therefore data are dirty. Recent studies
present facilities to make dirty databases consistent with
a given set of ICs. Yet their evaluation scenarios assume
humans-in-the-loop to feed ICs to their facilities. Manually
designing ICs is burdensome, and it is doomed to fail if we
consider the dynamic changes of data and applications. An
attractive alternative is the automatic discovery of ICs, but
the discovery results are mostly accidental. Our research
proposal sticks to the automatic discovery approach, but it
leverages information found in the application workload to
mining semantically valuable ICs. This paper overviews our
research on discovering ICs that are particularly suitable
for data cleaning, i.e., ICs that are resilient to data and
application evolutions.

1. INTRODUCTION

Data profiling is a complex task that helps to uncover rel-
evant metadata for datasets. Typical examples of metadata
include basic statistics (e.g., value distributions), patterns of
data values, and integrity constraints (ICs). These kind of
information provide valuable insights on large datasets by
serving various use-cases, such as data exploration, query
optimization, and data cleaning [1]. Our research program
is built upon data profiling for data cleaning.

Dirty data remain ubiquitous in enterprises. Industry and
academia constantly report the severe impact that low data
quality have on businesses [6, 11]. The key question, what
are dirty data? has been extensively studied [8], with many
studies revisiting ICs to ensure business rules over data [7,
8, 11]. In this context, violation of ICs usually indicates
that data are not consistent with a valid representation of
real-world entities, and therefore data are dirty. Many ap-
proaches follow the idea of detecting and repairing IC vio-
lations for data cleaning. The development of such research
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trend has brought many contributions: reasoning about var-
ious ICs, other than functional dependencies (FDs) [9]; prac-
tical techniques for ICs violation detection [11]; and methods
to repair database errors by enforcing ICs [17]; to name but
a few.

It is crucial that there be effective methods to discover ICs
from data. Manually designing ICs is a cost-prohibitive and,
worse yet, error-prone task. To do so, domain experts would
need to keep up with the ever-evolving semantics of data and
application. Moreover, the set of IC candidates is usually
too large for human validation, even for small datasets. In-
deed, many algorithms for automatic discovering of ICs have
been developed [14, 5]. In theory, data cleaning pipelines
could use IC discover algorithms to mine ICs from sample
data, and then use those ICs as data quality rules to detect
and repair errors in the database. However, the recent eval-
uations of IC-based cleaning tools have only used a manual
definition of ICs. Therefore, we believe there are still chal-
lenges to overcome before a fully automated IC-based data
cleaning pipeline can operate.

Discovering ICs from data might return non-reliable re-
sults sets. If the discovery is carried out on dirty data, the
discovered ICs are likely dirty themselves. Even if the dis-
covery is carried out on cleaned samples of data, which is
hard and expensive to get, most of the discovered ICs are
likely accidental. The number of discovered ICs radically in-
creases as the number of attributes in the dataset goes up.
For example, datasets with dozens of attributes and a few
thousands of records produce result sets with thousands of
functional dependencies (FDs) [14]. Although some classes
of IC allow for implication analysis to discard redundant
ICs (e.g., canonical covers of functional dependencies), the
number of discovered ICs which shows no semantic mean-
ing remains huge. Furthermore, the effectiveness of current
methods for data repairing is highly influenced by the num-
ber of ICs the methods consider. Our goal is mining ICs for
data cleaning. If these ICs are compliant with the most cur-
rent semantics of data and application, they should help to
repair the database and spot erroneous data in future loads.

We propose an initial approach to discovering ICs that
are relevant for data cleaning. We stick to the automatic IC
discovery approach, but to support environments in which
both data and application evolve we focus on ICs matching
the current queries in the pipe. The intuition here is to use
the query workload in the application to identify data spots
and structural fragments (e.g., set of attributes and predi-
cates) that are important to users. These assets generate a
workload characterization that is semantically relevant for



the current application. Our approach uses this characteri-
zation to guide the IC discovery process. From the workload
characterization, our approach estimates a set of features for
ICs. Our vision is a classifier that leverages these features
to classify a set of ICs based on their applicability for data
cleaning. In this thesis, we aim to answer the following re-
search questions:

e How can database workloads benefit IC discovery?

e How automatic ICs discovery can serve data cleaning?

2. RELATED WORK

Most of the recent approaches to IC-based data cleaning
manually define the sets of ICs to evaluate their solutions
[19, 17]. Much of these approaches assume that ICs and
data do not change very often, and use a set of fixed ICs
to repair the database through modification and deletions
of inconsistent tuples. A few approaches consider evolving
ICs. In this case, the database is repaired after modifications
to both records and ICs [19]. More recently, the authors
of [18] leverage automatic IC discovery for detecting data
errors. However, they use the discovered ICs (they focus on
FDs) only to generate questions that guide an interaction
with experts. The goal of this interaction is to discover as
many FD-related errors in data as possible on a budget of
questions.

Most works on IC discovery have focused on attribute de-
pendencies. Liu et al. [12] present a comprehensive review
of the topic. Papenbrock et al. [14] have looked into imple-
mentation details, experimental evaluation, and comparison
of various FD discovery algorithms. The studies on IC dis-
covery usually focus on the algorithmic issues of the process,
leaving the applicability of the discovered results aside. To
handle the large number of discovered ICs, some approaches
score ICs on instance-driven metrics for user validation [12,
5]. Unfortunately, these scoring schemes do not consider the
dynamic changes in data and application.

3. MINING RELEVANT ICs

This section describes the main steps we are taking to-
wards answering our research questions.

3.1 Denial Constraints

In the context of this thesis, a database is clean if it is con-
sistent with a given set of ICs. Some types of ICs can express
semantic rules that others ICs cannot, or vice versa. Denial
constraints (DCs) [5] are known to be a response to this ex-
pressiveness issue because they generalize important types
of ICs, such as functional dependencies (FDs), conditional
FDs, and check constraints. Recent works have introduced
methods that automatically repair the violations of DCs in
the database [17]; hence, our proposal is also based on DCs.

DCs define sets of predicates that databases must sat-
isfy to prevent attributes from taking combinations of values
considered semantically inconsistent. Consider a relational
database schema R and a set of operators W : {=,#,<, <
,>,>}. A DC [2, 5] has the form ¢ : Vg, ty,... €7, 7(P1 A
...APy,), where t., t,, ... are tuples of an instance of relation
of R, and R € R. A predicate P; is a comparison atom with
either the form viwove or viwec: v1, v are variables t;4.4;,
A; € R, id € {z,y,...}, ¢ is a constant from A;’s domain,
and w, € W. For example, consider a schema of relation

Employees(Name, Manager, Salary, Bonus), Employees €
R. A DC ¢ can express the constraint “if two employees
are managed by the same person, the one earning a higher
salary has a higher bonus” as follows: —(t;.Manager =
ty.ManagerAt,.Salary > t,.SalaryAt;.Bonus < t,.Bonus).
An instance of relation r satisfies a DC ¢ if at least one
predicate of ¢ is false, for every pair of tuples of r, i.e., the
predicates of ¢ cannot be all true at the same time.

3.2 Proposed Approach

We envision an automated data cleaning system. Figure
1 shows an overview of the expected system’s architecture.
The system regularly collects query logs from the database
server to build workloads W. The characterization for work-
load W takes into account query structures and tuples that
are selected to produce the query results. The outputs of the
workload characterization are data samples and attribute
clusters.

The DC profiler takes as input data samples, attribute
clusters, and, optionally, user-defined DCs templates. The
profiler sets the predicate space (from which DCs are mined)
according to the attribute clusters. By relying on this pred-
icate space, our DC discovery algorithm discovers approxi-
mate DCs from the samples. The next step is to discard the
superfluous DCs and select the relevant ones. It is impor-
tant to discard superfluous DCs so that data repairing only
has to consider DCs that capture the current semantics of
the data and applications. In [15], we have studied the use
of query workload for automatic selection of FDs. We have
developed ranking strategies to select FDs that match the
current workload. The results have shown that it is possible
to select FDs that are semantically close to the query work-
load, and with reasonably similar statistical distributions to
those general FDs produced by the exhaustive FD discov-
ery. However, selecting DCs is more complex and requires
further investigation. We have been evaluating decision tree
ensembles for this task. The general idea is to estimate
different features for DCs, and then use a classifier to de-
cide whether or not DCs are reliable. Feature extraction
is based on structural properties of DCs (e.g., how many
predicates they have); and metrics that correlate DCs with
the database and query workload. The DCs that are classi-
fied as reliable are expected to hold in the database as long
as the database manipulations produce semantically clean
data. Our implementation of the DC classifier is still under
way.

The last task is finding and repairing the tuples that vi-
olate at least one constraint from the DC profiling results.
We have been using HoloClean [17] for this task. Our cur-
rent setup only uses the DC-based error detection and error
repairing modules of the tool. However, we believe that our
system could be adjusted to produce different signals to feed
the probabilistic graphical model of HoloClean. For exam-
ple, deriving features from attribute clusters and samples
for the graphical model. We postpone this kind of investi-
gation because we have been currently focusing on the data
profiling aspects of the system.

3.3 Discovering DCs

We have first worked on the algorithmic issues of discov-
ering DCs from data. At the beginning of our research
program, the only known algorithm for DC discovery was
FASTDC [5], for which there was no publicly available im-



Workload DC Profiler
- _Characterization DC Discovery
Applications Build samples P E ={Q,, | Y(.1) €s)
AEBCD f} P ={P,Py,...}
SELECT AB T
FROM R N w Cl_uster
wHeRe p<tofll .. Atributtes :
' ]| [
c DC classifier
> \B
]
1
Data Repairing ]

DC:
Query Workload . 4 ws- e
@ (PaA...)
@ (PyA..)
ﬂ @ (PaA.LL)
Figure 1: Proposed Data Cleaning Pipeline.

plementation. We have implemented FASTDC from scratch,
and our results agree with those of the original publication.
Next, we briefly describe FASTDC, and the overall improve-
ments we have developed for the algorithm.

The first step to discover DCs is to set the predicate space
P from which DCs are derived. Experts may define predi-
cates for attributes based on the database structure or use
specialized tools for the task, e.g., [20]. The satisfied pred-
icate set Qg+, of an arbitrary pair of tuples (t.,t,) € r
is a subset Q C P such that for every P € Q, P(tu,t,) is
true. The set of satisfied predicate sets of r is the evidence
set B = {Qt,t, | V(tu,tv) € 7}. Different tuple pairs
may return the same predicate set, hence, each Q € E, is
associated with an occurrence counter.

A cover for E, is a set of predicates that intersects with
every satisfied predicate set of E,, and it is minimal if none
of its subsets equally intersects with E,. The authors of
FASTDC demonstrate that minimal covers of E, represent
the predicates of minimal DCs [5]. FASTDC uses a depth-
first search (DFS) strategy to find minimal covers for E,..

FASTDC builds the evidence set by evaluating every pred-
icates of the predicate space P on every pair of tuples of
relation instance r. Our improved version of the algorithm,
BFASTDC [16], is a bitwise version of FASTDC that ex-
ploits bit-level operations to avoid unnecessary tuple com-
parisons. BFASTDC builds associations between attribute
values and lists of tuple identifiers so that different combi-
nations of these associations indicate which tuple pairs sat-
isfy predicates. To frame evidence sets, BFASTDC operates
over auxiliary bit structures that store predicate satisfaction
data. This allows our algorithm to use simple logical opera-
tions (e.g., conjunctions and disjunctions) to imply the sat-
isfaction of remaining predicates. In addition, BFASTDC
can use two modifications described in [5] to discover ap-
proximate and constant DCs. These DCs variants let the
discovery process to work with data containing errors (e.g.,
integrated data from multiple sources).

In our experiments, BFASTDC produced considerable im-
provements on DC discovery performance (up to 24-fold
compared to FASTDC). Unfortunately, the number of dis-
covered DCs were unmanageably large, even after selecting
only the DCs with high scores for the interestingness dimen-
sion described by the authors of FASTDC [5].

Discovering DCs handles large search spaces. Thus, run-
ning times for DC discovery increase when more tuples are
considered, and dramatically increase when the discovery is
set for large predicate spaces. Instead of running BFASTDC

over the entire dataset and large predicate spaces, our sys-
tem focuses the discovery efforts on areas that are relevant
for the application workload.

3.4 Workload Characterization

We hypothesize that the information from the application
workload (e.g., selection filters in SQL statements) is a pow-
erful asset to narrow the large number of DCs discovered.
Query workloads present strong access patterns which, ei-
ther in horizontal level (individual tuples) or vertical level
(individual attributes), points out to specific database re-
gions that are more frequently accessed than others.

Consider a set of user queries @ = {q1,...,¢m }, which is
expected to run on the database. For simplicity, we assume
there is only one relation in the database. For each query ¢;,
our system associates the attributes in the operators of the
query ¢; (e.g., projection and selection) to the attributes of
the relation R(A1,..., An) to define an attribute occurrence
matrix (AOM) O as follows:

o — 1 if ¢; uses attribute A4;,
Y71 0 othewise.

Each entry o;; indicates which attributes of relation R is
required to answer query g;.

The AOM model is straightforward but can be enhanced
to support dynamic workloads in which the incoming queries
are not necessarily identical to each other. We use the ap-
proach described in [3], which models workloads as sets of
pairs of queries and their weights W = {{q1, w1), ..., {gn, wn) }.
Each weight w; is associated with a query ¢;, and measures
the significance of query ¢; in the workload. Thus, AOMs
are weighted according to the importance of their queries.
The AOMs for each application are straightforward to model
if the domain experts are aware of the applications that
will run on the database. Furthermore, modern DBMSs
commonly provide tools to help with this kind of workload
modeling [4].

The authors of [3] describe a probabilistic distribution
method to measure the similarity of incoming queries and
workload W. Our system uses this method to identify sub-
stantial changes in the workload so that it knows when
to start profiling DCs again. For each different workload,
our system estimates data samples and predicate spaces for
which the DC discovery run.

The data samples are expected to represent the data that
is most accessed by applications and, therefore, spot data
that likely produce most errors. We have been testing three
strategies to build samples from queries. The baseline (naive)
strategy is building a single sample with every tuple that is
used to answer the queries in the workload. The second
strategy is building a sample for each fundamental region
[3]. They partition the tuples of the relation instance such
that each region intersects with the tuples selected by a max-
imum number of queries. The third strategy is based on a
self-pruning splay tree (SPST) index [10]. The SPST keeps
the most accessed tuple references near the root of the tree.
Thus, our system uses the strategy of [10] to prune the tree
and to build samples from the remaining partitions.

Predicate spaces come from AOMs, and restrict the search
space of DC discovery for predicates having a high affinity to
each other. Our system uses the frequency of attributes in
the queries to transform AOMs into attribute affinity ma-
trices (AAMs), in which each entry represents the sum of



access frequencies of all queries for that attribute. Further,
it uses the graph-based algorithm described in [13] to build
a spanning tree from which attribute clusters are derived.
These clusters form the predicate spaces as follows. The
system defines single and two-tuple predicates on categori-
cal attributes using operators {=, #}; and on numerical at-
tributes using operators {=, #, <, >, <, >}. It defines pred-
icates involving two different attributes provided that the
values of the two attributes are in the same order of magni-
tude.

BFASTDC runs for every pair of predicate space and
data sample. The output of this phase are sets of approx-
imate DCs (i.e., DCs approximately satisfied by the whole
dataset). In preliminary experiments, we noticed that many
of these DCs were, in fact, exact, or at least had similar
structures to many DCs found in exhaustive discovery.

3.5 Features for DCs

Among the discovered DCs, how to choose those that are
relevant for data cleaning? To answer that question, we are
building a classifier that simulates the experts judging. The
main challenge is to form descriptions of “good” DCs. We
have included the workload characterization in the discovery
process so that our system can estimate features regarding
DC’s application adherence, and not only estimate features
regarding data support.

So far, we have considered the following features for DCs:
statistical significance of DCs for the input dataset, as in
[5]; the number of predicates [5]; similarity between pairs of
DCs, an adaptation of the method described in [15]; similar-
ity between DCs and AAMs, also an adaptation of [15]; and
number of DC-related errors in samples and entire dataset.

We have been developing ensembles [21] to combine differ-
ent decision trees, which are trained upon the above features.
For now, the training sets for the learning decision trees are
user-defined DCs templates. One could also use the set of
DCs currently defined in the database, or manually define
acceptable values for the features of the DCs.

4. RESEARCH PLAN

This research program is currently in its second year. The
research challenges we will have to face to answer our re-
search questions are as follows. First, we will establish an
evaluation scenario in which data, DCs and applications are
evolving. So far, we have been running preliminary experi-
ments on datasets that have already been used to evaluate
DC discovery [5]. We plan to adapt the evaluation proto-
cols of [19] and [3] for our workload-aware scenario. Then,
we will define and detail the metrics that classify DCs as
suitable for data cleaning. With these metrics in place, we
should be able to devise rules to know when a DC is no
longer valid. Such metrics will also help to evaluate the
overall system accuracy. Finally, we plan to compare the
accuracy and scalability of our system against traditional
cleaning solutions.
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