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ABSTRACT
Nowadays a huge amount of geospatial data are generated
and widely used in a variety of areas. In this way, there is
an extensive range of database systems that support geospa-
tial services but fall behind in coping with increasingly de-
manding high throughput, low latency and efficient resource
usage requirements. Meanwhile, in-memory databases have
become more prevalence due to increasing capability as well
as decreasing price of the memory. To take advantage of
the fast I/O speed and overhead reduction of memory-based
storage, in-memory geospatial data management systems
are created to overcome drawbacks of disk-based geospatial
databases. However, to the best of our knowledge, current
in-memory caches are not fully-featured and do not com-
pletely utilize the benefits of widely used geospatial stan-
dards. To fill this gap, we specialize to the API of standard
geospatial services and seek to achieve by this method a
much higher performing in-memory geospatial cache imple-
mentation than possible by combining generic components
such as a geospatial application server and SQL database.
To that end, an efficient and scalable OGC standard-compliant
in-memory geospatial cache Vecstra is built. Furthermore,
we conduct experiments on Vecstra and analyze the prelim-
inary results to formulate research opportunities.

1. INTRODUCTION
There has a considerable increasing of geospatial data us-

age in today’s society in many areas, such as precision agri-
culture [22] and social media streams querying [38]. Mean-
while, an explosion of the Internet of Things (IoT) has re-
cently helped increase the generation of geospatial data [20].
In the agriculture field, there is a huge amount of data from
satellites and sensors that can provide massive geospatial
information about terrain and crop status. By integrating
a range of data and providing the information, that enables
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farmers to tailor their management according to the local
and actual conditions in the field. Since the importance and
wide societal relevance of spatial data, many platforms pro-
vide geospatial services, necessitating specialized data man-
agement solutions. GeoServer [12], for example, is the back-
end of a number of such services and builds its geospatial
database on PostGIS [17].

On the other hand, due to the increasing capability and
the decreasing price of memory, there is higher possible to
cache substantial amounts of geospatial data in-memory.
Storing data in memory is especially valuable for running
concurrent workloads as it eliminates the inevitable bottle-
necks caused by disk-centric architectures [21]. To take ad-
vantage of the benefits of object caching systems, there are
widely used web services caches such as Memcached [15] and
Redis [9]. Now more and more classic databases providers
have developed their in-memory features and systems. For
instance, in-memory database TimesTen [27] owned by Or-
acle and memory-optimized OLTP engine Hekaton [13] in
SQL Server. Moreover, multi-core servers also help to achieve
performance benefits and can yield significant gains. Multi-
core processors can simultaneously handle multiple requests
that can help reduce latency when amounts of concurrent
requests occur, which is a very likely situation with skew in
geospatial services [1].

Despite the popularity of geospatial databases such as
PostGIS, however, their design has benefited little from re-
cent developments in in-memory databases. PostGIS still
utilizes disk as its primary storage, which raises the prob-
lem to reduce expensive geospatial data querying cost due
to disk I/O and system overheads. Since geospatial services
are experiencing growing popularity, this problem is made
worse by large numbers of concurrent requests. In-memory
database techniques and multi-core hardware hold promise
to offer a solution to this problem, while at the same time
increasing throughput and resource utilization.
Existing Systems. Currently, there are many geospatial
databases that provide services to clients, as shown in Fig-
ure 1. There are disk storage databases for batch processing
and multiple types of spatial queries such as SpatialHadoop
[14] and Hadoop-GIS [2]. With the availability of larger
and cheaper main memory, to take the advantage of that,
data management systems such as MemSQL [35] are built
based on main memory to improve response times. Mem-
SQL is a in-memory database that stores data and allows
for quickly analyzing and processing data. And there are
transactions for the small interactive requests, to support
such requests, a number of specialized systems have been
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Figure 1: Related Work Summary.

developed. For example, GeoServer that based on PostGIS
we discussed above, and GeoMesa [19], a spatio-temporal
distributed database, also for GeoWave [3] and H2GIS [6].
There are also disk-based caches such as GeoWebCache [28]
integrated with GeoServer that can store different types of
map. MapCache [7] is also a disk cache that similar with Ge-
oWebCache. As we can see, even though many such geospa-
tial systems exist, only a few are based on main memory. To
the best of our knowledge, two systems stand out in this cat-
egory. One is HyperSpace [32], a geospatial main-memory
database system that can fastly process geospatial queries.
The other one is SpaceBase [40], a system that allows han-
dling concurrent geospatial queries with low latency based
on R-Tree indexing. But those two described in-memory
caches fail to support widespread geospatial data such as
raster data. Also, these caches also have limited support
spatial data structures, which can substantially affect pro-
cessing efficiency in main memory. Meanwhile, latency and
efficiency in resource usage of modern multi-core machines
are not discussed in these caches. For the temporally skewed
geospatial query, keep scalability of systems when large num-
bers of users and request volumes happen which is a highly
possible scenario should be taken into consideration as well.
Contribution. To fill the gap as described above, inspired
by the criticism of ”One size fits all” in [39], we specialize the
design of our cache to the particular geospatial standards.
We build OGC standards [8] compliant in-memory cache
Vecstra that support spatial data structures to achieve high
performance in geospatial services. There are many stan-
dards developed by OGC. Web Feature Service (WFS) [42]
and Web Coverage Service (WCS) [41] are two of the most
widely used standards. WFS is used to serve geographic
feature information that mostly used in web-based client
applications for GIS data editing. WCS is used to provide
information on coverages. Known WFS/WCS implemen-
tations include open-source systems such as rasdaman [4],
MapServer [26] and GeoServer. Commercial implementa-
tions include Envitia1, Pyxis WorldView Studio2, ESRI Ar-
cGIS, among others. Most current disk-based geospatial sys-
tems implement these two standards; however, in-memory
storage systems such as HyperSpace and SpaceBase fail to
implement complete services. Given the popularity of these
OGC standards, it would be ideal if a cache can provide sup-
port to them and that can help the cache directly integrated
into existing disk-based geospatial systems. One approach
to build the cache could be to build or extend existing SQL
based systems such as HyPer or SpaceBase that provides
features for SQL require for data. However, since providing

1https://www.envitia.com/
2https://www.pyxisglobe.com/

a specialized interface, we have opportunities to provide a
much better implementation. Targeted advantages of Vec-
stra are:

1. Use of tuned in-memory data structures for geospatial
data, leading to lower latency;

2. Thread management that is optimized for the inter-
face of a geospatial cache supporting operations over
geospatial layers, leading to lower overhead and better
scalability;

3. Open-source system that is standards-compliant, offer-
ing integrated WFS and WCS interfaces. And in the
future, it is possible to extend Vectra with standard
WPS as well.

The remainder of this paper is organized as follows. In
Section 2 we illustrate our solution to build Vecstra and
present preliminary experiment results. In Section 3, based
on these results, we discuss research challenges and conclude
in Section 4.

2. SOLUTION
To explore a solution to the problems in Section 1, we

build a scalable, fully functional in-memory geospatial cache
called Vecstra that can provide high efficient services and low
latency response to geospatial data requests, operating on
a multi-core computer for the interest of high performance.
This section focus on how we build Vecstra, including API
design, architecture, and experiments.

2.1 API design
Vesctra is an in-memory storage cache that provides ser-

vices to clients to obtain geospatial data for calculations and
analysis goals. Vecstra implements the standard WFS and
WCS interfaces, which we analyzed to collect the functions
that Vecstra should support. Abiding by these APIs is ad-
vantageous as this allow us to specialize the whole system
to particular operations as opposed to providing a generic
implementation.

Every API method in Vecstra is invoked by user requests
to an instance v of Vecstra and the design of them are as
follows. The v.wfs/wcs::Add(l) and v.wfs/wcs::Remove(l)
add and remove vector or raster layers in v, respectively.
The method v.wfs/wcs::GetCapabilities provides basic in-
formation of all vector or raster layers and services in v,
while v.wfs::GetFeature(l, bbox) and v.wcs::GetCoverage(l,
bbox), respectively, provide full information in the in-
tersection area of vector or raster layers l and bound-
ing box bbox in v. Finally, v.wfs::DescribeFeatureType(l)
and v.wcs::DescribeCoverage(l) obtain description and geo-
information of vector or raster layers in v.

The API opens up opportunities for specialization of the
implementation. For example, updates are always at layer
granularities, but queries typically read small parts of a few
layers that are intersecting with a window in space. We ob-
serve that services often rely on PostGIS, which allows them
to satisfy linearizability, so to keep consistent semantics we
end up with the requirement to maintain linearizability for
concurrent operations in Vecstra. As we will see in the next
section, we can exploit these characteristics in the design of
Vecstra to support the API above more efficiently than alter-
native generic designs based on an SQL geospatial database.
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Figure 2: Architecture of Vecstra.

2.2 Architecture
Figure 2 illustrates the architecture of Vecstra. Vecstra

contains both vector and raster data which are two primary
types of spatial data in GIS that most commonly used in
geospatial services [10]. Based on the results in [37], we
choose R-Tree indices for the spatial intersection of vector
data and currently we use multi-dimensional array indices
for raster data. Essentially, query windows are for a number
of layers and initially update operations are coarse-grained
at layer granularities. Because the query operations usually
do not read all layers and also in order to support the layer-
level update operations, the design of indices is partitioned
by layers, i.e., every index corresponds to one layer.

To exploit multi-core benefits, multi-threading is used to
gain performance. Concurrent request threads are assigned
to different cores. The multiple threads running in Vecstra
are executing both queries and updates. Index structures
such as the high-concurrency locking R-Tree proposed by
[25] can be exploited to utilize concurrent threads. How-
ever, as shown in Section 2.1, modification requests in Vec-
stra are coarse-grained at layer granularities, so fine-grained
concurrency in indices has been unnecessary so far. We can
explore other possibilities where several particular layers are
combined into one single index as future work. Currently,
we utilize a concurrent hash map [33] to store the indices of
layers, which supports full concurrency of query operations
and high expected concurrency for update operations. In
addition, to minimize synchronization costs, a thread per-
forms indexing on a given layer without synchronization,
and then uses the concurrent hash map to synchronously
store the built index in a single operation. Based on the
OGC standards and to integrate with the current systems
such as GeoServer, there is an HTTP communication inter-
face that is provided to users. Users provide GET requests
to obtain WCS and WFS services from Vecstra.

2.3 Preliminary Results
Prototype and Workload. Vecstra prototype implement
architecture of Figure 2 based on C++11 and is compiled by
gcc 5.4.0. Realistic data are used for experiments. Raster
data we used are Field polygons, Soil, Rain distribution
layers and a topographic layer of Denmark, DTK/Kort25,
for raster data. Used workload designed based on precision
farming scenario [21]. Queries are generated for fields and
update requests are for layers. Currently, all queries and
requests are uniform random generated but in the future,
we can design a skew request mechanism based on the real
request log. We conduct our experiments on an AWS EC2

r4.4xlarge instance of Ubuntu server 16.04 LTS.
Results. At presesent, we use single read-write lock to
achieve automicity of Vecstra which is expected to be not
scalable. Therefore, we do our experiment only focus on
queries. We analysis the time in server side to show which
parts the latency located that can be improved in future
work. Now for vector data, most part of latency is located
in geometry intersection (around 50%-64%) and for raster
data, the highest portion of latency is located in data ex-
traction (around 89%-95%).

3. RESEARCH CHALLENGES
The work presented so far was done in the first 9 months as

a Ph.D. candidate. Based on the preliminary results from
the evaluation of Vecstra, we describe the future research
directions to overcome shortcomings described in Section 3.
Optimization for Geospatial Window Queries. A
geospatial range query is a very common database oper-
ation that retrieves geospatial information located between
an upper and lower boundary[30]. The refine step in geomet-
ric intersection time is the biggest part of WFS range query
latency and data extraction use the majority of WCS range
query processing time, that can be seen from the server side
evaluation results. Spatial indexing is used to support spa-
tial selection [16]. Now, the minimum bounding rectangle is
used as the geometric key of our vector data and the most
time of vector range query is located in intersection calcula-
tion, [18] implemented non-leaf and leaf MBR optimizations
techniques in Oracle Spatial. A new optimization approach
adds on top of this technique to reduce the intersection time
is one of our goals.

Now our raster data is continuously and linearly stored in
an array from left to right and from top to bottom. We cal-
culate the intersected cells by decomposing the range query
to a set of range sections, then extracting data block-by-
block. Now we can see the latency of processing of raster
data extract is relatively high. In order to make this process
faster, a better data partitioning method should be used[31].
Now Q-Tree and R-Tree are two most common indexes in
commercial database systems [5]. Due to most geo range
queries are rectangle shape, we consider exploring a better
range indexing for raster data. [29] use space-filling curves
to index the data, but this proposed curve-design method
is heuristic. Therefore, an efficient curve-exploration ap-
proach and valuating the best combination of curves in an
in-memory cache are challenges that we will pursue as an
avenue for future work.
Efficient Updates in Multi-Core Cache. Concurrency
control should be used to manage requests to ensure the se-
mantics of Vecstra. However, the current scalability of our
shared everything implementation is still limited by poten-
tial synchronization bottlenecks in the presence of update
skew towards certain layers of geospatial data [23]. A com-
posable thread management approach [24] will be explored
in future work. Also, in the future, we can utilize lock-free
mechanisms to tackle this problem. Unlike work in con-
ventional updates to spatial data structures [36], this mech-
anism will exploit the concurrent updates of Vecstra and
recent work on [11] for the maximal performance.
Design of Integration Language for Geospatial Web
services. Now Vecstra provides WCS and WFS to users;
however, queries are only for raster or vector data, which
is the same with the current geospatial service databases.
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We want to go further in this aspect, that is, to design an
integration language to combine geospatial data. For ex-
ample, to stay standards-compliant, we can implement Web
Processing Service (WPS) [34] that can help users define the
execution way of a process and also handle the output of the
process. Widely used standard Web Map Service (WMS)
[43] is also a solution. By doing that, a user can get geospa-
tial information such as both raster and vector data from
one single query which can provide them a better view in a
convenient way. Further research can be done on the basis
of this to achieve a better balance expressivity and perfor-
mance; for instance, we can provide specialized support for
a subset of scripts such as support adapting data to scale in
zoomable maps.

4. CONCLUSION
In this paper, we investigated current geospatial data man-

agement systems and discussed challenges. To address these
challenges, our goal is to build an efficient and scalable OGC
standard-compliant in-memory geospatial cache. We spe-
cialized API of standard geospatial services and sought to
achieve by this method a much higher performing in-memory
geospatial cache implementation than possible by combining
generic components such as a geospatial application server
and SQL database. To achieve that, we started by building
our initial version of Vecstra and obtained preliminary re-
sults on it. We described the problems that need to be solved
in our future research and proposed possible methods. First,
find an optimized window query approach. Second, exploit
the efficient updates in the multi-core cache. Third, design
an integration language for geospatial services.
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