
Self-Driving: From General Purpose to Specialized DBMSs

Jan Kossmann
Supervised by: Prof. Dr. Hasso Plattner

Hasso Plattner Institute
August-Bebel-Str. 88
Potsdam, Germany

Jan.Kossmann@hpi.de

ABSTRACT
Large data sets, variable workloads of high complexity, and
flexible cloud infrastructure make the administration of data-
base systems at the same time more challenging and more
important. In the future, self-driving database systems will
utilize workload-driven optimization and machine learning
techniques to generate forecasts of future workloads, decide
upon which actions to take to process workloads most ef-
ficiently and to incorporate knowledge from past decisions
into future ones without human intervention. But database
systems are typically not designed having such capabilities
in mind. We propose the architecture of a generalized frame-
work that enables seamless integration of self-driving ca-
pabilities into database systems. Thereby, general-purpose
database systems can transform themselves into systems
tailored to a specific use case. Furthermore, we present
our scalable approach to finding solutions for large prob-
lem instances of a physical design challenge, i.e., the index
selection problem. Both concepts have been implemented
and partly evaluated with real-world data on the research
database system Hyrise.

1. INTRODUCTION & MOTIVATION
Today’s relational database systems are general purpose

systems. They are designed to handle most real-world use
cases and workloads sufficiently. To achieve this, such sys-
tems rely on generic configurations and algorithms. How-
ever, to achieve cost efficiency, fully utilize existing hardware
resources, and achieve optimal performance such systems
need to be optimized. Database administrators (DBAs) are
responsible for manually tuning and configuring systems in
order to meet the specified Service Level Agreements (SLAs)
and deliver optimal performance. Tuning and configuration
can include decisions upon the available physical resources
(e.g., available network bandwidth, CPUs, main memory),
knob configuration (e.g., buffer pool size, number of concur-
rent threads, different concurrency mechanisms), and phys-
ical database design (e.g., partitioning or indexes). The re-
cent work of Kraska et al. [7] on learned index data struc-
tures goes one step further. The authors do not only present
very interesting results by outperforming traditional data
structures that were tuned for decades. Also, the demon-
strated solution of replacing core components of database

Proceedings of the VLDB 2018 Ph.D. Workshop, August 27, 2018. Rio de
Janeiro, Brazil. Copyright (C) 2018 for this paper by its authors. Copying
permitted for private and academic purposes.

systems with machine learning models opens up opportuni-
ties to rethink the tuning and configuration of database sys-
tems in general. This might lead to a point where database
systems could autonomously optimize themselves and adjust
their configuration for the currently processed workload. In
Section 4 of this work we will detail how we equipped the re-
lational database system Hyrise with self-driving capabilities
and preliminarily evaluated our approach with real-world
data.

There are three main trends which strengthen and mo-
tivate the need for such self-driving database systems: (i)
more variable and complex workloads, (ii) the shift from on-
premise to cloud deployments, and (iii) an increased num-
ber of available options and (hardware) configuration di-
mensions. We will detail these trends in the following para-
graphs.

First, today’s relational database systems have to handle
a broad variety of complex, volatile, and combined work-
loads. HTAP workloads contain transactional and analyt-
ical queries. The recent increase of machine learning ap-
plications on all sorts of data sets increases the workload
complexity even further. Data is not necessarily extracted
to process data- and computation-intensive machine learn-
ing tasks, but the computations are executed directly on
a database system [9]. Thereby, workloads are more vari-
able, harder to assess and, in the end, manual tuning gets
increasingly challenging. Simultaneously, the need for high
performance to fulfill these complex workloads makes proper
configuration and tuning even more important.

Second, the shift from on-premise to cloud database solu-
tions is another motivation. Nowadays, many cloud providers
offer the opportunity to deploy (traditional) relational data-
base systems on cloud infrastructure. There is a variety of
reasons to choose cloud over on-premise database deploy-
ments. Flexibility caused by scalability and elasticity, cost-
effectiveness because of better resource utilization, and the
avoidance of the need to own and maintain physical infras-
tructure to name a few. Both parties cloud providers, and
cloud customers have an interest in self-driving database
systems. Cloud providers maintain a large number of sys-
tems. Cost-efficiency and optimal resource utilization are a
necessity to be competitive. Hence, proper tuning and con-
figuration of their systems are of high importance. Manual
tuning of these systems by DBAs would be cumbersome,
time-consuming, and, hence very expensive. On the other
hand, cloud customers do also have an interest in optimized
systems. They usually pay for units of computation time
per machine and they also pay more for larger machines.

1

Therefore, they have an interest in renting fewer machines,
smaller machines and renting these for the shortest possible
periods. Thus, utilizing the rented resources in the most per-
formant way without investing manual administration effort
is necessary to avoid unnecessary costs.

Furthermore, database systems as well as the underlying
hardware offer increasingly more configuration and tuning
options. The number of knobs of database systems is grow-
ing with every release of a new version. In 2016, MySQL
offered more than 500 tunable knobs. In addition, chang-
ing the state of one knob might affect the impact of other
knobs [2]. Hence, they cannot be considered independently.
Some new hardware mechanisms can be dynamically con-
figured which adds further tuning dimensions, e.g., Intel’s
Cache Allocation Technology [1]. To exploit such mecha-
nisms to their full extent they need to be used taking the
currently processed and soon to be processed workload into
account.

All the above-mentioned aspects demand specialized con-
figurations for each database deployment, but the effort to
build those would be too high. If we leverage workload-
driven optimization and machine learning techniques (rang-
ing from simple techniques, for example, linear regression
and decision trees to complex neural networks), we can trans-
form general purpose database systems into database sys-
tems tailored to a specific use case. This might cause compu-
tationally intensive calculations. However, the computation
power of new CPUs, GPUs, and TPUs [6] enables efficient
processing of large problem instances.

2. RESEARCH ISSUES
In this section, we want to highlight research problems

originating from self-driving databases. Developing self-dri-
ving database systems is a complex problem involving mul-
tiple (database) components. Therefore, there is no single
research problem, but a whole variety of problems arise. We
see three main areas that must be mastered to enable self-
driving database systems.

1. Tuning: The core problem of self-driving database sys-
tems. The main task of such systems is to take certain
actions to increase performance with regards to, e.g.,
latency, memory consumption, or energy consumption.
Manifold reasons make tuning difficult. First, the sheer
complexity and problem size for large database de-
ployments. Furthermore, tuning decisions might de-
pend on other tuning decisions and considering them
separately leads often to suboptimal results [2]. Also,
heavyweight operations to put the tuning choices into
place, for example, repartitioning of large tables, can
easily negatively affect system performance.

2. Feedback loop: Self-driving database systems have to
evaluate themselves and learn based on their past tun-
ing decisions in order to be independent of human over-
sight. This is particularly hard with volatile workloads
that change frequently. The system’s actions need to
be assessed even though the new workload might look
completely different as previously anticipated.

3. Forecasting: Tuning choices for the current workload
can be affected if the system’s workload is going to
shift in the next few minutes. Workloads can change,
e.g., based on seasonal effects or load peaks caused by

high usage. Therefore, detailed forecasts are necessary
to anticipate future workloads.

In addition, today’s database systems were not designed
with self-driving capabilities in mind. Thus, we want to
investigate how a database design could support the above
presented main requirements without sacrificing performance
or well-established functionalities.

Furthermore, we work on finding efficient and robust1 so-
lutions, even for large problem instances, for tuning prob-
lems. With more volatile and diverse workloads [8] the re-
quirements for high-performance operation of the database
system are constantly changing. Finding the most promis-
ing set of actions to achieve the best performance for the
currently processed workload is of high importance. The
amount of time it takes to find such a set of actions is not
less important. If the solution of a problem instance takes
large amounts of time, the workload could have changed,
thus rendering the solution out-dated.

3. RELATED WORK
This section should demonstrate why the currently ex-

isting solutions are not sufficient. The beginnings of self-
driving databases can be seen as early as in the 1970s where
self-adaptive databases could automatically tune parts of
their physical design [5]. Later, commercial database sys-
tems [3, 13, 12] introduced tools and advisors that supported
DBAs in tuning tasks. In most cases, these tools do not ap-
ply foresight to anticipate future workloads but mostly take
reactive measures. In addition, advisors still involve manual
human effort to take the final tuning decision.

The modern term of self-driving databases [11] targets a
much wider and more holistic goal. These systems should be
completely self-sufficient and maintain all aspects that are
necessary to make database systems run permanently and
efficiently without human intervention. The recent work
of Aken et al. [2] presents a system that combines multi-
ple machine learning techniques to automatically manage a
database system by tuning its knob configuration. Tuning
decisions are based on a large repository of previously tuned
systems that processed a similar workload. This is a great
step forward, but we see multiple open challenges here. For
example, the approach cannot yet work holistically. It only
handles knob configurations. Physical database design is not
targeted at all. Instead, it expects a reasonable physical de-
sign to be in place. This is a fair assumption at this point of
time, but in our opinion separating knob configuration and
physical design might, in the end, lead to suboptimal results.
Therefore, we favor a holistic approach. Furthermore, in or-
der to fulfill this tuning process, the system’s workload is
characterized. Their system characterizes workloads based
on the database system’s internal runtime metrics, e.g., ac-
quired locks or written/read pages and not on the logical
query level. We argue that only because workloads show
the same runtime metrics they cannot necessarily be classi-
fied as equal or similar. Especially high variable, complex
workloads that combine, for example, HTAP and machine
learning queries will be hard to characterize with such ap-
proaches.

There are state-of-the-art solutions for many tunable as-
pects, e.g., indexes [4], views [10] or knob configuration [2].

1Robust solutions offer not necessarily the best performance,
but aim to provide acceptable performance in most cases.

2

ApplicationsApplications

Configuration

Physical
Design

Knobs

Hardware
Resources

ConstraintsRuntime KPIs

Evaluator Selector

Evaluations

Executor

Choices

Query Plan
Cache

Queries

Query Optimizer

R

Hyrise

Workload
Analyzer

Workload
Forecast Organizer

Driver

TunerR

Figure 1: Diagram of the Generalized Self-Driving Framework

However, for large problem instances, these solutions show
unacceptable runtimes or limit candidate sets a priori result-
ing in far from optimal results. If database systems should
become fully autonomous, minutes of runtime for tuning
a single aspect is not acceptable if dozens of tuning deci-
sions have to be taken. We identify this as an opportunity
for further research especially when problem instances grow
through ever-increasing database sizes.

4. RESEARCH PLAN
In this section, we describe the approach we pursue, which

work is currently conducted and planned for the future, and
how we plan to evaluate the proposed solution.

4.1 Approach
We have developed the architecture of a generalized self-

driving framework and implemented this in the new version
of the Hyrise2 database system. Hyrise is a relational main-
memory database system that stores tables in column-major
format. The recent rewrite of the Hyrise codebase gave us
the opportunity to take all design decisions with self-driving
capabilities in mind and plan the system’s architecture ac-
cordingly.

Figure 1 depicts how we integrate the necessary compo-
nents to enable a self-driving database system into Hyrise.
For simplicity reasons not all interfaces and components can
be visualized in this figure. The Query Optimizer generates
efficient query plans from SQL strings. These plans are fed
into the Query Plan Cache. In case a query plan has al-
ready been cached, the planning phase can be omitted. The
query plan cache plays an important role because it holds a
representation of current and past workloads. This is nec-
essary to generate forecasts for future workloads. The cen-
tral component responsible for self-driving is the driver. It
is responsible for ensuring that the database system most
efficiently processes the incoming workload while consider-
ing specified constraints and at the same time not wasting
resources. The Workload Analyzer generates workload fore-
casts of future workloads based on the data from the Query
Plan Cache. These forecasts have two main purposes. First,
they serve as input for the Organizer. The Organizer con-
trols and supervises the tuning process: it determines when
to start or abort tuning based on workload forecasts. It
also enforces the time constraints to ensure that the tuning

2https://github.com/hyrise/hyrise

process itself does not consume too many resources. Sec-
ond, they are used by the tuner. It finds its decisions based
on workload forecasts. The Tuner itself consists of three
components: The Evaluator component evaluates all pos-
sible actions and assigns a negative or positive desirability
expressing the expected benefit for the system, a confidence
that is associated with the desirability, and a cost. We ex-
pect one evaluator to exist for each tunable entity, for ex-
ample, indexes, partitions, knobs. Evaluators might consult
the query optimizer for (hypothetical) cost estimations. Its
output is consumed by a selector which selects the most-
beneficial actions while considering a cost budget. There
could be multiple exchangeable selectors each with a dif-
ferent strategy, e.g., greedy, heuristic-based or solver-based
strategies, which show their strengths in different scenar-
ios. In the end, the Executor takes care of executing the
proposed actions by changing the configuration. This ar-
chitecture offers the necessary flexibility while avoiding re-
dundant components at the same time. The selector can
be exchanged by the organizer based on past tuning ex-
periences or current needs. While we need one evaluator
implementation per tunable aspect, multiple instances of a
single selector implementation can be used for multiple tun-
able aspects. The driver does also draw conclusions from
past tuning runs. Therefore, it continuously monitors the
database system’s runtime KPIs and observes whether the
desired effects occurred. It might also change the query plan
cache to trigger the eviction of plans that became out-dated
after a tuning run. Constraints contain hardware resource
restrictions and service level agreements.

Our self-driving framework can benefit from Hyrise’s flexi-
ble architecture. Tables are physically partitioned into small
(consisting of around 100 000 rows) chunks. Small chunks of-
fer high flexibility regarding data placement/movement, in-
dexing, compression and re-encoding. All of the above could
be triggered by tuning decisions of a self-driving database
system. Hyrise’s architecture shows further benefits. Nor-
mally, for systems storing the data in large monolithic blocks
containing dozens of millions of tuples the time necessary for
automatic tuning can be hard to estimate. Also, applying
changes, e.g., re-encoding a large table, is a heavyweight,
time-consuming operation. Chunks divide the problem in
multiple smaller problems, allowing more lightweight oper-
ations and better estimations of the necessary effort. In ad-
dition, chunks are append-only containers. Once they reach
their capacity they become immutable. Therefore, the self-
driving database systems can make assumptions about the

3

0 5 10 15 20 25 30 35 40
Relative Memory Budget w (%)

0

20

40

60

80

100

120

140
M

em
or

y
Tr

af
fic

 (T
B)

CoPhy (100 Candidates)
CoPhy (200 Candidates)
CoPhy (500 Candidates)
CoPhy (1000 Candidates)
CoPhy Imax (8827 Candidates)
Our Strategy (H6)

Figure 2: Preliminary evaluation. Lower memory
traffic is better. The state-of-the-art approach (Co-
Phy [4]) is in few cases slightly better than our strat-
egy. Cophy’s runtime is either similar for few candi-
dates or orders of magnitude higher for many can-
didates.

underlying data with a higher certainty which leads in the
end to better tuning results.

4.2 Current and Future Work
The concept of the generalized self-driving framework is

currently implemented in Hyrise and under evaluation. We
have conducted first experiments on real-world enterprise
data and the results look promising.

Furthermore, we have started to investigate how large
problem instances of physical design challenges can be solved
efficiently without restricting the candidate set or relying
on external solvers. In the beginning, we studied the well-
researched index selection problem. For a given workload
and memory budget the best index configuration is searched.
The preliminary results, also depicted in Figure 2, indicate
that we outperform current state-of-the-art approaches in
both scalability and solution quality for real-world as well
as synthetic workloads. Our approach relies on a gener-
alized recursive solution principle utilizing the query opti-
mizer’s cost model. It is completely integrated with the
above presented generalized self-driving framework. How-
ever, the number of optimizer calls is greatly reduced by the
approach’s recursive structure.

The next step is to create reliable workload forecasts on
the basis of the query plan cache data. Precise workload
forecasts do not only enable the tuner to find the best so-
lutions for a certain workload, but also to find robust so-
lutions that work acceptably well in cases where workloads
that were assumed to be less likely need to be processed. Af-
terwards, we want to investigate how a feedback loop could
be established. The driver needs to monitor and assess the
effect of past tuning decisions and influence the tuner’s be-
havior for future decisions.

4.3 Planned Evaluation
Current evaluations of our approach were conducted with

data and workloads from a productive real-world Enterprise
Resource Planning application of a Fortune Global 500 com-
pany as well as with synthetic benchmarks. At the moment,
we are in the process of getting access to several productive
cloud database systems. These systems would offer both,

the possibility to learn based on data from real-world sys-
tems and the opportunity to evaluate our approach in prac-
tice for a large number of systems. We envision to addi-
tionally take more complex synthetic benchmarks, e.g., the
TPC-DS benchmark into account to provide reproducible
examples.

5. CONCLUSION
We have presented our architecture of a generalized self-

driving framework that integrates with typical database com-
ponents. The framework is capable of handling the three
main challenges for self-driving database systems: forecast-
ing of future workloads, adjusting the configuration accord-
ingly, and learning based on these adjustments. In addition,
we have demonstrated our concept and evaluations for the
efficient solution of large problem instances of physical de-
sign challenges. Upcoming tasks include the implementation
of workload forecasting, assessing the impact of past config-
uration decisions, and an extensive evaluation with more
real-world systems.

6. REFERENCES
[1] Introduction to Cache Allocation Technology.

https://software.intel.com/en-us/articles/

introduction-to-cache-allocation-technology.
Accessed: 2018-04-10.

[2] D. V. Aken, A. Pavlo, G. J. Gordon, and B. Zhang.
Automatic database management system tuning
through large-scale machine learning. In Proceedings
of the SIGMOD Conference 2017.

[3] S. Chaudhuri and V. R. Narasayya. Self-tuning
database systems: A decade of progress. In
Proceedings of the 33rd VLDB Conference 2007.

[4] D. Dash, N. Polyzotis, and A. Ailamaki. Cophy: A
scalable, portable, and interactive index advisor for
large workloads. PVLDB, 4(6):362–372, 2011.

[5] M. Hammer. Self-adaptive automatic data base design.
In American Federation of Information Processing
Societies: 1977 National Computer Conference.

[6] N. P. Jouppi, C. Young, and N. P. et al. In-datacenter
performance analysis of a tensor processing unit. In
Proceedings of the 44th ISCA 2017.

[7] T. Kraska, A. Beutel, and E. H. C. et al. The case for
learned index structures. CoRR, abs/1712.01208, 2017.

[8] J. Krüger, C. Tinnefeld, M. Grund, A. Zeier, and
H. Plattner. A case for online mixed workload
processing. In Proceedings of the Third DBTest 2010.

[9] S. Luo, Z. J. Gao, M. N. Gubanov, L. L. Perez, and
C. M. Jermaine. Scalable linear algebra on a relational
database system. In 33rd IEEE ICDE 2017.

[10] I. Mami and Z. Bellahsene. A survey of view selection
methods. SIGMOD Record, 41(1):20–29, 2012.

[11] A. Pavlo, G. Angulo, and J. A. et al. Self-driving
database management systems. In CIDR 2017.

[12] K. Yagoub, P. Belknap, and B. D. et al. Oracle’s SQL
performance analyzer. IEEE Data Eng. Bull.

[13] D. C. Zilio, J. Rao, and S. L. et al. DB2 design
advisor: Integrated automatic physical database
design. In Proceedings of the Thirtieth VLDB 2004.

4

